L)

Check for
updates

RegVault II: Achieving Hardware-Assisted Selective Kernel
Data Randomization for Multiple Architectures

RUORONG GUO, Zhejiang University, Hangzhou, China
YANGYE ZHOU, Zhejiang University, Hangzhou, China
JINYAN XU, Zhejiang University, Hangzhou, China
WENBO SHEN, Zhejiang University, Hangzhou, China
YAJIN ZHOU, Zhejiang University, Hangzhou, China

RUI CHANG, Zhejiang University, Hangzhou, China

Memory corruption vulnerabilities pose a significant threat to system security. The traditional paging-based
approach cannot protect fine-grained runtime data (e.g., function pointers), which are often mixed with other
data in memory. To protect the runtime data, data space randomization is proposed to encrypt the in-memory
data so that the attacker cannot control the decrypted result. Unfortunately, current hardware does not pro-
vide dedicated support for fine-grained data encryption.

This article presents RegVault I, a cross-architectural hardware-assisted lightweight data randomization
scheme for OS kernels. To achieve robust, fine-grained, and lightweight data protection, we first identify five
required capabilities for efficient and secure data randomization. Guided by these requirements, we design
and implement novel hardware primitives that provide cryptographically strong encryption and decryption,
thus ensuring both confidentiality and integrity for register-grained data. At the software level, we propose
identification- and annotation-based approaches to automatically mark sensitive data and instrument the
corresponding load and store operations. We also introduce new techniques to protect the interrupt context
and safeguard the sensitive data spilling. We implement RegVault IT on an actual FPGA hardware board for
RISC-V and on QEMU for Arm, applying it to protect six types of sensitive data in the Linux kernel. Our
thorough security and performance evaluations show that RegVault II effectively defends against a broad
range of kernel data attacks while incurring minimal performance overhead.
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1 Introduction

Memory safety issues (e.g., memory corruption and disclosure) remain one of the biggest threats
to modern systems. According to the report of Microsoft [21], around 70% of all patches were
for memory corruption-related bugs. With memory corruption capability, attackers first intend
to corrupt code, leading to code corruption attacks. They either modify existing code or inject
new code, achieving arbitrary code execution. Luckily, memory paging can effectively defend
against code corruption attacks by grouping the code into pages and enforcing the WéX on these
pages.

Runtime data becomes a prime attacking target once code corruption is defeated, as at-
tackers can exploit memory corruption vulnerabilities to overwrite control data for hijacking
or corrupt non-control data for data-oriented attacks. At runtime, security-critical data is
pervasive throughout the system, appearing in various forms across memory. These runtime
data structures-encompassing function pointers, return addresses, user credentials, and other
sensitive information—-are frequent attack vectors. Numerous studies[1, 32, 60, 65, 71] have shown
that attacks targeting runtime data are both widespread and critical. For instance, control flow
hijacking techniques, such as return-oriented programming (ROP), manipulate function
pointers and return addresses, while data-oriented attacks, including buffer overflows and format
string vulnerabilities, target non-control data like user credentials.

In the Linux kernel, security-critical runtime data is often stored adjacent to non-critical data.
Furthermore, this security-sensitive data tends to be small, typically fitting within a register-sized
unit, such as an 8-byte pointer on 64-bit systems. The combination of small, sensitive data residing
alongside non-critical data renders traditional, page-grained protections inadequate. For instance,
memory paging protections usually operate at a granularity of 4 KB, which is far too coarse to
effectively isolate and safeguard small data objects like function pointers or user credentials. As
a result, security mechanisms that depend solely on page-grained protection do not provide com-
prehensive defense against attacks targeting small-grained data. Hence, a generic and fine-grained
runtime data protection mechanism is essential for safeguarding small-grained runtime data from
emerging attacks.

To protect the small-grained runtime data, researchers proposed data space randomization [15,
18], which randomizes data when writing it to memory and de-randomizes it upon loading, using
a set of cryptographic primitives. Although attackers can still read or overwrite the data, they
cannot recover the actual value or manipulate it meaningfully without the secret keys, as any
injected data becomes garbage upon de-randomization. Consequently, data space randomization
has emerged as a promising approach for defending against data-oriented attacks. A key factor in
data space randomization is the choice of cryptographic primitives. Due to the lack of hardware
support for robust cryptographic operations, many existing schemes [15, 18, 67] rely on XOR to
minimize overhead. However, these XOR-based solutions are vulnerable to memory disclosure
attacks. Meanwhile, other research efforts have used AES to encrypt both control data [46] and
non-control data [19, 60, 61]. Yet AES also proves inadequate for runtime data randomization. First,
it imposes heavy performance overhead: AES encryption typically requires a dozen or more cycles,
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creating significant latency compared with a single data load instruction. Second, because AES is
designed for general data encryption, it is unsuited to protect register-sized runtime data.

Beyond the cryptographic algorithm itself, the security capabilities of the chosen primitives are
equally important. In response to the growing demand for small-grained runtime data protection,
hardware vendors have introduced specialized features, such as Arm Pointer Authentication
(PA) [66]. However, Arm PA is designed specifically for pointer integrity; it does not adequately
protect data confidentiality. Consequently, deciding which cryptographic algorithm to employ and
defining the necessary security capabilities to achieve robust yet efficient data space randomization
remain open research challenges.

In this article, we take an initial step toward addressing these challenges by introducing Reg-
Vault II, a cross-architectural, hardware-assisted selective data randomization scheme for OS ker-
nels. We begin by distilling five essential capabilities for efficient and secure data randomization:
confidentiality and integrity, cryptographically strong encryption, flexible binding, atomicity, and
register-grained support. Guided by these requirements, we design and implement novel hardware
primitives that integrate the QARMA [8] algorithm, providing efficient, robust encryption at the
register-grained level of runtime data.

To fully leverage these hardware primitives, we develop complementary software techniques.
Specifically, we propose an auto-identification method for certain sensitive data types (e.g., func-
tion pointers) and an annotation-based approach for data that kernel developers mark as sensitive,
thus ensuring both strong security guarantees and advanced flexibility. Moreover, to ensure com-
prehensive coverage, RegVault II introduces two new techniques—chain-based interrupt context
protection to safeguard the interrupt context and cross-call spilling protection to protect spilled
registers. Building on these techniques, RegVault II extends the LLVM compiler to automatically
instrument stores and loads of sensitive data with encryption and decryption primitives.

To demonstrate the effectiveness of RegVault II, we develop prototypes on a real FPGA
hardware board for RISC-V and QEMU for Arm. Our implementation protects runtime data in
the latest Linux kernel v6.6.2, covering two types of control data and four types of non-control
data. We conduct comprehensive evaluations to assess both security and performance. The
security analysis confirms that RegVault II effectively defends against kernel data attacks, while
performance evaluations reveal minimal overhead, at most 6.0% for micro-benchmarks and
nearly zero for macro-benchmarks on RISC-V, compared to 5.4% for micro-benchmarks, 4.3% for
macro-benchmarks, and 3.4% for application-benchmarks on Arm.

To summarize, this article makes the following contributions.

— Protection Capabilities. We identify five capabilities that each data space randomization
primitive should possess to achieve robust, fine-grained, and lightweight critical kernel data
protection.

— Novel Hardware Primitives. We design and implement novel cross-architectural hardware
primitives guided by our protection capabilities to ensure both the confidentiality and in-
tegrity of register-grained data. Furthermore, we propose a cryptographic look-aside buffer
to minimize performance overhead further.

— New Protection Techniques. We propose chain-based interrupt context protection, which
randomizes the interrupt context while ensuring its integrity, and cross-call spill protection,
which randomizes all sensitive register data across function calls.

— Kernel Randomization Prototype. We implement RegVault II prototypes on a real FPGA
board for the RISC-V version and on QEMU for the Arm version, leveraging our hardware
primitives to protect two types of control data and four types of non-control data in Linux
kernel v6.6.2.
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— Thorough Evaluation. We conduct thorough evaluations of RegVault II. Our security eval-
uation shows that RegVault II effectively defends against kernel data attacks. The perfor-
mance overhead on the RISC-V version is 3.7% for UnixBench, 6.0% for LMbench, and nearly
zero for SPEC2017, while the Arm version incurs overheads of 4.2% for UnixBench, 5.4% for
LMbench, 4.3% for SPEC2017 and 3.4% for applications.

— Community Contributions. We plan to open source both the hardware and software im-
plementation of RegVault Il at https: //github.com/. We believe hardware primitives and the
software prototype can benefit the RISC-V, Arm, and Linux kernel communities.

The remainder of this article is organized as follows: We provide the background knowledge
of RISC-V, Arm, and tweakable block ciphers in Section 2. Our threat model and the required
capabilities are described in Section 3. We then introduce RegVault Il hardware design in Section 4,
including the randomization primitives and the cryptographic engine. Further, we present kernel
data randomization based on our cryptographic primitives in Section 5. We give evaluations from
both security and performance perspectives in Section 6. Related works are discussed in Section 7.
Finally, we conclude the whole article in Section 8.

2 Background

The design and implementation of hardware primitives depend highly on the underlying hardware
platform. This section introduces the necessary background for our work, covering the widely used
RISC-V and Arm architectures and tweakable block ciphers.

2.1 RISC-V Architecture

2.1.1 RISC-VISA. RISC-V is areduced instruction set computer (RISC) architecture (ISA).
It comprises three standard privilege modes: machine mode, supervisor mode, and user mode.
Machine mode is usually used to manage hardware platforms and secure execution environments
on RISC-V. The supervisor mode is intended to run the operating system. And the user mode is
used for applications [77].

The RISC-V ISA employs control and status registers (CSRs) for system support, debugging,
tracing, and performance monitoring. It reserves a 12-bit encoding space for up to 4096 CSRs, with
each register being 64-bit wide in a 64-bit architecture. Additionally, a range of CSR encodings is
allocated for custom registers designed by developers. CSRs tied to specific privilege levels are
accessible only at those levels or higher, and any access violation triggers an illegal instruction
exception.

