
IE
EE P

ro
of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025 1

Minoris: Practical Out-of-Emulator Kernel
Module Fuzzing

1

2

Yangxi Xiang , Feng Wang, Yuan Chen , Qiang Liu , Member, IEEE, Haoyu Wang , Jiashui Wang, Lei Wu ,
Chaoyuan Chen, and Yajin Zhou

3

4

Abstract—Vulnerabilities in the Linux kernel can be exploited5
to perform privilege escalation and take over the whole system.6
Fuzzing has been leveraged to detect Linux kernel vulnerabilities7
during the last decade. However, existing kernel fuzzing techniques8
highly use QEMU/KVM as the underlying infrastructure, thus9
suffering from unnecessary costs due to user-kernel context switch10
and kernel-emulator context switch. This degrades the fuzzing11
performance. In this paper, we propose a kernel module fuzzing12
framework named MINORIS. It moves the kernel module under13
testing (KMUT) out of both real kernel and emulator, thus elimi-14
nating unnecessary context switches. However, implementing such15
a system requires solving the dependency challenges. We solve16
these challenges by automatically linking kernel module with LKL,17
and performing initialization functions on-demand to prepare the18
required status. Besides, a hardware-emulation library is pro-19
posed to provide underlying hardware support. Our system not20
only improves the fuzzing speed but also can easily integrate ma-21
ture fuzzing techniques, such as user-space memory sanitizer. We22
evaluate MINORIS on five different KMUTs. Compared with the23
state-of-the-art solution, MINORIS achieves an average execution24
speedup from ×3.31 to ×7.38. It improves the fuzzing throughput25
(×102.58), explores more code coverage (89.51% more branches),26
and detects 6 new bugs.27

Index Terms—Operating systems, security, fuzzing.28

I. INTRODUCTION29

L INUX kernel, as one of the most popular OS kernels, its30

code size1 has grown from 6.2 million lines of source code31

in v2.6.12 (2005) to 35.7 million lines of source code in v6.1232

(2024). With the kernel’s increased code size and complexity,33

the number of CVEs in the Linux kernel has grown from 264 in34

2005 to 3,109 in 2022. By exploiting these vulnerabilities, an35

attacker can escalate privileges to perform malicious tasks, e.g.,36

Received 27 July 2024; revised 16 September 2025; accepted 16 September
2025. This work was supported in part by the National Key R&D Program of
China under Grant 2022YFE0113200 and in part by the National Natural Science
Foundation of China (NSFC) under Grant U21A20464. (Corresponding author:
Yajin Zhou.)

Yangxi Xiang, Yuan Chen, Qiang Liu, Lei Wu, and Yajin Zhou are
with the College of Computer Science and Technology, Zhejiang Uni-
versity, Hangzhou, Zhejiang 310027, China (e-mail: xyangxi5@gmail.com;
yuanchen96@zju.edu.cn; cyruscyliu@gmail.com; lei_wu@zju.edu.cn; ya-
jin_zhou@zju.edu.cn).

Feng Wang, Jiashui Wang, and Chaoyuan Chen are with Ant Group, Hangzhou
310000, China (e-mail: yanuo.wf@antgroup.com; jiashui.wjs@antgroup.com;
yaoguang.cyg@antgroup.com).

Haoyu Wang is with the School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:
haoyuwang@hust.edu.cn).

Digital Object Identifier 10.1109/TDSC.2025.3616496
1 The statistic about the code size of the kernel is reported by CLOC tool [1].

Fig. 1. Typical kernel fuzzers [2], [3], [4] and our system. Our system moves
the kernel modules into user space, removing the user-kernel and kernel-
emulator context switches.

leaking other users’ privacy and/or taking over the whole com- 37

puting infrastructure. The increased number of vulnerabilities 38

and serious consequences urge the need for an automatic Linux 39

kernel bug detection system. 40

Fuzzing, an effective testing technique, has been adapted to 41

discover kernel vulnerabilities. Some kernel fuzzing systems 42

focus on specific kernel components like file systems, TCP 43

stacks, and USB driver stacks [5], [6], [7], [8], [9], [10]. Some 44

of them are generally purposed for the whole kernel [11], 45

[12]. Furthermore, sophisticated techniques, such as symbolic 46

execution [12], [13], [14], vulnerability pattern summary [15], 47

[16] and exploitation assessment [17], [18], [19], [20], [21] are 48

applied to find more difficult-to-discover vulnerabilities. 49

Specifically, Trinity [22], started in 2006, was widely used for 50

testing syscalls with a random but type-aware fuzzing fashion. 51

The testing syscalls are executed in a real kernel. Therefore, it 52

achieves a native performance but might corrupt the host system. 53

With the development of hardware virtualization (e.g., Intel 54

VT-x), software emulators (e.g., QEMU) can improve perfor- 55

mance with hardware virtualization acceleration. Accordingly, 56

kernel fuzzing frameworks that combine with emulators (e.g., 57

QEMU/KVM) have been proposed [2], [3], [4]. Syzkaller, a 58

representative state-of-the-art emulator-based kernel fuzzer, has 59

hunted thousands of kernel bugs. Though with hardware virtu- 60

alization, the emulator-based kernel fuzzing systems still have 61

high-performance overhead. Recently, techniques for improving 62

the performance overhead have been proposed. Some of them 63

reduce the emulation overhead [9], [23], [24], but introduce 64

non-negligible manual efforts and still cannot achieve native 65

performance. Some of them try to complete the hardware de- 66

pendency [6], [14], [25], [26], but may introduce extra overhead 67

or high false positives on emulation. 68

1545-5971 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0006-7837-5090
https://orcid.org/0009-0009-2321-4910
https://orcid.org/0000-0002-5865-6227
https://orcid.org/0000-0003-1100-8633
https://orcid.org/0000-0003-1675-5283
https://orcid.org/0000-0001-7610-4736
mailto:xyangxi5@gmail.com
mailto:yuanchen96@zju.edu.cn
mailto:cyruscyliu@gmail.com
mailto:lei_wu@zju.edu.cn
mailto:yajin_zhou@zju.edu.cn
mailto:yajin_zhou@zju.edu.cn
mailto:yanuo.wf@antgroup.com
mailto:jiashui.wjs@antgroup.com
mailto:yaoguang.cyg@antgroup.com
mailto:haoyuwang@hust.edu.cn