2.1.2 Rocket Core. Rocket core is an open-source RISC-V processor implementation generated
by the Rocket Chip Generator [7]. Built upon Scala and Chisel HDL [12], the Rocket core is
a highly configurable and extensible in-order processor capable of running Linux. The Rocket
pipeline consists of 5 stages: instruction fetch (IF), instruction decode (ID), execute (EX),
memory access (MEM), and b (WB). Every instruction takes at least one cycle at each stage
before committing. Rocket uses the Simple Custom Instruction Extension (SCIE) as an
interface for custom instruction extensions. It embeds the customized functional unit into the
pipeline. In addition, Rocket also introduces the Rocket Custom Coprocessor (RoCC) interface
for custom instruction extensions. RoCC hides the complex implementation details of Rocket
and can be used easily to communicate with the processor core, memory, and floating-point
unit through a decoupled interface. The modular design decouples the RoCC and the pipeline,
allowing developers to focus their efforts on the implementation of the functionality. For this
reason, most of the previous works [24, 25, 34, 45] are based on the RoCC interface. We also
implement RegVault II extensions with Rocket Core through this interface.
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2.2 Arm Architecture

Arm is also a RISC architecture for computer processors. Arm architecture is known for its power-
efficient design, making it a popular choice for mobile and embedded systems. Arm processors
operate under different privilege levels: ELO for the user, EL1 for the kernel, EL2 for the hypervisor,
and EL3 for the security monitor.

In recent years, Arm architecture introduced PA, a security feature to mitigate certain types
of software attacks, such as ROP. PA uses a cryptographic technique to sign and authenticate
pointers, ensuring that they have not been tampered with. This adds a layer of security by verifying
the integrity of pointers before their use, thereby protecting against unauthorized changes and
enhancing the system’s overall security.

2.3 Tweakable Block Ciphers

A tweakable block cipher [42] refines the traditional two-input design of a block cipher by intro-
ducing a tweak as an additional input, enhancing the variability of the ciphertext. It operates on
three inputs: a key, a tweak, and a plaintext, generating a single ciphertext as output. By modi-
fying the tweak, the cipher can produce different ciphertexts even when using the same key and
plaintext, thereby increasing encryption flexibility. This tweak mechanism enhances randomness
and security, making it more resistant to cryptanalysis and replay attacks-a function similar to
the role of the initialization vector (IV) in the AES algorithm. Any public information can be
used as a tweak, and the overhead of modifying a tweak is much lower than regenerating a key.
Nevertheless, the protection of a tweakable block cipher is still dependent on its key. It guarantees
that the secret key will not be disclosed even if the attacker controls the tweak.

QARMA block cipher family. QARMA [8] is introduced as a family of lightweight tweakable
block ciphers targeted at applications such as software protection and memory encryption. It is a
three-round Even-Mansour construction. One cryptographic operation contains several forward
rounds, a pseudo-reflector, and several backward rounds. QARMA has two variants, supporting
block sizes of n = 64 bits and n = 128 bits. Input message, output, and tweak are all n bits long,
and the key is always 2n bits long. Furthermore, r determines the actual rounds of forward and
backward operations. The encryption algorithm QARMAr has r rounds for forward and another
r for backward.

The design of QARMA takes both security and hardware implementation into account. It is
claimed that even when r is relatively small, such as 5, QARMA shows the capability of resisting
common attacks on block ciphers, algebraic attacks [22], and invariant subspace cryptanalysis
[39]. Its low hardware latency and minimal area overhead make it a seamless fit within the
processor.

3 Threat Model and Requirements
3.1 Threat Model and Assumptions

In our threat model, the attacker takes full control over the user space, allowing them to run
programs and invoke system calls. Additionally, the attacker can exploit kernel vulnerabilities to
achieve arbitrary kernel memory read and write capabilities, but these reads must go through
memory, and the attacker cannot directly read the registers. Given these capabilities, the attacker
can overwrite or substitute any randomized data in kernel memory, including all control data
(such as return addresses and function pointers) and certain security-critical types of non-control
data (such as user credentials). In the meantime, we assume the kernel text section in memory is
protected by existing techniques[50] so that it is not affected by the vulnerabilities. Side-channel
attacks are beyond the scope of this article, consistent with assumptions made in existing selective
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data protection research. We also assume that the hardware operates correctly, preventing the
attacker from exploiting hardware malfunctions to de-randomize the protected data.

3.2 Protection Capabilities

We identify five capabilities (CAPs) that data randomization hardware primitives must possess
to achieve robust, fine-grained, and lightweight kernel data protection. Specifically, RegVault
II aims at safeguarding the confidentiality and integrity of critical data comprehensively. Its
randomization algorithm should be cryptographically robust, allowing for flexible binding
methods. Furthermore, to achieve fine-grained and lightweight protection, RegVault II needs to
employ register-grained primitives that operate atomically. These capabilities not only enhance
security but also ensure efficiency.

Car 1 (CONFIDENTIALITY AND INTEGRITY). To mitigate the risks imposed by arbitrary memory
read and write vulnerabilities, data randomization operations must ensure both the confidentiality
and integrity of critical data.

Attacks frequently exploit arbitrary memory vulnerabilities to extract sensitive information,
such as code pointer values, thereby undermining Address Space Layout Randomization
(ASLR). To address these risks, we prioritize the protection of data confidentiality. To mitigate
these risks, RegVault II prioritizes the protection of data confidentiality. Moreover, attackers may
also leverage arbitrary memory writes to tamper with randomized data. Consequently, preserving
data integrity is essential for the timely detection and mitigation of any such tampering attempts.

CAP 2 (CRYPTOGRAPHICALLY STRONG ALGORITHM). The randomization algorithm must be cryp-
tographically robust, ensuring resilience against adversarial cryptanalytic attacks.

A strong cryptographic foundation guarantees that even if an attacker gains access to both
the randomized data (ciphertext) and the de-randomized data (plaintext), they cannot infer the
randomization keys. The confidentiality of randomization keys is crucial, as any compromise
could jeopardize the entire security model. By employing a strong cryptographic algorithm,
RegVault II ensures that randomization keys remain secure, resistant to inference, and protected
from cryptanalytic attacks.

Car 3 (FLExIBLE BINDING). To defend against substitution attacks, the data randomization
operations must support flexible binding, allowing the same data to be randomized into different
representations based on its usage context.

Substitution attacks replace randomized data with another chosen randomized data, potentially
bypassing security mechanisms. To mitigate this risk, RegVault II ensures that randomized
data can adapt dynamically depending on the execution context. This context-aware random-
ization strengthens system security by preventing attackers from substituting and replaying
pre-randomized values.

Car 4 (Atomic OPERATION). The data randomization operations must be atomic to achieve light-
weight protection and eliminate intermediate result leakages.

Existing cryptographic extensions, such as RISC-V Cryptography Extension [20] and Intel AES-
NI extension [2], provide round encryption instructions to speed up the encryption. Unfortunately,
the user still needs multiple rounds of instructions to perform a complete AES operation, which
might leak the round key and intermediate results in memory. The randomization operation should
require as few instructions as possible to support lightweight usages. To eliminate intermediate
result leakages, the randomization operations are required to be atomic.
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Fig. 1. Overview of RegVault II.

CaP 5 (REGISTER-GRAINED RANDOMIZATION). Kernel data structures often operate at the register
level, necessitating a register-grained randomization approach for effective protection.

Most existing security mechanisms rely on page-grained memory protection, which adversaries
can bypass by targeting smaller, register-sized data such as function pointers, return addresses, and
other critical non-control data. To counter these evolving attack strategies, RegVault I needs to sup-
port register-grained randomization, providing fine-grained security that enhances the resilience
of the kernel against sophisticated attacks that exploit coarse-grained memory protections.

In the following sections, we first discuss the design of RegVault II hardware primitives and
highlight their support for the above requirements Section 4. Then, we further discuss adopting
these hardware primitives to achieve effective kernel data protection Section 5.

4 RegVault Il Hardware Architecture
4.1 Overview

RegVault I is a hardware-assisted selective data randomization architecture for operating system
kernels. The basic idea of RegVault II is to encrypt the specified data before storing it in memory
and decrypt it after loading it into registers. As shown in Figure 1, RegVault II consists of both
the hardware and the software support. For the hardware, RegVault II extends the 64-bit ISAs to
implement the lightweight cryptographic primitives, which are used to encrypt and decrypt the
selected data to achieve selective data randomization (Section 4.2). RegVault II involves extending
the instruction sets of RISC-V and Arm, designing corresponding cryptographic instruction encod-
ing formats based on the characteristics of their respective instruction sets (Sections 4.3 and 4.4).
To support these cryptographic primitives, RegVault II designs and implements a hardware-level
crypto-engine. The crypto-engine includes a look-aside buffer to further reduce the performance
overhead (Section 4.5). The specific implementation of cryptographic instructions on the RISC-V
and Arm platforms is stated in Section 4.6. To demonstrate the effectiveness of the proposed tech-
niques, we apply RegVault II to protect the data in the kernel, which will be detailed in Section 5.

4.2 Common Primitive Design

RegVault II chooses to encrypt the selected data for data randomization. As a result, RegVault
II needs to decrypt this data when using it. The cryptographic primitives should be lightweight,
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as the protected data may be used frequently. Moreover, the cryptographic primitives also need
to fulfill all requirements mentioned in Section 3.2. Therefore, in the following, we discuss how
RegVault II primitives fulfill these needs in both algorithm selection and instruction design.

4.2.1  Encryption Algorithm Selection. XOR [14, 15] is a general and straightforward encryp-
tion algorithm. However, with the plaintext and the ciphertext, the attacker can easily infer
the XOR keys so that they can steal and tamper with confidential data. Therefore, XOR is not
cryptographically strong and cannot provide CAP 1 and CAP 2. Moreover, there are works on
using AES to encrypt control data [46] or to achieve selective data protection [19, 60, 61]. AES
has already been implemented on the hardware, so people will naturally use it for data protection.
Nevertheless, AES is not designed to protect runtime data. First, AES is too heavy for runtime
data randomization. AES encryption usually requires about a dozen processor cycles based
on hardware implementation or a dozen instructions based on software. Compared with the
single data loading instructions, the AES operation introduces prohibitive performance overhead.
Second, AES does not support flexible binding and is usually not atomic either, thus failing to
provide CAP 3 and CAP 4. Third, AES is designed for general data encryption, which is unsuitable
for runtime data encryption, especially for register-size data protection, such as return addresses,
function pointers, or other sensitive data in the kernel. So it is not a proper algorithm for CAP 5.

Instead of using XOR and AES, RegVault II chooses the QARMA [8], a lightweight tweakable
block cipher, to encrypt the sensitive data. The tweakable block cipher is tailored for resource-
constrained devices [48]. It also adopts a hardware-implementation-friendly design with lower
latency, smaller area, and lower power consumption. In addition to the secret encryption keys, the
tweakable block cipher provides an additional input, called tweak, providing more diversity to the
encryption. In particular, a small tweak change leads to a different encryption result, even with
the same plaintext. Moreover, the tweak does not need to be kept secret. Even with the tweak,
there is no way for the attacker to infer the ciphertext or the encryption keys. Both the tweak
in QARMA and the IV in AES introduce variability into the encryption process, yet they serve
distinct functions. The AES IV is a typically random value used to prevent ciphertext repetition
for identical plaintexts under the same key, ensuring semantic security. In contrast, the tweak in a
tweakable encryption scheme is an application-specific parameter that provides deterministic vari-
ability without necessitating randomness. It enables context-dependent encryption by ensuring
that identical plaintext segments are processed differently within the same cryptographic session.
This distinction allows tweaks to support fine-grained security policies in scenarios such as disk
encryption, where data blocks are encrypted uniquely despite sharing the same key.

In our design, RegVault II chooses the QARMA cipher with a block size of 64 bits, which matches
the register size of a 64-bit architecture. RegVault II also chooses seven rounds and the sbox o
parameter for the strongest data confidentiality to defend against cryptanalysis attacks. QARMA
is a cryptographically strong algorithm, which provides CAP 2. Based on QARMA, RegVault II
implements lightweight cryptographic protection primitives, which accept the data context as the
tweak to achieve the flexible binding, as required in CAP 3.

4.2.2  Cryptographic Instruction Design. To support kernel data randomization, RegVault II
extends both RISC-V and Arm instruction sets to implement the QARMA-based cryptographic
operations.

Instruction atomicity: To achieve atomicity, RegVault Il implements the QARMA cryptographic
operations in a single encryption instruction and a single decryption instruction. Therefore, the en-
cryption and decryption are atomic in RegVault II, preventing the intermediate result leaks, which
fulfill the requirement of CAP 4. In this way, RegVault I hides the details of the round keys from the
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Table 1. RegVault Il Cryptographic Instruction Extension

Arm Privilege Level RISC-V Privilege level Master key General key
ELO User - -
EL1 Supervisor X WX
EL3 Machine RWX RWX

(a) Read(R), Write(W), and Execute(X) permission of RegVault Il cryptographic key registers
for different privilege levels.

Instruction Description
cremk rd, {rs,} tweak, start, end Encryption with master key
crdmk rd, {rs,} tweak, start, end Decryption and check integrity with master key

cre[a-g,t]k rd, {rs,} tweak, start, end Encryption with general key [a-g,t]

crd[a-g,t]k rd, {rs,} tweak, start, end Decryption and check integrity with general key [a-g,t]
(b) RegVault II cryptographic instruction description, RISC-V version has both destination
(rd), and source (rs), while Arm version has only one destination register.

software, delegating the generation and use of the round keys to hardware. Software only needs to
provide the tweak and the data to be randomized, and then wait for the final randomization result.

Operand granularity: The cryptographic instruction processes a single register operand at a
time. As a result, RegVault II is capable of offering register-grained protection for runtime data,
effectively addressing the requirement for CAP 5. When only specific bytes in a register need
protection, RegVault II supports range selection to encrypt these targeted bytes. To ensure data in-
tegrity, it fills the unselected bytes with exff before encrypting the entire register. After decryption,
RegVault II checks if these bytes remain oxff. If any alteration is detected, the entire data is consid-
ered compromised, and an exception is raised. By leveraging this register-grained randomization,
RegVault II provides a more precise and effective defense against targeted attacks that exploit vul-
nerabilities in runtime data, which are often overlooked by coarser protection mechanisms such
as page-grained randomization.

Key management: RegVault Il provides dedicated key registers to hold the secret keys by extend-
ing the CSRs in RISC-V and system registers in Arm. The key register is 64-bit, but the key used in
QARMA-64 is 128-bit. Therefore, we divide a key into the high and low parts and save them in 2
key registers. We can reuse the instructions in the standard instruction set to read and write these
key registers.

RegVault II supports two kinds of encryption keys: master key and general key. The master key
is designed to generate only the general keys. For security considerations, it should not be used to
encrypt data directly. The general keys are designed for data encryption. The access permission
of cryptographic keys is shown in Table 1(a). Both keys permit reading, writing, and executing
(i.e., used by the cryptographic instructions) in machine mode. In supervisor mode, the kernel can
only execute instructions using the master key. However, no direct reading or writing is allowed.
By contrast, the general keys can be written and executed. In user mode, the application cannot
access any key registers.

4.3 RISC-V Primitive Design

On RISC-V architecture, the customized cryptographic instruction set of RegVault II follows
the R-type instruction format, which specifies two source registers and one destination register.
Moreover, we need one additional key register to support the QARMA cryptographic operations.
Therefore, the extended RISC-V instruction accepts three inputs: the plaintext (or the ciphertext)
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Fig. 2. RegVault Il RISC-V cryptographic instruction format.

in rsi1, the tweak in rs2, and the cryptographic key selected by funct3. Figure 2 shows the
instruction format. The extended instructions are 32-bit long. Bits [31:26] specify the selected
range of 8 bytes in the register, in which bits [31:29] and [28:26] index the end and start byte,
respectively. To protect data integrity, we fill 1 to the unselected bytes, detailed in Section 5.5.1.
Bit 25 specifies whether the operation is encryption or decryption. Bits [24:20] and [19:15] index
the general-purpose registers for the tweak and the plaintext (or the ciphertext), respectively. Bits
[14:12] index the key registers. The current format supports eight key registers: 1 master key
register and seven general key registers. Bits [11:7] are used to index the general-purpose register
for the output. Bits [6:0] hold the opcode.

Table 1(b) lists the detailed instructions. The cre[x]k (context-aware register encryption) in-
struction encrypts the given value in rs with the tweak in tweak and the key in key register x and
puts the result in register rd. The key selected by bits [14:12] is directly loaded from the key regis-
ter and used by the customized instruction to perform the cryptographic operation. The crd[xJk
instruction follows a similar format but is for decryption. Referring to key registers, the x can ei-
ther be the master key m or the general key a-g. Since our goal is to randomize the kernel data,
the execution of the extended instructions is restricted to supervisor mode. However, RegVault
II is designed for general data randomization; it can be easily extended to the user mode with
userspace-related CSR extensions.

4.4 Arm Primitive Design

Adapting RegVault II to the Arm platform faces several technical challenges due to both hard-
ware constraints and a more complex software ecosystem compared to the RISC-V version. At the
hardware level, Arm instructions have fewer bits available to customize the required registers and
range selection functionality. To address this, we first reduced the register requirement by using
the same register for both the source and destination. Second, instead of allowing full flexibility in
selecting arbitrary start and end bytes as in the RISC-V design, we introduce a direction bit that
fixes the start byte to either the Oth or the 7th position while still permitting flexible selection of
the end byte.

At the software level, the Arm toolchain integrated within QEMU proved to be far more
complex than the RISC-V ecosystem that uses the Spike emulator and a straightforward LLVM
compiler. This increased complexity required substantial modifications across multiple layers,
including QEMU’s abstraction, architecture-specific parts of the LLVM compiler, and even the
Linux kernel. These extra efforts are necessary to fully support the advanced features of Arm and
to meet the broader security challenges encountered in real-world systems.

Despite these challenges, we successfully designed and implemented data space randomization
primitives on the Arm architecture with comprehensive software toolchain support. Given that
Arm is more widely used in real-world computing products and faces more diverse security
challenges than RISC-V, supporting memory security mechanisms on Arm has a greater practical
impact.

Arm instruction formats: Since Arm instruction formats occupy more bits than RISC-V, fewer
bits are available for customization. To conserve enough bits for other fields, the customized
cryptographic instruction set of RegVault II Arm uses the data-processing (1 source) instruction
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Fig. 3. RegVault Il Arm cryptographic instruction format.
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Fig. 4. The crypto-engine is integrated into the Rocket processor via the RoCC interface.

format, which specifies one source register and one destination register. Therefore, we must treat
the source register as a tweak and the destination register as input and output simultaneously. The
extended Arm instruction set accepts three inputs: the plaintext (or the ciphertext) in rd, the cryp-
tographic key selected by bits [12:10], and the tweak in rn. Figure 3 shows the instruction format.
The extended instruction set is 32-bit. Arm reserves the top 3 bits. Bits [28:21] are used to identify
the class of the instruction. Bit 20 specifies the operation as either encryption or decryption. Since
we have fewer bits to use in the Arm instruction than in RISC-V, bit 19 is chosen to indicate that we
want to select data from its highest or lowest byte, and bits [18:16] to encode the length of the range.
Bytes outside the range will be filled with oxffs for integrity check. Bits[15:13] mark this as a Reg-
Vault II instruction, and bits [12:10] index the key registers. The current format supports eight key
registers: 1 master key register and seven general key registers. Bits [9:5] and bits [4:0] are used to
index the general-purpose registers for the tweak and the plaintext (or the ciphertext), respectively.
The crelxJk instruction encrypts the given value in rd with the tweak in tweak and the key in
key register x and puts the result in register rd. The key is selected by bits [12:10] and is used in
the same way as the RISC-V version. The crd[xJk instruction follows a similar format but is for
decryption. The key registers’ representation and usage are the same as the RISC-V version.

4.5 Crypto-engine Design

RegVault II implements a crypto-engine to perform the actual cryptographic operations to sup-
port the hardware primitives. As shown in Figure 4, the crypto-engine on the RISC-V platform is
integrated into the Rocket processor core via the RoCC interface. More specifically, when a crypto-
graphic instruction is executed, the engine first checks whether the current privilege level is either
supervisor mode or machine mode. Next, it performs the cryptographic operation and generates
the result in the destination register. For data randomization, encryption and decryption instruc-
tions are invoked frequently. Therefore, the number of cycles consumed on the cryptographic
operation directly determines the RegVault II performance. To reduce the cycles, we introduce a
cache to buffer the recently used cryptographic results (Section 4.5.1).