IE
EE P

ro
of

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

Motivation: Even though hardware virtualization can be lever-69

aged for accelerating OS kernel fuzzing, emulator-based kernel70

fuzzing still suffers from unavoidable performance overhead on71

user-kernel context switch and kernel-emulator context switch72

(see the left of Fig. 1). For the user-kernel context switch, a cross-73

ring system call will take up additional CPU time for saving and74

restoring contexts. For the kernel-emulator context switch, the75

emulator introduces overhead when forwarding instructions and76

I/O requests. The performance overhead is non-negligible. This77

can be seen from the fact that the community is trying to avoid78

VM-Exit events in QEMU/KVM raised by the kernel [27]. These79

two types of overhead become much more significant in kernel80

fuzzing scenarios since fuzzing involves many system calls and81

frequent hardware interactions. As a result, the effectiveness of82

fuzzing is hindered.83

Compared to fuzzing kernel modules in emulators, intuitively,84

it is more beneficial to fuzz a kernel module as a native user-space85

program on the host computation platform. By doing this, it86

removes the overhead introduced by user-kernel context switch87

and kernel-emulator context switch, which is naturally unneces-88

sary in kernel fuzzing.89

Our Approach: In this work, we propose a fuzzing framework90

named MINORIS to fuzz kernel modules (extracted from the91

AArch64 and the x86-64 Linux kernel) as user-space programs92

on the host computation platform (x86-64 architecture). Specif-93

ically, we choose to get the kernel module under testing (KMUT94

in this paper) running with the fuzzer as a standalone user-space95

process (as shown in the right part of Fig. 1). Additionally, a96

user-space library OS (i.e., LKL in our design) and a hard-97

ware emulation library (i.e., LibHW) are integrated to provide98

the necessary OS kernel and underlying hardware environment99

support, respectively. By doing so, we could implement a high-100

performance kernel fuzzing framework without kernel-emulator101

context switch nor user-kernel context switch overhead.102

MINORIS brings two benefits. First, it accelerates the ker-103

nel fuzzing at native speed without additional requirements.104

The typical emulator-based kernel fuzzers launch the testing105

kernel inside QEMU with the KVM acceleration, which de-106

mands a homogeneous CPU architecture between the testing107

and host kernel. In contrast, MINORIS removes such limitations108

as MINORIS compiles the KMUT to run as a user program109

on the host platform, regardless of the original architecture110

hosting the kernel module. Second, fuzzing kernel module as111

a user-space program enables the easy integration of the off-112

the-shelf user-space fuzzing techniques. With the popularity113

of fuzzing, many techniques have been proposed to improve114

fuzzing effectiveness, such as using symbolic execution or static115

program analysis to assist the fuzzer in exploring deeper pro-116

gram states. Most of these techniques target user-space pro-117

grams, and porting them to kernel-fuzzing systems would re-118

quire considerable manual effort. With MINORIS, the user-space119

fuzzing techniques can be easily adapted for fuzzing the kernel120

modules.121

Challenges: Despite the benefits, building and fuzzing a ker-122

nel module as a user-space program is not as simple as it looks.123

Technique challenges are faced because the kernel module is not124

self-contained and has external dependencies. We characterize125

these challenges into the following three categories.126

Challenge I. Symbol Dependency at Compile Time: Due to 127

the inconsistency between the linked user-space kernel library 128

(LKL) and the original kernel source code that the kernel module 129

depends on, compiling and linking a kernel module into a user- 130

space program may bring symbol dependency issues, such as 131

undefined references, multiple definitions, or inconsistent decla- 132

rations. The symbols include macros, data structures, variables, 133

functions, etc. 134

Challenge II and III. State Dependency and Hardware Depen- 135

dency at Runtime: Although LKL is provided as the user-space 136

kernel library, the corresponding kernel runtime state must also 137

be set up properly before fuzzing, especially for the dynamically 138

probed devices. This can ensure that the KMUT is accessible 139

from system call interfaces issued by the fuzzer. Moreover, 140

during fuzzing, the KMUT needs to interact with the underlying 141

hardware to function properly. A lack of hardware interaction 142

would greatly hinder fuzzing execution. We conclude these two 143

runtime issues as state dependency and hardware dependency, 144

respectively. 145

Our Solution: We solve the above dependencies to fuzz ker- 146

nel modules as user-space programs. Specifically, we propose 147

SemaLinker to solve symbol dependency at compile time auto- 148

matically. SemaLinker transforms the source code of the kernel 149

module by resolving symbol dependency issues and linking with 150

LKL to generate an executable. Next, to solve state dependency, 151

MINORIS retrieves the required initialization functions of the 152

KMUT automatically and explicitly makes LKL invoke them so 153

that the KMUT gets initialized properly. Moreover, the neces- 154

sary system calls are also identified and issued before fuzzing 155

to prepare the user-space states. Lastly, a hardware-emulation 156

library (i.e., LibHW) is coupled to provide underlying hardware 157

support. The interaction between the KMUT and the underlying 158

(emulated) hardware in LibHW is bridged by MINORIS auto- 159

matically. LibHW is implemented based on QEMU to utilize its 160

rich virtual device assets and mature framework for adding new 161

devices. With the above dependencies solved, we can integrate 162

various user-space fuzzing techniques and fuzz the KMUT with 163

high throughput. 164

We comprehensively evaluated MINORIS on various targets. 165

We take the x86-64, AArch64, and Android kernels as targets. 166

First, our evaluation shows that SemaLinker can automatically 167

fix the symbol dependency of kernel modules and successfully 168

link with LKL to generate user-space programs. Second, MI- 169

NORIS can achieve an average execution speedup from×3.31 to 170

×7.38 by removing the user-kernel context switch and kernel- 171

emulator context switch. Third, we compared MINORIS with the 172

state-of-the-art kernel fuzzer syzkaller [2] for fuzzing through- 173

put, code coverage, and bug finding. MINORIS greatly improves 174

the fuzzing throughput (×102.58), has more code coverage 175

(89.51% more branches), and detect 6 new bugs. 176

Contributions: This work makes the following main contri- 177

butions. 178
� We summarize two performance issues for emulator-based 179

kernel fuzzing and propose a new fuzzing framework 180

MINORIS to solve these issues. It tests kernel modules as 181

user-space programs on the host machine to improve the 182

performance and enables the easy integration of user-space 183

fuzzing techniques. 184

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 3

� We locate three challenges when implementing the system,185

including symbol dependency during compilation, state186

dependency, and hardware dependency at runtime. We also187

propose corresponding solutions for these challenges.188
� We implemented a prototype and evaluated the scalability189