Figure 5 gives the overview of the RegVault II crypto-engine. The crypto-engine consists of
three components—the control unit (CU), the arithmetic unit (AU), and the cryptographic
lookaside buffer (CLB). The CU drives the other components according to the input signals. It
checks the privilege, selects the key, and sends the encrypt or decrypt signal to AU (for calculation).
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Fig. 5. The overview of RegVault Il crypto-engine structure with cryptographic lookaside buffer for
acceleration.

The AU accepts the input and does the actual encryption or decryption operations. The CLB is
designed to buffer the result for performance optimization. The design and implementation of CU
and AU are straightforward; thus, we skip the details. In the following subsections, we present the
details of the CLB.

4.5.1 Cryptographic Lookaside Buffer. Compared to normal operations, cryptographic oper-
ations, such as encryption and decryption, are slow. To substantially reduce the overhead of
frequently invoked cryptographic operations, we propose to use a buffer, named CLB, to hold
recently calculated encrypted and decrypted results. As shown in Figure 5, being embedded in
the crypto-engine, CLB can work closely with AU.

CLB stores the encrypted or decrypted results whenever AU completes a new cryptographic
operation. When new cryptographic operation queries come, RegVault II crypto-engine first looks
up CLB for the results before spending multiple cycles performing the cryptographic operations
in AU.

CLB structure: As shown in Figure 5, the CLB consists of a configurable number of entries. Each
entry of the CLB contains six elements: a timestamp for replacement meta, a valid bit v, a key
selection index ksel, the tweak, the plaintext, and the ciphertext. The 1 value of the valid bit marks
a valid entry, while @ marks an invalid one.

CLB invalidate: To save space, CLB uses 3-bit key selection indices to replace the 128-bit keys.
When different threads are running, the same key register may hold different keys. Therefore,
when a key register is overwritten, the corresponding CLB entries are out of date. Therefore,
whenever a key register is updated, the crypto engine invalidates the entries with the same key
selection index. In RegVault IT hardware implementation, the invalidate signal is directly sent to
the crypto-engine from CSR update operations.

CLB query: To improve the hit ratio and make full use of the buffered cryptographic results,
the CLB entries are fully associative. Querying the CLB involves checking all entries. If a valid
entry matches the cryptographic request (i.e., matching the key, the tweak, and the plaintext for
encryption), the result will be given to the pipeline in just one cycle.

CLB update: The newly generated cryptographic result should replace the old one. For simplicity,
we adopt the well-known least-recently-used (LRU) cache replacement policy. To implement it,
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Fig. 6. RegVault Il kernel data randomization process.

we use the meta field in CLB entries as timestamps to find the LRU entry and replace it with the
new result.

Performance gain: As detailed in Section 6.2.1 and Figure 11, CLB can achieve a 50% hit ratio
with 8 entries and 80% with 64 entries on UnixBench. It also achieves a 55% hit ratio with 8 entries
and 70% with 64 entries on a real user-mode application, Docker. Although more CLB entries can
improve the hit ratio, the matching for a large, fully associative CLB incurs a long latency, which
is unacceptable in the pipeline stage. To balance the hit ratio and the hardware design, we use the
CLB with eight entries to build our RegVault II prototype.

4.6 Implementation

RISC-V hardware implementation. We implement the hardware prototype of RegVault II
RISC-V on the Rocket core with ~1100 lines of addition and ~200 lines of deletion in Chisel. We
implement the QARMA-based crypto-engine and the decoding unit for cryptographic instructions.
Moreover, we also extend the CSR registers to store master and general keys. As mentioned
before, we integrate the crypto-engine with the RISC-V core via both the SCIE and RoCC
interface to provide better extensibility. We use Vivado 2020.2 to check out the area overhead.
The synthesized RTL module covers the Rocket processor and L1 cache. The result indicates that
RegVault I with 8 CLB entries incurs a 2.9% LUT and 4.9% Reg overhead to provide cryptographic
primitives.

Arm implementation: We implemented a prototype of RegVault II for Arm within the QEMU
emulation environment by adding ~600 lines of C code. The code integrates the QARMA algorithm
and also emulates RegVault II cryptographic instructions. The implementation ensures seamless
integration with QEMU’s existing CPU model. It also incorporates logging mechanisms to facili-
tate debugging and performance evaluation. This prototype not only demonstrates the feasibility
of deploying RegVault I on Arm but also lays a solid foundation for further enhancements and
potential real-world applications in secure systems design.

5 RegVault Il Kernel Data Randomization
5.1 Overview

Figure 6 shows the overall flow of RegVault II kernel data randomization. With the kernel
source code as the input, RegVault II first annotates the data types that need to be randomized
(Section 5.2). After that, RegVault II instruments the randomized data store and loads with
encryption and decryption primitives (Section 5.3). Finally, to defeat data leak and corruption
from spilling, RegVault II protects both the interrupt context and register spilling (Section 5.4).
The following sections describe these steps in detail.
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struct cred {

l;l:l]:.d_t uid __rand__;

long __sys_setuid(uid_t uid) {
struct cred *new = prepare_creds();
9 new->uid = kuid;

1
2
3
4
5 )
6
7
8

1 3}

13 SYSCALL_DEFINE3(setpriority, int, which, ...){
14 const struct cred *cred = current_cred();

16 if (luid_eq(uid, cred->uid))

(a) C code of cred->uid store and load.

# __sys_setuid

# s1 holds kuid

addi al, s@, 8 # calculate the address of new->uid

creak al, s1, al, @, 7 # encrypt kuid using storage address
sd al, 8(s@) # store encrypted kuid

# sys_setpriority
1d al, 0(s5) # load encrypted cred->uid
crdak al, al, s5, @, 7 #decrypt cred->uid

R R N TN OIS

(b) RISC-V assembly of cred->uid store and load. Highlighted
lines are the instrumented instructions.

// __sys_setuid

// x1 holds kuid

add x2, fp, 8 // calculate the address of new->uid
creak x1, x2, @, 7 // encrypt kuid using storage address
str x1, [fp, 8] // store encrypted kuid

// sys_setpriority
ldr x1, [x5] // load encrypted cred->uid
crdak x1, x5, @, 7 // decrypt cred->uid

C %N e W

(c) Arm assembly of cred->uid store and load. Highlighted lines
are the instrumented instructions.

Fig. 7. Data randomization instrumentation in RegVault II.

5.2 Data Identification and Annotation

Before instrumentation, RegVault II needs to know which data needs to be randomized. To
achieve this, RegVault II extends the LLVM compiler to automatically identify interested types
(e.g., return address, function pointer) and instrument the load and store of them with encryption
and decryption instructions. RegVault II uses this approach to protect kernel return addresses
and function pointers. Besides the automated approach, RegVault II provides a macro called
__rand__ for kernel developers or RegVault II users to annotate the interested data types. Taking
the cred.uid in Figure 7(a) as an example, to protect uid member, the user annotates it by
putting the __rand__ behind, as shown in Line 3. The __rand__ adds a compiler attribute that
will be recognized by RegVault II during the compiling stage. Moreover, the __rand__ macro is a
field-sensitive annotation on types rather than a single object instance. In other words, with the
annotation, the uid members of all cred instances are marked for randomization.

5.3 Instruction Instrumentation

RegVault II first collects the marked data types by automatically identifying manual annotations.
After that, RegVault II traverses all IR instructions to identify all loads and stores operating on the
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Fig. 8. RegVault Il interrupt context randomization.

marked data types. Finally, RegVault II inserts data encryption instructions with proper tweaks
before the data store and data decryption instructions after the data load.

Let us illustrate the instrumentation using the same example in Figure 7. For the uid store, Line 9
of Figure 7(a) assigns the uid to a new cred, while Line 5 of Figure 7(b) and (c) shows the correspond-
ing assembly code where the sd stores the uid in register a1 into the memory. RegVault II inserts
two instructions at Lines 3 and 4, where the addi instruction calculates the address of new->uid,
which the creak encrypts the uid using the address as the tweak. On the uid load side, Line 16 of Fig-
ure 7(a) loads the cred->uid for comparison, where the corresponding assembly code is in Line 8
of Figure 7(b) and (c). As the data is encrypted in the memory, RegVault Il inserts the decryption in-
struction crdak to de-randomize. The storage address is used as the tweak for decryption, the same
as encryption. Besides, to initialize annotated data allocated statically, RegVault II collects their in-
formation, generates initialization functions, and invokes these functions at kernel boot time.

Moreover, the cryptographic primitives of RegVault II are capable of randomizing 64-bit data.
For data types that are smaller than 64-bit, RegVault II extends the unused top bits for integrity
checking. Note that RegVault II uses the field-sensitive data type annotation to identify data
loads/stores and thus does not need to conduct time-consuming points-to analysis on kernel
objects [82].

5.4 Spill Handling

To guarantee that the protected data is always randomized in memory, RegVault II needs to handle
two types of spilling—the interrupt context spilling and the register spilling.

5.4.1 Interrupt Context. When an interrupt happens, the kernel stores all general-purpose reg-
isters (called the interrupt context) in memory. Unprotected interrupt context gives attackers
chances to leak and manipulate these register values [11], which imposes a severe threat to Reg-
Vault II. Therefore, RegVault II proposes a novel chain randomization technique, named CIP (short
for chain-based interrupt context protection), which not only encrypts the interrupt context in the
memory but also provides integrity protection. The basic ideas of CIP are (1) enforcing a chain-
based de-randomization process so that the next register value is decrypted using the previous
register value as the tweak. As a result, if the attacker corrupts one value in the middle, all the
subsequent register values will be decrypted into garbage values. (2) Inserting a zero value at the
end for encryption and decryption. The decrypted zero value can be used for integrity checking.
In this way, CIP can detect any corrupted register values in the middle of the interrupt context.

Figure 8 illustrates the process of CIP. When an interrupt happens during kernel execution, the
ith register is encrypted using the (i — 1)th register value (Equation (1)). Therefore, when reloading
the kernel interrupt context, the ith register is decrypted using the decrypted value of the (i — 1)th
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register (Equation (2)), enforcing the chained decryption scheme.

E Reg;, tweak), i=0

EncReg; = nex(Regi, tweak) l , (1)
Enck(Reg;, EncReg;i—1), i>0
D EncReg;, t k), i=0

DecReg; = eck(EncReg;, tweak) i ' @
Deck(EncReg;, EncReg;—1), i>0

Besides, to defeat any spatial substitution attack, CIP encrypts the first register using its stor-
ing address as the tweak. To defeat cross-data-type substitution attacks, CIP uses a dedicated key
register (called the interrupt key) for interrupt context randomization, which is different from the
keys for randomizing control data or non-control data. Moreover, CIP ensures that each thread
maintains its own interrupt key, thwarting cross-thread substitution attacks.

5.4.2  Sensitive Register Spilling Protection. Sensitive data and their intermediate results remain
as plaintext in registers and might be spilled to memory temporarily due to (1) the lack of physical
registers and (2) function calls. Therefore, to achieve comprehensive protection, RegVault II must
handle these spills securely.

Identifying sensitive registers: RegVault Il has to identify sensitive register spills in the compiler
backend, where the information, such as type and annotation, is lost. Observing that annotated
sensitive data must be decrypted or encrypted whenever it enters or leaves registers, RegVault I
proposes a sensitive register identification algorithm:

— For RegVault II cryptographic operations, RegVault II marks the plaintext operand as a sen-
sitive register.

— For assignment operations, if one of the operands is sensitive, RegVault II marks the other
one as a sensitive register.

— For arithmetic operations, if one of the source operands is sensitive, RegVault II marks the
destination operand as a sensitive register.

Function-inner spilling protection: When running out of physical registers, the compiler will
spill sensitive registers to memory. To reduce such spilling, RegVault I increases the spilling cost
of sensitive registers and suggests the compiler spill other registers. If a sensitive register has to be
spilled, RegVault II inserts cryptographic primitives (using stack pointer sp as the tweak) around
the store and reload instructions.

Cross-call spilling protection: During function calls, sensitive caller-saved registers may
be spilled by the caller, and sensitive callee-saved registers may be spilled by the callee (or
subsequent callees). To protect these spills, RegVault II proposes a novel CSP (short for cross-call
spilling protection). For sensitive caller-saved registers, RegVault II identifies their spilling and
inserts cryptographic primitives to protect them. For sensitive callee-saved registers at call sites,
RegVault II encrypts them before entering the callee and decrypts them after returning from
the callee. Nevertheless, this may introduce redundant encryption and decryption. For example,
during two successive calls, a sensitive callee-saved register may be decrypted after the first call
and be immediately encrypted again before the second call. To address the problem, RegVault II
introduces an algorithm for eliminating redundant cryptographic operations:

(1) A decryption instruction is partially removable if all uses of its decrypted result are en-
cryption instructions using the same tweak. Similarly, an encryption instruction is partially
removable if all definitions of the value to be encrypted are decryption instructions using
the same tweak.

ACM Trans. Comput. Syst., Vol. 43, No. 1-2, Article 4. Publication date: June 2025.



RegVault 1I: Achieving Hardware-Assisted Selective Kernel Data Randomization 4:17

Table 2. Protected Kernel Data in RegVault Il

Randomized Data Tweak Instrument
Control Return Addr Stack Pointer Type
Data Function Pointer Storage Addr Type

Cred Struct Storage Addr Annotation
N trol SELinux State Storage Addr Annotation
on-contro . .
Dat PGD Pointer Storage Addr Annotation
ata
AES Keys Storage Addr ~ Manual
1 # encrypt and store a pointer (in a@)
2 creak a0, a@[7:0]1, t1  ;encrypt pointer a@ using key reg a
3 sd a0, 0(s0) ;store the encrypted pointer
4 # load and decrypt a pointer
5 1d a0, 0(s0) ;load an encrypted pointer
6 crdak a0, a0, t1, [7:0] ;decrypt the pointer

(a) Pointer randomization.

# encrypt and store 32-bit data (in the low 4 bytes of a0)
creak a0, a0[3:0], t1 ;encrypt the 32-bit data

sd a0, 0(s0) ;store the encrypted data

# load, decrypt, and check 32-bit data

1d a0, 0(s0) :load an encrypted data

crdak a@, a0, t1, [3:0] ;decrypt-and-check the 32-bit data

ENRT PRI

(b) 32-bit data randomization with integrity.

1 # encrypt and store 64-bit data (in a@)

2 creak al, a0[3:0], t1 ;encrypt the low 4-byte data

3 creak a2, a@[7:4], t2 ;encrypt the high 4-byte data

4 sd  al, 0(s0) ;store the encrypted low 4-byte data
5 sd a2, 8(s0) ;store the encrypted high 4-byte data
6 # load, decrypt, and check 32-bit data

7 1d  al, o(s0) ;load the encrypted low 4-byte data
8 1d a2, 8(s0) ;load the encrypted high 4-byte data
9 crdak al, al, t1, [3:0] ;decrypt-and-check low 4-byte data
10 crdak a2, a2, t2, [7:4] ;decrypt-and-check high 4-byte data
11 or ae, al, a2 ;recover the original 64-bit data

(c) 64-bit data randomization with integrity.

Fig. 9. Data randomization using RegVault Il primitives. Highlight lines are instrumented primitives.

(2) RegVault II removes a decryption instruction if it is partially removable, and all uses of its
decrypted result are partially removable encryption instructions. Similarly, RegVault II re-
moves an encryption instruction if it is partially removable, and all definitions of the value
to be encrypted are partially removable decryption instructions.

5.5 Randomized Data

RegVault II protects kernel control data and non-control data. The protected data types are sum-
marized in Table 2. The control data includes the return addresses and function pointers. However,
the Linux kernel has too many types of non-control data. Without loss of generality, we apply
RegVault II to protect the user credentials, security feature states, memory management data, and
encryption keys to show how RegVault II can be used. With the annotation support, RegVault 1I
can be used to protect more kernel data easily. All of the following randomization schemes are
implemented on both RegVault Il RISC-V and Arm platforms.

5.5.1 General Scheme. Figure 9 shows the general scheme of data protection using RegVault II
primitives.

— Pointer. RegVault II encrypts and decrypts all bytes (i.e., with range 7:0) in the pointers di-

rectly (Figure 9(a)). Therefore, any corrupted pointers in memory are decrypted into garbage
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values, pointing to illegal addresses. RegVault I also uses this way to protect 64-bit data that
does not require integrity protection.

— 32-bit data with integrity check. RegVault II extends the 32-bit data to 64-bit and fills 0
to the upper 32-bit. To achieve this, the encryption sets the range as [3:0] (Figure 9(b) Line
2). In the decryption, the upper 32-bit is used for the integrity check (Line 6). Therefore,
RegVault II protects both confidentiality and integrity for 32-bit data.

— 64-bit data with integrity check. RegVault II splits 64-bit data into two 32-bit data, en-
crypts and decrypts the low 4 bytes and high 4 bytes, respectively (Figure 9(c)). After the
decryption and integrity check, RegVault I applies or operation to assemble the original 64-
bit data (Line 11). In this way, RegVault II protects both the confidentiality and integrity of
64-bit data.

Developers can choose any protection options from our general scheme for their security-sensitive
data.

5.5.2  Control Data. To defeat kernel control-flow attacks, RegVault I randomizes kernel con-
trol data in memory to prevent code pointers (return addresses and function pointers) from being
controlled by attackers. Even when corrupting the in-memory representations, attackers cannot
control the decrypted code pointers in registers. To further defeat the spatial substitution attacks,
RegVault IT encrypts code pointers with different tweaks.

Return address: RegVault II extends the compiler to instrument return address loading and stor-
ing automatically. More specifically, RegVault II encrypts all 8 bytes of a return address with the
stack pointer as the tweak in the prologue. As a reverse procedure, the return address is loaded
and decrypted in the epilogue before returning. Moreover, RegVault II adds a per-thread key field
to the thread_info, which is initialized at thread forking. Therefore, each thread is encrypted with
a unique key.

Function pointer: RegVault II detects the function pointer usages and inserts the encryption and
decryption instructions automatically. RegVault II uses a different key to randomize kernel func-
tion pointers. Moreover, the storage address of a function pointer is used as the tweak to diversify
the randomization. Let us use Figure 10 to illustrate the randomization. Line 3 in Figure 10(a)
shows that a function pointer is loaded and then stored in another location. Figure 10(b) and
(c) shows the corresponding instrumentation. The loaded value is decrypted using the loading
address as the tweak (Lines 2 and 3). Then, it is encrypted using the new target address as the
tweak before being stored in memory (Lines 4 and 5). To identify function pointers, RegVault II
adopts an over-approximate approach by using the function pointer type and regarding all void
* as function pointers. Moreover, to support address-based randomization, RegVault II leverages
type information to identify function pointers copied by memcpy/memmove/kmemdup functions and
re-randomize them based on the destination address.

5.5.3 User Credentials. The attackers often corrupt the uid/gid fields of cred struct to escalate
their privileges [69]. RegVault II uses the annotation-based automatic instrumentation to ran-
domize user credentials. The annotation and instrumentation are already covered in Sections 5.2
and 5.3. Note that uid is a 32-bit unsigned integer, RegVault II extends it to 64-bit and uses the top
bit for integrity checking. Here, we randomize all data fields within cred, except the usage and RCU
fields.

5.5.4 Security Feature States. Linux kernel security features often save their states in mem-
ory, which can be corrupted to bypass the protection. Using SELinux as an example, the SELinux
states, selinux_enforcing and ss_initialized, are security-critical global variables, controlling
the on/off of SELinux. Unfortunately, these variables are globally writable and can be located and
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static void process_one_work(struct worker *worker, struct work_struct *work) {
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(a) Function pointer load and store in C code.

1d a0, 24(s0)
addi a1, so, 24
crdak a0, a0, al, 0, 7
addi s3, s1, 24
creak a0, a0, s3, 0, 7
sd a0, 24(s1)

load encrypted work->func

address of work->func

decrypt work->func

address of worker->current_func
encrypt worker->current_func

store encrypted worker->current_func

o G e W o =

(b) Function pointer load and store in RISC-V assembly code. Lines 2 and 3 show the decryption of function
pointer work->func, and Lines 4 and 5 show the encryption of function pointer worker->current_func.