of transforming the kernel module into a user-space pro-190

gram, the execution speedup, and the effectiveness. Our191

evaluation shows that MINORIS can gain ×3.31 to ×7.38192

execution speedup compared with the QEMU/KVM-based193

kernel fuzzing systems and can greatly improve the fuzzing194

throughput, achieve high code coverage, and detect more195

bugs.196

II. BACKGROUND197

A. Kernel Module198

Kernel modules enhance OS functionality by adding features199

like device drivers. They can be either statically linked into200

the kernel image (configured with y) or dynamically loaded at201

runtime (configured with m).202

A loadable kernel module can be loaded using the mod-203

probe command in two stages. First, undefined symbols are204

resolved via the kernel’s symbol table (kallsyms). Second,205

the module’s memory is initialized, and its initialization function206

is invoked via the module_init entry point. Once loaded,207

the module runs in the kernel’s address space with full system208

privileges. In contrast, statically linked modules are part of the209

kernel image and are initialized during system boot using the210

same initialization functions.211

B. Kernel Fuzzing212

Fuzzing has become a key technique for uncovering kernel213

vulnerabilities. Compared to user-space fuzzing, kernel fuzzing214

poses distinct challenges. First, kernels need to interact with di-215

verse hardware devices. Emulator-based approaches attempt to216

handle hardware dependencies through custom device emulation217

but suffer from context-switching overhead and fail to provide218

the rich hardware dependencies needed for effective testing. Sec-219

ond, generating valid test cases requires synthesizing complex220

structured inputs, like syscalls, whose specifications are buried221

in kernel code. Third, the kernel’s low-level execution environ-222

ment complicates state monitoring and result interpretation, and223

scalability issues grow during extended fuzzing campaigns.224

C. Context Switches During Kernel Fuzzing225

Kernel fuzzing efficiency is affected by two main kinds of226

context switch overhead.227

User-Kernel Context Switches: Real syscalls require the228

cross-ring transitions, switching between user mode and ker-229

nel mode, except for those optimized calls executed mostly230

in user space via mechanisms, like clock_gettime via231

vDSO. These transitions, involving saving and restoring CPU232

and memory states, typically take hundreds of nanoseconds to233

microseconds per call, depending on hardware. While vital for234

security and resource management in regular programs, this235

overhead accumulates noticeably during kernel fuzzing, where 236

real syscalls are frequent. 237

Kernel-Emulator Context Switches: Hardware operations or 238

privileged instructions cause VM-exit events, triggering context 239

switches to the hypervisor (e.g., QEMU/KVM) for instruction 240

emulation or I/O handling. This adds notable latency, as seen 241

in ongoing efforts to reduce such exits [27]. Fuzzing workloads 242

with frequent hardware interactions are particularly affected by 243

this overhead. 244

D. Lkl 245

Our framework relies on LKL to solve symbol dependency 246

for KMUTs. LKL, a LibOS, re-implements a new architecture 247

interface that adapts to the host environment for Linux and 248

therefore makes the OS kernel a user-space library. By linking 249

it, an application can send syscalls to the embedded kernel and 250

gain nearly complete kernel functionality. However, LKL is 251

designed to run a user application and cannot provide hardware 252

dependency for KMUTs. 253

III. SYSTEM DESIGN 254

The goal of MINORIS is to provide a framework to fuzz 255

kernel modules (extracted from the AArch64 and the x86-64 256

Linux kernel) as user-space programs on the host computation 257

environment, i.e., the x86-64 desktop PC. By doing so, the kernel 258

module fuzzing can achieve high throughput while at the same 259

time can directly integrate the off-the-shelf user-space fuzzing 260

techniques, e.g., ASAN and SYMCC [28], [29]. Figure 2 shows 261

the overall flow of how MINORIS works. Specifically, for the 262

kernel module to be fuzzed, our system extracts it from the kernel 263

source tree and compiles it as a separate compilation module, 264

which involves the automatic process of recursively extracting 265

the dependent header files from the kernel source code (➊). We 266

then link it with the LKL and LibHW (a hardware emulation 267

library provided by our system, detailed in Section III-C) to 268

generate an executable (➋). After that, it will be loaded and 269

fuzzed as a normal user program. During this process, the 270

KMUT interacts with LKL for needed kernel functions (➌) 271

and libHW for the underlying hardware environment (➍). Noted 272

that MINORIS fuzzing eliminates both kinds of context switches 273

mentioned in the introduction. The fuzzer and LKL merely call 274

the LKL (➌) and LibHW (➍) functions directly, eliminating 275

the overhead of kernel-emulator context switch and user-kernel 276

context switch. 277

The idea of building and fuzzing a kernel module as a 278

user-space program looks straightforward. However, it faces 279