1dr  x1, [x4, #24] ; load encrypted work->func
add x2, x4, #24 ; address of work->func

crdak x1, x2, #0, #7 ; decrypt work->func

add x6, x5, #24 ; address of worker->current_func
creak x1, x6, #0, #7 ; encrypt worker->current_func

str x1, [x5, #24] ; store encrypted worker->current_func

o G e W o =

(c) Function pointer load and store in Arm assembly code. Lines 2 and 3 show the decryption of function
pointer work->func, and Lines 4 and 5 show the encryption of function pointer worker->current_func.

Fig. 10. Function pointer randomization in RegVault 1.

corrupted by the attacker easily [69]. Actually, researchers have demonstrated how to overwrite
the ss_initialized to bypass SELinux protection [71].

In the recent Linux kernel, these variables are gathered in a global struct named selinux_state.
Though the ss_initialized was renamed to selinux_state.initialized, the code logic remains
the same, leaving the same weak spot. Therefore, RegVault II uses the annotation and the
instrumentation to randomize all fields inside struct selinux_state (except the lock fields)
to enhance the vulnerability-resilience of SELinux. The steps are the same with the cred.uid
protection. Moreover, selinux_state.initialized is a bool, allowing RegVault II to use the top
bits for the integrity checking.

5.5.5 Memory Management Data. Page tables are essential components in the kernel that man-
age memory access permissions. Unfortunately, page tables are globally writable in kernel mode,
allowing attackers to exploit kernel vulnerabilities to manipulate page tables and disable memory
protection [38, 59]. Theoretically, RegVault II could prevent such attacks by encrypting the entire
page table, but this would require the MMU to support automatic decryption of page table entries
during the page table walk. This would introduce the dual overhead of page table encryption and
virtual address translation. To minimize the performance overhead of page table protection, Reg-
Vault II proposes to randomize every PGD pointer referencing the root of a page table hierarchy
and hide page table locations.

RegVault II instruments all store-sites and load-sites of PGD pointers by annotating the pgd_t
type and instructing our compiler to automatically insert encryption and decryption instructions.
To defeat substitution, RegVault II uses the storage address of PGD pointers as the tweak to diver-
sify the randomization. Moreover, to prevent attackers from locating page tables allocated statically
and during the early boot phase, RegVault II re-allocates these page tables and page table entries
and updates all references to them.

5.5.6  Cryptographic Keys and Intermediate Results. Most software-based encryption engines
leave cryptographic keys unprotected in memory. Moreover, the intermediate cryptographic
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results may be leaked due to register spilling, allowing attackers to infer cryptographic keys.
Therefore, to harden the existing software-based encryption algorithms, we use RegVault II
cryptographic primitives to protect cryptographic keys and intermediate results.

RegVault II ensures that cryptographic keys are always encrypted in memory. To achieve
this, during key setup phases, RegVault II encrypts these keys before storing them. After that,
in encryption and decryption functions, RegVault II inserts decryption instructions immediately
after all key loadings. Moreover, to randomize intermediate results, RegVault II annotates the
encryption and decryption functions so that all spilled registers are encrypted and no intermediate
results are leaked. As a proof of concept, we apply RegVault II to the AES engine in the Linux
kernel crypto subsystem, and RegVault II successfully prevents disclosure related to AES keys, as
detailed in Section 6.1.1.

5.6 Key Management

Master key initialization is done in machine mode by the bootloader. After initialization is done,
the bootloader de-privileges to supervisor mode and starts to boot the kernel. As a result, the
kernel can only execute cremk or crdmk but cannot read or write the master key register directly.

For the general keys, each thread might use a different key value, termed the per-thread key.
RegVault II stores the per-thread key in thread_info of each thread by creating two 64-bit integers
to store the high and low bits of the 128-bit key value. When the thread forks, RegVault II uses
the master key to generate the per-thread key and encrypts it before storing it in the thread_info.
During the context switch, the per-thread key is decrypted and loaded into the key registers. In
this way, RegVault II ensures that the per-thread key in memory is always encrypted.

6 Evaluation

In this section, we evaluate RegVault II from both security and performance perspectives. We
implement a prototype of RegVault II on Linux kernel v6.6.2 (with 750 lines of code changes),
compiled by our extended LLVM/Clang 11 (with about 4,000 lines of code changes) with default
configurations and 64-bit data integrity check. RegVault II focuses on OS kernel data protection.
Therefore, the userspace parts of the testing environment, such as runtime libraries and bench-
marks themselves, are not instrumented. For security analysis, we run our prototype and perform
penetration tests under QEMU. For RISC-V performance analysis, we evaluate RegVault II on the
Xilinx Virtex-7 FPGA VC707 board with our extended Rocket core (100 MHz) and 1 GB DDR3
memory. For Arm performance evaluation, we extend QEMU v8.1.1 to simulate the cryptographic
instructions, with 8 GB of memory allocated.

6.1 Security Analysis

To thoroughly evaluate the security of RegVault II, we first perform penetration tests on RegVault
IT using real-world attacks. We then discuss two RegVault II specific attacks.

6.1.1  Penetration Tests. To test the effectiveness of RegVault I against memory corruption and
memory disclosures, we perform penetration tests using the RIPE attack suite [78] and real-world
attacks listed in Table 3. More specifically, we port RIPE to the RISC-V Linux kernel and simu-
late @ROP [64], @JOP [16], ®data corruption attack, and @data disclosure attack. In addition to
RIPE, we also develop additional real-world attacks against RegVault II, including ®privilege es-
calation by corrupting cred.uid [71], ®@SELinux bypass by corrupting selinux_state.initialized
[71], @interrupt context corruption by tampering with a register in the saved interrupt context,
and @spatial code pointer substitution by replacing an encrypted function pointer with another
in a different address.
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Table 3. Penetration Test Results

Attacks Defenses

Linux Kernel v6.6.2 RegVault II Protection

OReturn-Oriented Programming X
®Jump-Oriented Programming
®Sensitive Data Corruption
OSensitive Data Leak
@®Privilege Escalation
®SELinux bypass[71]
@Interrupt Context Corruption
®Spatial Code Pointer Substitution X

The Linux kernel built under defconfig is vulnerable to the attacks listed, while RegVault II stops all of
them successfully.

XX R XXX
L1 <L

The test results in Table 3 show that RegVault I can defeat all the above attacks. More specifically,
the address-based randomization scheme makes unauthorized writes unpredictable (defeating
0,0,0,0,0), prevents data leaks (defeating @), and thwarts spatial substitution attacks(defeating
®). Moreover, interrupt context corruption can be detected by our chain-based interrupt context
protection (@). In sum, RegVault II can stop state-of-the-art attacks against annotated sensitive
data.

6.1.2  Time-of-derandomize-to-time-of-use Attack. In RegVault II, the data de-randomization
and the use are in different instructions. This non-atomic design gives the attacker chances to
launch the time-of-derandomize-to-time-of-use attack. To address this problem, we propose to
randomize the interrupt context, as detailed in Section 5.4.1. As a result, even though the interrupt
can happen between decryption and use, all registers saved to memory are encrypted, defeating
any attempts to leak or corrupt the plaintext. Similarly, the gap between the data randomization
and the data use is also protected by the interrupt context randomization.

6.1.3 Cold Boot Attack and Memory Sniff. Attackers can exploit physical attacks to extract sen-
sitive memory data, employing techniques such as cold boot attacks or memory sniffing. RegVault
II mitigates these threats by ensuring that confidential data is always stored in memory in an en-
crypted form, rendering it indecipherable to attackers without access to the encryption key. More-
over, encryption keys are securely retained exclusively within the processor’s registers or memory
in an encrypted form, making them inaccessible to external threats and effectively safeguarding
the confidentiality and integrity of memory data.

6.1.4 Cryptographic Lookaside Buffer (CLB) Timing Side-channel. The attacker may leverage
the CLB timing to launch side-channel attacks (short for CLB timing attack). Correspondingly,
RegVault II introduces two defensive measures. First, in the current design, the user space does
not have the privilege to run the cryptographic primitives. As a result, it cannot probe the CLB
directly. Second, the hit-and-miss of the memory cache usually introduces hundreds of cycles of
timing differences. In contrast, the timing difference for CLB is only several cycles, which is hard
to measure accurately. Therefore, it is difficult to launch the CLB timing attack successfully.

6.1.5 Transient Execution Attack. Attackers can exploit transient execution vulnerabilities to
launch transient execution attacks, including Meltdown and Spectre. RegVault II provides robust
defenses against such attacks through multiple security measures. First, RegVault II mitigates
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traditional transient execution attacks, including Spectre and Meltdown, by encrypting secrets
using data randomization. This ensures that even if an attacker successfully executes such
an attack, they can only leak ciphertext, rendering the extracted data useless. Second, while
attackers may attempt to bypass randomization protections within the transient window-such
as decrypting secrets and leaking them through cache covert channels-these attacks are highly
challenging in practice. RegVault II ensures that protected data does not involve code segments
that decrypt secrets and immediately perform memory operations with the secret’s plaintext,
preventing attackers from leveraging existing memory code to initiate conventional cache-based
side-channel leaks. For additional security, RegVault II can integrate software-level defenses,
such as inserting fence instructions, to prevent transient window execution risks stemming from
user-defined data or specific processor implementations. Third, RegVault II's CLB is designed
to resist transient execution attacks. The updated results of CLB entries are temporarily cached
in the Reorder Buffer (RoB) or other hardware buffers and are not applied immediately. These
updates are only committed once encryption and decryption instructions are finalized, ensuring
that sensitive data is never exposed in the CLB during transient execution windows. Furthermore,
the CLB itself cannot be exploited as a covert channel for leaking secret information.

6.1.6  EPF-style Attack. RegVault II can effectively disrupt EPF-style attacks[36] by leveraging
register-level encryption to secure critical eBPF data structures. EPF-style attacks exploit weak-
nesses in the BPF infrastructure[47] to inject or reuse malicious payloads. At first, BPF programs
cannot read or write the crypto-key registers. Further, the eBPF data structures can be protected by
RegVault II, thus preventing the attacker from manipulating critical pointers. Even if an attacker
were to execute an EPF attack successfully, the cryptographic protection provided by RegVault II
prevents unauthorized modification of sensitive registers. In other words, while EPF targets the
manipulation of kernel memory via BPF, RegVault II's register-level encryption disrupts such at-
tacks by ensuring that any tampering with critical data would fail the decryption check.

6.2 Performance Evaluation

For performance evaluation, we first test the CLB hit ratio with different numbers of entries. Next,
we evaluate the performance gain brought about by the SCIE-based implementation. Moreover,
we use two micro-benchmarks and one macro-benchmark to thoroughly test RegVault II imple-
mentation with 8 CLB entries.

Accurately measuring runtime overhead on QEMU for Arm is challenging. Since QEMU only
emulates functionalities rather than faithfully replicating CPU timing behavior, even single-cycle
instructions exhibit variable execution times in emulation. As a result, there is no reference
standard for determining the exact overhead introduced by QEMU when instrumented instruc-
tions consume a specific number of cycles in an actual CPU pipeline. A more precise alternative,
cycle-accurate GEM5, suffers from excessively long emulation times, making it impractical
for large-scale evaluations. To strike a balance between accuracy and efficiency, we estimate
execution overhead by analyzing how QEMU Tiny Code Generator (TCG) translates emulated
single-cycle Arm instructions into equivalent TCG operations. Specifically, we determine the
upper bound N of equivalent TCG operations for a given instruction. We then simulate M cycles
consumed by each RegVault II instruction by performing N basic TCG operations M times,
approximating the real-world execution overhead within the QEMU emulation framework.

6.2.1 CLB Hit Ratio. We evaluated the CLB’s hit ratio using a micro-benchmark (UnixBench)
and a real-world application (Docker) as macro-benchmarks. Figure 11(a) shows that a CLB with
just eight entries achieves a hit ratio of approximately 50%, which means that most decryption
instructions can retrieve their results directly from the CLB without needing to perform actual
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(a) CLB hit ratio during UnixBench. (b) CLB hit ratio during Docker.

Fig. 11. RegVault Il CLB hit ratio with different number of entries. The hit ratio reaches 80% with 64 entries
during UnixBench on the RISC-V FPGA platform, while it reaches 70% during Docker on the Arm QEMU
platform.

Table 4. FPGA Resource Overhead of Crypto-engine with Different Number of CLB Entries on the
Extended RISC-V Rocket Core

Entry Num | Slice LUT LUT Ratio | Slice Regs Reg Ratio | Energy Consum Ratio
8 1503 2.93% 1704 4.93% 0.33%
16 2876 5.47% 3274 9.07% 0.68%
32 4050 7.32% 6473 16.34% 1.28%
64 7375 12.21% 12685 21.86% 2.31%

decryption. As the number of CLB entries increases, the hit ratio improves, reaching 80% for 64
entries. Similarly, Figure 11(b) illustrates that in Docker, an 8-entry CLB achieves around a 55% hit
ratio, which further increases to 70% for 64 entries. This demonstrates that the CLB maintains a
high hit rate even in real applications.

While increasing the number of CLB entries can further enhance the hit ratio, a larger full-
associative CLB also leads to higher hardware overhead and energy consumption. We measure
the number and percentage of LUTs and registers (Regs) on FPGA slices and the energy con-
sumed by the encryption engine using Vivado 2020.2. As shown in Table 4, the hardware overhead
and energy consumption of the RISC-V FPGA implementation increase roughly linearly with the
number of CLB entries. To balance performance and hardware efficiency, RegVault II prototype is
implemented with a CLB containing eight entries, ensuring an optimal tradeoff between the hit
ratio and the hardware cost.

6.2.2  Micro-benchmark Results. We select the UnixBench and the LMbench [49] for micro-
evaluation. We test the performance overhead with four protection configurations: protecting
return addresses (RA) only, protecting function pointers (FP) only, protecting non-control
data, including all four types of non-control (NON-CONTROL) data, and full protection,
including two types of control data and four types of non-control data (FULL) (Table 2). As
shown in Figure 12, RegVault II RISC-V FPGA implementation introduces a 3.7% performance
overhead for UnixBench and 6.0% for LMbench, while the Arm QEMU version incurs a 5.4%
overhead for UnixBench and 4.2% for LMbench. Specifically, within the 1.6% performance
impact of the NON-CONTROL protection mode, the (de)randomization of struct selinux_state
contributes 0.19%, while struct cred accounts for 0.26%. Since these micro-benchmarks are
primarily syscall-oriented, they provide an upper bound on performance overhead for userspace
programs.

As expected, RegVault II incurs minimal runtime overhead in userspace arithmetic benchmarks
such as Dhrystone and Whetstone (from UnixBench). In contrast, benchmarks that involve
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Fig. 12. RegVault Il micro-benchmark results. The FULL protection mode of RegVault [ RISC-V FPGA version
has a 3.7% overhead for UnixBench and a 6.0% overhead for LMbench; the Arm QEMU version has a 5.4%
overhead for UnixBench and a 4.2% overhead for LMbench.

frequent kernel interactions, such as syscall tests, exhibit relatively higher overhead. This is
because cryptographic primitives in RegVault II are instrumented within the kernel; the runtime
overhead scales with the length of the kernel function call chain, especially when RA protection
is enabled. RA protection contributes the most overhead since nearly every kernel function
is instrumented under this mode. However, in test cases involving frequent function pointer
operations, such as select, the FP protection accounts for a significantly larger portion of the
overhead.

Furthermore, the compilation of the Linux kernel is closely tied to optimization options, which
are typically enabled to ensure successful compilation. When instrumenting the Linux kernel,
adding more instrumentation instructions may prompt the compiler to apply more aggressive
optimization strategies. For instance, after instrumenting 4 M of kernel code with FP protection,
the compiler may perform deeper optimizations, resulting in some uninstrumented functions run-
ning faster than before. This effect may explain why certain test cases, such as spawn, exhibit an
overhead slightly below zero. Additionally, while the FULL protection mode is composed of RA,
FP, and NON-CONTROL protections, the more comprehensive optimizations applied in FULL pro-
tection can lead to cases where the observed performance overhead is lower than the sum of the
individual RA, FP, and NON-CONTROL protection overheads.

6.2.3  Macro-benchmark and Application Results. We use the CINT test suite of SPEC CPU 2017
as the macro benchmark. As shown in Figure 13, the performance overhead is close to zero for
RegVault II RISC-V and 4.3% for RegVault I Arm QEMU, indicating that RegVault IT has a minimal
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Fig. 13. RegVault Il macro-benchmark results. The RISC-V version achieves a close-to-zero overhead; The
Arm QEMU version has a 4.3% overhead.
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Fig. 14. RegVault Il real-world application benchmark results. Arm QEMU version has a 3.4% overhead for
FULL protection.

performance impact on common userspace programs. We further evaluate the performance of
RegVault IT on the Arm QEMU platform using MySQL [54], Nginx [58], and Docker [27]. As shown
in Figure 14, the performance overhead is 3.4% for RegVault I Arm QEMU with FULL protection.

For MySQL (version 8.0.41), we measure read-write throughput as the evaluation metric, em-
ploying sysbench [3] to simulate remote client workloads. The experiment involves creating 10
database tables, each containing 10,000 records, and running 10 concurrent client threads. Using
the OLTP read-write benchmark, we execute 20 independent runs for each Linux kernel protection
mode. The results indicate that RegVault II’'s FULL protection mode on the Arm QEMU platform
incurs a 2.3% reduction in read-write throughput.

For Nginx (v1.18.0), we use Apache Benchmark (ab) [29], generating 10,000 HTTPS requests,
each retrieving a 1 KB file from the target server, with a concurrency level of 100 simultaneous
clients. After an initial warm-up phase to stabilize the system, we conduct 20 independent experi-
mental trials and compute the arithmetic mean of the collected data. The results show that FULL
protection mode on the Arm QEMU platform incurs a 3.0% performance overhead.

For Docker (v27.5.1), we evaluate system call latency during the cold start procedure, measuring
the average duration of system calls under RegVault II’s protection. After an initial warm-up phase,
we conduct 20 independent trials and compute the arithmetic mean of the recorded execution times.
The results show that FULL protection mode introduces a 4.8% overhead on Docker’s system call
execution time.
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Table 5. Comparison with Recent Data Memory Protection Approaches

Cross Fine Multiple Data

Approaches Integrity Confidentiality Architecture Granularity Type Support Performance
Randomized Layout[44] X X X
Software-based Runtime Detect}ilon[l] vV X :// 1 X )\{
Arm PA [40] v X X v X v
Hardware Arm MTE [5] vV X X v X X
Feature-based Intel MPK [62] vV X X X X Vv
Virtualization[80] vV X v X X vV
Hardware Morpheus[32] v v v Y X v
Customization-based | RegVault IT vV v v v v N

Tt means the approach supports multiple data types with specific protection modes targeting each type.
2We only discuss hardware-assisted virtualization.

6.3 Comparison with Kernel Data Protection

Compared to recent OS kernel data protection approaches [1, 32, 40, 62, 74, 80], RegVault II adopts
the strongest threat model, where the adversary has arbitrary read and write accesses to kernel
data. In contrast to prior work that relies on spatial obfuscation or integrity-only mechanisms,
RegVault II also delivers low-overhead, register-grained confidentiality and integrity protection.
Table 5 summarizes how RegVault II outperforms these methods.

Software-based approaches, such as randomized structure layout [44] and Data and Pointer
Prioritization (DPP) [1], focus on selective data protection without depending on specific
hardware features. However, they suffer from significant limitations. These techniques typically
exhibit low entropy, making them vulnerable to brute-force attacks and side-channel leaks (such
as KASLR bypasses). Furthermore, frameworks like DPP rely on rule-based heuristics and tools
like Address Sanitizer (ASan) [70] to detect security violations, which results in considerable
runtime overhead. Moreover, such approaches mainly emphasize data integrity and often fail to
safeguard the confidentiality of sensitive data.

Hardware feature-based data protection mechanisms leverage existing hardware features, such
as Arm PA [40], Intel MPK [62], and virtualization-based memory safety enforcement[80] to
protect data without modifying the underlying hardware. Although these solutions can boost
performance, their reliance on specific architectural extensions restricts their applicability across
diverse platforms. Moreover, Arm PA only targets the integrity of pointers; Intel MPK relies
on page tables to provide coarse-grained protection. In contrast, RegVault II introduces unified
hardware interfaces that enable cross-ISA adaptability while providing precise confidentiality
and integrity protection for various types of sensitive kernel data.