several technical challenges, including the symbol dependency 280

during compilation, and the state dependency and hardware 281

dependency at runtime, respectively. First, when compiling and 282

linking a kernel module into a user-space program, the dependent 283

symbols (e.g., macros, definitions of data structures, and global 284

variables) and inconsistency between the linked user-space ker- 285

nel library (LKL) and the original kernel source code pose a 286

serious challenge. Second, when running KMUT in user space, 287

the kernel module states (initialized by the Linux kernel) and the 288

necessary user-space states (created by the init process and other 289

IE
EE P

ro
of

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

Fig. 2. The overview of MINORIS.

system daemons) are missing. This may cause the KMUT to be290

inaccessible from LKL. Third, a kernel module usually depends291

on the underlying hardware to function properly. The lack of292

underlying hardware will greatly impact the code coverage of293

KMUT and the effectiveness of fuzzing.294

MINORIS proposes corresponding solutions. First, MINORIS295

automatically analyzes the kernel module to add the necessary296

symbol declarations or definitions. It also resolves the conflicts297

between LKL and the original kernel source code to link the298

kernel module with LKL (and LibHW). Second, we retrieve299

the initialization functions of the KMUT and make LKL in-300

voke them to prepare the proper kernel module states. Besides,301

the needed system calls to prepare the user-space states are302

identified and issued. Third, MINORIS redirects the interaction303

between the KMUT and the underlying hardware to a user-space304

hardware emulation library (LibHW). We will elaborate them in305

Section III-A, Section III-B, and Section III-C in the following.306

A. Symbol Dependency307

1) Problem Statement: The root cause of the symbol depen-308

dencies is the original kernel source code that the kernel module309

depends on is different from the user-space kernel library LKL.310

Vendor customization, mainline kernel differences, or architec-311

ture differences can all introduce differences. Fig. 3 shows four312

examples of symbol dependency issues. First, an SoC vendor313

may add header files with SoC-specific declarations missing314

in LKL (E1). Second, the vendor may modify declarations like315

addingdev_socdata to struct device, incompatible with LKL316

(E2). Third, since LKL aligns with the mainline kernel at major317

versions, incompatible declarations (E3) could be caused when318

the kernel module relies on the minor versions of the mainline319

kernel. Fourth, architecture-dependent macros like rmb need to320

be replaced when extracting ARM modules to an x86-64 host321

(E4).322

To better illustrate the problem, we model the process of com-323

pilation and linking the kernel module with the dependent sym-324

bols. Specifically, during the compilation, the compiler sees ev-325

ery symbol reference s =< names, decls, refs > or symbol def-326

inition d =< named, decld, defd >. When some symbol refer-327

ence refs is used in the source file, the compiler will generate the328

instructions and memory allocations according to the declaration329

decls, and the linker will link the reference refs to the definition330

defs. The compiler and the linker identify a unique symbol entity331

Fig. 3. Four concrete examples of unresolved symbol dependencies.

e ∈ {s, d} by its name namee. We assumes that a kernel module 332

S has the property named compilation correctness in its origi- 333

nal kernel O, which says that ∀s ∈ S, ∀d ∈ Ds(O ∪ S) = {d ∈ 334

O ∪ S | names = named}, |defDs(O∪S)| = 1 ∧ decls = decld. 335

Based on the above model, we accordingly summarize the 336

possible symbol dependencies, when compiling the kernel mod- 337

ule with LKL T , as the following three categories. 338

Case 1: ∃s ∈ S, |defDs(T∪S)| = 0. The compiler complains 339

an undefined reference of the symbol. It possibly happens when 340

the dependent modules are not compiled into the T . 341

Case 2: ∃s ∈ S, |defDs(T∪S)| > 1. The compiler complains 342

about multiple definitions for a symbol. This happens when the 343

symbol occurs in both the module S and LKL T . 344

Case 3: ∃s ∈ S, d ∈ Ds(T ∪ S), |defDs(T∪S)| = 1 ∧ decls 345

�= decld. The linker can link refs to the defd by names, but 346

runtime errors will be raised, such as segmentation fault, due to 347

inconsistent declaration. 348

Our experience when developing MINORIS shows that symbol 349

dependencies are common. Specifically, nearly all the mod- 350

ules contain undefined symbols (Case 1) when extracting ker- 351

nel modules from AArch64 5.1, Android 5.4. And there are 352

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 5

Algorithm 1: Transform Algorithm.
1: procedure Transform
2: input: S represents the kernel module. O represents

the original kernel, while T represents LKL.
3: output: adjusted LKL T ′, adjusted kernel module S ′′,

and header files H used by S ′′.
4: expand macros in S by T as S ′

5: expand rest undefined macros in S ′ by O as S ′′

6: for s ∈ S ′′ do
7: if s is intercepted by fuzzing developers then
8: pass
9: else if |defDs(T∪S′′)| = 0 then