Hardware customization-based approaches [32, 74] combine the flexibility of software with
the efficiency of hardware, enabling robust and adaptable security mechanisms. RegVault II
distinguishes itself from other hardware-software co-design approaches by offering precise,
register-grained protection for both confidentiality and integrity of kernel data. This advanced
capability allows RegVault II to protect small-grained runtime data, even when it is co-located
with non-critical data, thereby mitigating sophisticated data attacks.

6.4 Limitation and Discussion

6.4.1 Temporal Attacks. Though RegVault II can defeat spatial substitution attacks effectively,
it is still vulnerable to temporal substitution attacks. However, the proposed chain-based inter-
rupt context protection can defeat the temporal substitution on the individual register. Moreover,
techniques designed for combating temporal attacks [28] can be adopted by RegVault II.

6.4.2 Data-flow Tracing. Based on the annotation, RegVault II provides field-sensitive protec-
tion. However, RegVault II cannot trace sensitive data flow. That is, RegVault II does not protect
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in-memory objects without annotation, even if sensitive data flows to them. Our rationale is that
most security-related data is located in certain structs (e.g., cred), and most corruption attacks tar-
get fields within these structs. Therefore, field-sensitive protection is capable of defeating these at-
tacks. Furthermore, a comprehensive data tracing algorithm inevitably relies on the precise points-
to analysis, which cannot be scalable to kernel [82].

6.4.3 Performance Concerns. Though RegVault II randomizes return addresses and function
pointers, branch prediction accuracy is not impacted. The reason is that branch prediction units
(BPUs) of modern processors obtain and store the target addresses before the encryption. For the
subsequent prediction, the BPUs use the stored history for the prediction, which can correctly
predict a return address and the function pointer ahead of the decryption.

6.4.4 Real-world Systems Integration. On Arm platforms with PA extension, RegVault II can
leverage the same cryptographic engine used by PA instructions. While PA truncates the encrypted
value and stores it in the unused higher bits, RegVault II writes the full ciphertext directly to the
register. Consequently, RegVault II does not require an additional cryptographic engine, simplify-
ing its integration with existing hardware.

Integrating RegVault Il into real-world systems would require targeted modifications to existing
operating system kernels, particularly in the areas of operations on critical kernel data. To mitigate
potential impacts on maintainability, these modifications are designed as modular, well-abstracted
components that interact seamlessly with the current kernel architecture. By encapsulating the
main instrumentation procedure in an LLVM-based compiler, developers can limit the scope of
changes and preserve the overall manageability of the system.

7 Related Work

Data space randomization (DSR): DSR randomizes the in-memory representation of objects
to make unauthorized accesses unpredictable, thus stopping memory leaks and corruption attacks
with a high probability. PointGuard [23] randomizes pointers using simple XOR with a global mask,
which is not secure enough, as the leaked masked data allows attackers to recover the mask. Data
space randomization works [15, 18] leverage pointer analysis to partition the data into different
equivalence classes and assign a random mask to each class to XOR data. Even so, they are still
susceptible to the disclosure of memory-resident XOR masks. To protect the secret XOR masks,
HARD [14] achieves context-aware data partitioning and stores the masks in a protected memory
key table. Moreover, CoDaRR [67] further proposes to re-randomize the masks periodically to
protect the XOR masks. Besides, Potteiger et al. implemented a DSR for cyber-physical systems
and achieved corruption detection by using a redundant backup [63]. Nevertheless, all of these
works suffer from memory disclosures due to the XOR-based encryption. In contrast, RegVault
II provides lightweight yet cryptographically strong randomization primitives by implementing a
hardware cryptographic engine based on the QARMA cipher. Besides, using the tweak as an extra
input, RegVault II is able to achieve fine-grained data randomization (e.g., based on address).

Selective data protection: Palit et al. propose two selective data protection defenses to protect
the selected sensitive data [60, 61]. Similar to data randomization, these implementations use cryp-
tographic methods to encrypt sensitive data, such as cryptographic keys and user passwords, to
prevent information leakage. [60] mainly uses static analysis to track sensitive data flow and inserts
AES operations to prevent arbitrary access to the protected data. DynPTA [61] also uses AES for the
encryption. It combines static analysis with dynamic data flow tracing for better accuracy and per-
formance. Ginseng [81] uses static taint analysis to identify all sensitive variables. It encrypts and
decrypts this data with AES operations using a higher privilege mode’s system call. Code-Pointer
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Integrity (CPI) [37] allocates an isolated safe memory region for code pointers and all data
pointers used to access code pointers. CCFI [46] generates message authentication codes
(MACs) based on AES-NI instructions and uses MACs to validate the integrity of code pointers.
As mentioned before, AES is not suitable for runtime encryption on register-sized data. The AES-
NI-based CCFI[46] introduces 3-18% performance overhead on the application and an average of
52% overhead for all benchmarks in SPEC CPU 2006. RegVault II provides atomic and lightweight
cryptographic primitives, which are designed for register-grained data. As a result, the perfor-
mance overhead of RegVault II is as low as up to 6.0% for micro-benchmarks and is close to zero
for the macro-benchmark in the RISC-V version, while 5.4% for micro-benchmarks, 4.3% for the
macro-benchmark, and 3.4% for the application-benchmark in the Arm version.

Hardware-based data isolation: There are also hardware-based data isolation studies. Pix-
elVault [76] leverages the GPU to enhance the security of cryptographic operations, keeps
cryptographic keys, and carries out cryptographic operations exclusively on the GPU registers
and instruction cache. By conducting cryptographic computations entirely within the GPU and
storing cryptographic keys exclusively in GPU registers, PixelVault isolates sensitive operations
from the main system memory and CPU, thereby reducing the attack surface available to potential
adversaries. While considering security features provided by the CPU, HDFI [73] is an efficient
hardware-based data isolation mechanism that isolates different data flows with low overhead
by using tagged memory. Morpheus [33] also uses tagged memory to tag different domains and
perform high-frequency churn on them, making the system impractically difficult to penetrate.
ERIM [75] uses the Intel MPK extension to provide efficient in-process data isolation for user
space programs. EPK [35] and VDom [79] virtualize Intel MPK to offer scalable in-process
isolation. Also leveraging Intel MPK novelly, Safeslab [53] provides a heap-hardening approach
to efficiently block the dangling pointers and thus mitigate the use-after-free vulnerabilities with
a drastic overhead decrease. ISLAB [52] utilizes Intel SMAP to protect the integrity of memory
management metadata and in-kernel sensitive data structures. In particular, ISLAB notices the
interrupt state and keeps the key registers in an isolated stack. Our approach is based on a chained
en(de)cryption, which does not need a special secure stack and instruction rewriting while
introducing a low cryptographic operation overhead. In addition, hypervisors [13, 43, 65, 72, 80]
and trusted execution environments [9, 10, 30, 31, 51] are also used for in-process or kernel critical
data protection. These works are orthogonal to our work.

Hardware-based cryptographic primitives: Intel, Arm, and many other vendors provide hard-
ware extensions for common steps in cryptographic algorithms, such as AES and SHA [6]. One
complete encryption or decryption usually needs several instructions in the extension, which
breaks the atomicity of the whole encryption.

ARMvV8.3 introduced PA [66], a hardware-assisted mechanism to sign and authenticate pointers.
Leveraging PA, PARTS [41] protects code and data pointers for user space programs, Camouflage
[26] protects a fraction of kernel function pointers, and PACStack [40] achieves a context-sensitive
return address protection. But Arm PA is designed to enforce pointer integrity and thus cannot pro-
vide confidentiality protection for general data. However, Arm PA needs to store the authentication
code in the unused bits of the pointers, and thus cannot be used for general data randomization.

Cryptoraptor [68] is a domain-specific high-performance processor covering a wide range of
cryptographic algorithms. However, it is not integrated into the CPU core. Recryptor [83] is a
configurable cryptographic processor that aims at in-memory computing. Techniques like Intel
Total Memory Encryption (TME) use a crypto-engine to encrypt memory. These techniques
target specific scenarios with different threat models and thus cannot be used for general data
randomization.
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Memory safety-based protection schemes aim at eliminating memory bugs in the first place.
To achieve spatial safety, SoftBound [55], CCured [57], and Baggy Bounds Checking [4] enforce
bound checking for every memory access. CETS [56] further provides temporal safety by allocating
a unique identifier with each object and associating it with related pointers. Nevertheless, all the
above schemes require extra checks on every memory access, leading to prohibitive performance
overhead.

Therefore, to reduce the performance overhead, researchers apply memory safety to sensitive
data only. DataShield [19] divides process memory into sensitive and non-sensitive parts and en-
forces precise spatial and temporal safety checks only on sensitive data. Similarly, ConfLLVM
[17] partitions the memory into private/public regions and inserts runtime checks to ensure every
pointer points to the correct memory region inferred by the compiler. But still, both of them incur
relatively high overheads (more than 10% on SPEC).

8 Conclusion

This article presents RegVault II, a hardware-assisted selective data randomization scheme for OS
kernels. To achieve RegVault II, at the hardware level, we design and implement the novel hardware
primitives, supporting cryptographically strong encryption for register-grained data. To further
reduce the performance overhead, we integrate the cryptographic operations into the pipeline.
We also introduce a new type of cache to buffer the cryptographic results to avoid redundant
cryptographic operations.

At the software level, RegVault II develops the annotation-based approach to allow kernel
developers to mark sensitive data. Based on the annotation, RegVault II extends the LLVM com-
piler to automatically instrument sensitive data stores and loads with encryption and decryption
primitives, achieving randomization. In addition, to guarantee comprehensive randomization,
RegVault II also develops the chain-based interrupt context protection to protect the interrupt
context and the cross-call spill protection to protect the register spilling.

To demonstrate the effectiveness of RegVault II, we build a prototype of RegVault II to protect
Linux kernel runtime data, including two types of control data and four types of non-control data.
We also conduct a thorough evaluation of both the security and the performance of the prototype.
The security analysis shows that RegVault II can defend against kernel data attacks effectively. The
performance overhead of RegVault Il is minimal, which is at most 6.0% for micro-benchmarks, and
is close to zero for the macro-benchmark in the RISC-V version, while 5.4% for micro-benchmarks,
4.3% for the macro-benchmark, and 3.4% for the application-benchmark in the Arm version.
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