10: emit a stub definition of decls to H
11: else if |defDs(T∪S′′)| > 1 then
12: R← R ∪ defDs(T)

13: else if decls �= decld for d ∈ Ds(T ∪ S ′′) then
14: try
15: replace decls with decld and compile S ′′

16: catch CompileError caused by replacement
17: patch T to adapt decls
18: end try
19: end if
20: end for
21: rename R in T to avoid name conflict with S ′′

22: (H,T ′)← (H ∪ declT , T)
23: end procedure

hundreds of inconsistent symbols (Case 2 and Case 3) when353

extracting kernel modules from kernels of different architectures354

or kernel configurations.355

2) Our Solution: We propose SemaLinker to solve the sym-356

bol dependencies automatically in two steps. First, the symbol357

semantics of the kernel module, the original kernel, and LKL are358

collected, respectively. Then, with complete symbol semantics,359

SemaLinker transforms the kernel module into the KMUT and360

adjusts LKL accordingly to ensure the KMUT has compilation361

correctness property maintained in the adjusted LKL. We show362

these two steps in the following.363

Step I. Collect Symbol Semantics: SemaLinker runs a collect-364

ing procedure on the parsed AST with semantics produced by365

Clang. It performs a reachability symbol analysis and records the366

semantic information of symbols, i.e., symbol reference s and367

symbol definition d, simultaneously. The collected semantics368

cover several major categories associated with SemaLinker,369

including macro, function, type, and variable symbols repre-370

senting preprocessing, control flow, memory protocols, and the371

state of a program.372

SemaLinker checks semantic information at the AST level373

instead of the IR level because Clang does not emit correct374

IR if there are syntax or semantic errors in the source files.375

SemaLinker can handle or ignore errors produced by the Clang376

parser and analyze the kernel modules from the original kernel,377

even if the AST contains errors.378

Step II. Transform Kernel Modules: Our transform algorithm379

is shown in Algorithm 1. The algorithm aims to solve three380

illustrated possible symbol dependencies by taking the kernel381

module, the original kernel, and LKL with their associated 382

symbol semantics extracted in previous step as inputs. As a 383

result, the adjusted LKL T ′, adjusted kernel module S ′′, and 384

header files H containing symbol declarations used by S ′′, are 385

generated as outputs. The combination of S ′′ and H forms the 386

KMUT, which has compilation correctness property preserved 387

in the adjusted LKL T ′. 388

First, SemaLinker expands the macros in S. It first expands 389

S by the macro definitions from T (Line 4in Algorithm 1). This 390

solves the issues caused by macros in Case 2 and Case 3. It is 391

correct since the macro definition in the T usually has the same 392

functionality as that defined in the original kernel. SemaLinker 393

then expands the rest of undefined macros by O (Line 5in 394

Algorithm 1), solving Case 1. Our macro expansion strategy is 395

crucial when transforming kernel modules from an ARM kernel, 396

which usually contains architecture-dependent macros. 397

Then, SemaLinker iterates all symbol references in the ad- 398

justed kernel module S ′′ and solves the symbol dependencies 399

issue when encountered. For an undefined reference (Case 1), 400

SemaLinker generates a stub definition based on the declaration 401

from O to compile the KMUTs (Line 9-10in Algorithm 1). This 402

strategy is previously discussed in EASIER paper [24]. As for 403

Case 2, this happens when the symbol definition occurs in bothS 404

andT . At this time, we would like to make the kernel module use 405

its symbol definition. Specifically, SemaLinker collects dupli- 406

cated definitions in T (Line 12in Algorithm 1) and then renames 407

them to avoid name conflicts with S ′′ (Line 21in Algorithm 1). 408

Moreover, their corresponding references in T itself are also 409

renamed. When the decls of a symbol reference in S ′′ conflicts 410

with the decld of the corresponding symbol definition in LKL 411

(Case 3), SemaLinker prefers to replace decls with decld at first. 412

If the replacement causes compilation errors when compiling the 413

kernel module with the declarations decld, SemaLinker reverts 414

the replacement and tries to patch LKL to adapt decls instead. 415

For example, when the vendor adds a new field to the struct 416

device (example E2), the issue with Case 3 occurs. If the 417

kernel module does not use the field, the compilation should 418

succeed, and the decld is used. Otherwise, the error hints that 419

the kernel module depends on the added field, hence we should 420

add the missing field to LKL by patching the source code of 421

LKL. Since replacing decld likely works, this helps stabilize the 422

LKL runtime by avoiding unnecessary patches. 423

Discussion: The design of Algorithm 1 is based on the as- 424

sumption that S has compilation correctness property in O. 425

Our algorithm believes that the conflict symbols keep similar 426

semantics so that automatic transformation becomes possible. 427

If the kernel versions differ a lot, the algorithm may fail since 428

there are too many inconsistent declarations. One reason that 429

we chose LKL as our user-space kernel implementation is that 430

LKL is aligned with the mainline kernel at major versions. We 431

can always choose the LKL that is closest to target Linux kernel 432

version. 433

B. State Dependency 434

With SemaLinker, the KMUT is ready for linking with 435

LKL. However, to ensure the KMUT is accessible from system 436

calls issued by the fuzzer at runtime, the kernel module states 437

IE
EE P

ro
of

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

(initialized by the Linux kernel) and the necessary user-space438

states (created by the init process and other system daemons)439

should be prepared before fuzzing. In this section, we illustrate440

how MINORIS solves the state dependency issue.441

Kernel Module State Preparation: In the Linux kernel, kernel442

modules (including loadable modules) can be directly built into443

the kernel. If the kernel module is built into the kernel, the444

initialization vectors (i.e., functions) of the kernel module will445

be invoked for kernel module state initialization during kernel446

booting (i.e., start_kernel). We observe that the Linux447

kernel provides a mechanism, named initcalls, to allow the448

kernel module to register its initialization vectors to different449

boot stages by annotating its initialization vectors. Based on450

this observation, during compilation, MINORIS automatically451

identifies the initialization vectors of the KMUT in the source452

files and inserts them into the corresponding boot stage of LKL.453

Then, at runtime, the KMUT’s initialization vectors are invoked454

with appropriate timing during the LKL boot process. As a result,455

the kernel module states of the KMUT are set up properly.456

User-space State Preparation: Due to the limited user-space457

component support of LKL (such as the lack of system dae-458

mons), the necessary user-space states of the KMUT are missing.459

Therefore, MINORIS prepares the necessary user-space states460

before fuzzing. For example, mknod syscalls should be emitted461

to create the device file entries in the filesystem to run device462

driver fuzzing, which is originally issued by the user space463

daemon udevd, which does not exist in LKL. Another example464

is a few virtual network devices that must be created by syscalls465

to run fuzzing on the network subsystem. For this, we manually466

write the program to issue the required syscall sequences.467

C. Hardware Dependency468

At runtime, the KMUT (mainly the device driver) usually469

depends on the bidirectional interaction with the underlying470

hardware to function properly. Specifically, the KMUT may471

need to perform IO access to the device, while the device472

side could trigger a hardware interrupt targeting the KMUT.473

However, there is no hardware backend provided by LKL, which474

will greatly hinder the execution of the KMUT, thus affect-475

ing the effectiveness of fuzzing. To solve the above hardware476

dependency issue, MINORIS integrates a user-space hardware477

emulation library (LibHW) with the LKL and KMUT to provide478

a hardware backend. Furthermore, a KMUT-agnostic design479

is adopted by MINORIS to bridge the bidirectional interaction480

between the KMUT and the corresponding backend device in481

LibHW seamlessly. Lastly, the design of linking the kernel (i.e.,482

LKL) and the hardware emulation (i.e., LibHW) together brings483

additional optimization opportunities for hardware access to484

achieve better performance and analysis robustness.485

LibHW: LibHW is constructed on top of QEMU’s hardware486

emulation framework. Specifically, we customize QEMU to487

serve as a user-space library and could be invoked for hardware488

device (including interrupt controller) emulation while leaving489

QEMU’s CPU and memory emulation unused. By doing so, we490

can utilize its rich virtual device assets and mature framework for491

adding new virtual devices. In addition, there have been solutions492

proposed for real device integration [25] and automated virtual 493

device generation [14], [26] for QEMU. They can also be 494

integrated to provide richer hardware device support for LibHW. 495

Moreover, LibHW leverages device tree configuration to tell 496

the kernel (LKL and the KMUT) how to access the emulated 497

hardware resources. Specifically, at runtime, LibHW is invoked 498

to initialize its hardware resources with the specified hardware 499

configuration (including the devices that the KMUT depends 500

on). A device tree configuration describing the emulated hard- 501

ware resources by LibHW is generated after the initialization 502

of LibHW. Then, the device tree configuration is passed to 503

LKL, so that LKL can boot with the correct and consistent 504

hardware resource description with LibHW. Since the absence 505

of the bootloader in LKL, we patch LKL with the device tree 506

configuration (i.e., .dtb) loading support. For example, for the 507

PCI device, a customized PCI controller kernel module is also 508

added to LKL to support the PCI bus scanning. 509

Routing the IO Requests from the KMUT: Since the Linux 510

kernel provides a well-defined abstraction for the KMUT to 511

perform IO access, MINORIS is able to intercept IO requests 512

from the KMUT via the well-defined abstraction and redirect 513

them to LibHW. 514
� MMIO&PIO: The readX/writeX (X ∈ {b, w, l}) and 515

inX/outX (X ∈ {b, w, l}) functions are provided by 516

Linux kernel for the KMUT to perform MMIO and PIO 517

operations, respectively. By hooking these low-level IO 518

access functions, MINORIS could capture MMIO/PIO op- 519

erations issued by the KMUT at runtime and then redirect 520

them to LibHW. 521
� DMA: Regardless of the variations of the kernel DMA 522

APIs, they are eventually transformed into map_page, 523

unmap_page to access the mapped virtual memory. 524

When MINORIS captures the invocation of map_page, it 525

will instruct LibHW to insert the corresponding memory 526

region into the address space emulated by QEMU (i.e., 527

LibHW) and assign a higher priority. In this way, whenever 528

the KMUT accesses the virtual memory or the backend 529

device accesses the emulated address space, they are both 530

reading or writing the same part of physical memory in the 531

host machine. When unmap_page is invoked, MINORIS 532

performs an inverse operation of map_page. MINORIS 533

removes the memory region for DMA from the emulated 534

address space. Additionally, a pool of memory regions is 535

managed by MINORIS for higher performance on small 536

page mapping. 537

Routing Interrupts from the Emulated Hardware: We handle 538

interrupts delivered from the LibHW simply and effectively. 539

When delivering an interrupt, LibHW will invoke the interrupt 540

handler inside the LKL directly (since they are inside the same 541

process). This eliminates the dependency on the involvement of 542

CPU emulation for interrupt delivery. We made minor modifi- 543

cations to the interrupt signal-raising logic of QEMU to achieve 544

this, so that our modification is KMUT-agnostic. It’s a one-time 545

effort for each system architecture. Correspondingly, LKL is 546

patched with the interrupt controller driver for each architecture 547

to translate architecture-specific hardware interrupt resources to 548

the interrupt abstraction of the Linux kernel. 549

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 7

Algorithm 2: Divirtualized Hardware Access.
1: procedure DivirtualizedMMIOReadForE1000
2: input: addr is the captured input arguments of readX.
3: output: the return value of readX.
4: get last accessed MMIO Region M
5: if M is valid and addr is in range of M then
6: if QEMUTypeOf(M.parent) = ”e1000” then
7: returne1000_mmio_read(M.parent, addr)
8: else
9: return M.mmioRead(addr)

10: end if
11: end if
12: M ′ ← addressSpaceTranslate(addr)
13: set accessed MMIO Region M ′

14: return M ′.mmioRead(addr)
15: end procedure

Divirtualized Hardware Access: Inspired by the divirtual-550

ized C++ virtual function dispatching, MINORIS applies an op-551

timization named divirtualized hardware access to route the552

MMIO&PIO requests. We illustrate the divirtualizedreadX for553

e1000 KMUT by Algorithm 2. When the e1000 KMUT invokes554

readX, MINORIS captures the input arguments and the physical555

address to access. At first, no memory region is accessed, so MI-556

NORIS translates the physical address into the memory region by557

the address space of QEMU and calls the MMIO handler stored558

in the memory region. The translation result is saved in a global559

cache for KMUT, e.g., a thread-local variable. Then, when the560

KMUT re-accesses the same MMIO region, MINORIS can vali-561

date that the physical address located is in the saved memory re-562

gion and serves the readX request in the fast path. Specifically,563

if readX is called in the E1000 driver, the readX is specialized564

to check the type of region’s parent to be an E1000 device and565

call function e1000_mmio_read statically if possible.566

The divirtualized hardware access can also benefit the dy-567

namic analysis for the KMUT. Since the LKL and the LibHW568

are linked together in the same process, the underlying emulation569

code forreadX is in the same process. When routing thereadX570

in a fast path, the dynamic analysis can reach the underlying571

emulation code within a function call. For instance, symbolic572

execution can benefit from it. We believe that the combination573

of kernel and hardware emulation in the same process brings574

additional optimization opportunities.575

IV. IMPLEMENTATION576

We have implemented a prototype of MINORIS. Specifically,577

SemaLinker is based on Clang libTooling [30] (15,826 LoC).578

The fuzzer is based on mutator from syzkaller and libprotobuf-579

mutator [2], [31] (27,992 LoC). LibOS is based on LKL [32]580

(200 LoC), and LibHW is based on QEMU [27] (701 LoC). For581

simplicity, all the primary components of MINORIS work in a582

single process on the host machine.583

A. MINORIS 584

SemaLinker: SemaLinker implements an analysis crossing 585

different translation units of the kernel module symbols with 586

the help of Clang LibTooling. A translation unit is the root AST, 587

corresponding to an exact source file of the analyzed kernel mod- 588

ule. SemaLinker computes a closure on the reachability among 589

the symbols within a single translation unit. Then, SemaLinker 590

classifies whether a declaration or definition of the symbol is 591

required by completing the source file compilation and saves 592

the information as needed. 593

When the kernel module compilation involves multiple trans- 594

lation units, it is necessary to merge identical symbols and their 595

dependencies in different translation units. Here, SemaLinker 596

implements a string-based digest algorithm to merge the sym- 597

bols. 598

LibOS: We implemented a kernel runtime for KMUTs based 599

on LKL. In particular, we integrate some device drivers into 600

LKL, such as the PCI host controller driver for the PCI bus and 601

the ARM GIC driver for ARM Interrupts. 602

The PCI host controller is implemented based on the generic 603

PCI controllers. It first reads device tree to get the shared MMIO 604

region and hardware IRQ number. It then scans the bus and 605

makes PCI drivers probe the PCI devices correctly. 606

LibHW: LibHW is a library built on QEMU to provide hard- 607

ware APIs for KMUTs. LibHW utilizes QEMU’s virtual device 608

framework while bypassing its CPU and RAM emulation. First, 609

LibHW accepts the command line options and builds virtual 610

devices according to options by the QEMU framework. Then, 611

to leave CPU and RAM emulation unused, we replace the thread 612

function of QEMU CPU threads with a dummy function so that 613

the CPU threads are idle during fuzzing. As for the QEMU 614

IO thread, because we choose to invoke the LibHW directly as 615

function calls and QEMU CPU threads keep idle, the IO thread is 616

also idle during fuzzing since there is no incoming request for it. 617

B. Fuzzer 618

We implemented a user-space kernel module fuzzer based 619

on MINORIS, integrating off-the-shelf fuzzing techniques. The 620

fuzzer employs libFuzzer as the fuzzing engine and syzkaller’s 621

mutator for mutation. We use ASAN and Sanitizer Coverage 622

to instrument both KMUTs and LKL for sanitization and cov- 623

erage collection. To handle LKL’s slab allocator, we patched 624

ASAN to support its custom memory management. Further- 625

more, SymCC [29], a symbolic execution technique, is leveraged 626

by us to assist the fuzzer in reaching a deeper program state, 627

which cannot be easily applied to the OS kernel drivers without 628

our system. Finally, the fuzzer is linked with the KMUT, LKL, 629

and LibHW to run as a user-space program. 630

V. EVALUATION 631

In this section, we comprehensively evaluate both the ef- 632

fectiveness of automatically transforming kernel modules into 633

user-space programs and the performance improvement of our 634

framework compared to the state-of-the-art virtualization-based 635

(KVM) kernel fuzzer, syzkaller. All experiments are conducted 636

IE
EE P

ro
of

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

TABLE I
THE STATISTICS OF TRANSFORMING KERNEL MODULES UNDER TESTING

(KMUTS) BY SEMALINKER. COLUMNS SUMMARIZE STATISTICS ABOUT THE

KMUTS COMPILED UNDER ALLYESCONFIG. THE COLUMN ”COMPILED

KMUTS” SHOWS THE PERCENTAGE OF KMUTS SUCCESSFULLY COMPILED

ACROSS ALL ATTEMPTED KMUTS (THE ”TOTAL” COLUMN), AND THE

PERCENTAGE IN PARENTHESES REPRESENTS THE DIFFERENCE BETWEEN THE

NUMBER IN THIS ROW AND THAT IN CORRESPONDING LKL ROW. †: LKL
DOES NOT COMPILE UNDER ALLYESCONFIG.

on an Ubuntu 22.04 system with an Intel(R) Core(TM) i7-8700637

6-core CPU @ 3.20 GHz and 32 GB RAM. Our evaluation638

addresses the following research questions:639
� RQ1: Can SemaLinker successfully compile kernel mod-640

ules as native programs? (Section V-A)641
� RQ2: Does our system improve the execution speed of642

Kernel Modules Under Testing (KMUTs) over emulator-643

based kernel fuzzing? (Section V-B)644
� RQ3: How does our system’s fuzzing performance com-645

pare to syzkaller? (Section V-C)646

V.-A. Module Transformation and Compilation (RQ1)647

Experiment Setup: To evaluate the scalability of MINORIS648

(RQ1), we assess SemaLinker (Algorithm 1) by compiling649

KMUTs with LKL across kernel versions and architectures.650

The algorithm requires three inputs: the original kernel O,651

the target kernel T , and a symbol set S from O. For O, we652

select mainline x86-64, mainline AArch64, common Android,653

and LKL kernels, with versions 5.1, 5.4, 5.10, 5.15, 6.1, 6.6,654

and 6.12—all recent LTS releases. This covers both x86-64 and655

ARM architectures and includes Android and LKL distributions.656

For T , SemaLinker uses mainline LKL matching O’s major657

version, as discussed in Section III-A. For S, source files are658

grouped into KMUTs using CONFIG variables, then a symbol659

set S is extracted for each KMUT.660

Additionally, we compile kernels using allyesconfig and retain661

only KMUTs that successfully compiled in the original kernel662

as the theoretical upper bound of KMUTS to compile. We663

choose allyesconfig because Linux experts use it for regression664

compilation testing. Table I normalizes these module counts per665

kernel version using the union set. For example, in mainline v5.1,666

of 11,483 identified modules, 8,937 KMUTs targeting x86-64667

(Tx), and 8,684 KMUTs targeting AArch64 (Ta) are compiled668

TABLE II
SUMMARY OF FAILURE REASONS OF MODULE TRANSFORMATION

BY SEMALINKER

under allyesconfig. The union |Tx ∪ Ta| = 9, 594 represents 669

our estimated KMUTs to evaluate SemaLinker for this kernel 670

version. 671

Finally, Algorithm 1 is executed on each KMUT to determine 672

compilation success. 673

Transformation Results: Table I presents the transformation 674

results, demonstrating SemaLinker’s scalability by compiling 675

kernel modules into user-space programs with substantial suc- 676

cess rates. The LKL rows, representing the case of O = T (i.e., 677

trivial transformations), serve as a baseline. For instance, the 678

LKL v5.1 row shows that adjustingCONFIGvariables per LKL’s 679

defconfig enables compilation of 65.968% of 9,594 KMUTs. 680

Across LTS versions (v5.4–v6.12), SemaLinker maintains ro- 681

bust performance, consistently achieving over 74.011% success 682

rates and confirming reliability for intra-distro transformations. 683

The rest rows reveal SemaLinker’s value in enabling testing 684

of x86 and ARM kernel modules with LKL. For example, when 685

transforming x86-64 modules from mainline v5.1, SemaLinker 686

achieves 83.771% compilability, improving 17.803% over base- 687

line. That is because SemaLinker resolves additional symbol 688

dependencies, such as undefined references, using information 689

available only in the original kernel. Similarly, SemaLinker 690

compiles 82.354% AArch64 modules from mainline v5.1. 691

SemaLinker can also handle non-mainline distributions, 692

demonstrated by its 82.253% success rate with Android 693

AArch64 modules from mainline v5.4. This capability is crucial 694

for testing modified or out-of-tree KMUTs, such as those found 695

in Android kernels but absent in the mainline. 696

Failure Analysis: While SemaLinker achieves substantial 697

transformation success, it does not achieve high bound due to 698

the complexity of Linux’s million-line codebase. Two primary 699

failure categories are identified. First, 34.032% of modules from 700

LKL v5.1 fail to compile, due to missing symbol dependencies 701

beyond those included in LKL’s defconfig. Noted that LKL is 702

not compiled under allyesconfig. 703

Second, approximately 20% of x86-64 and AArch64 modules 704

fail due to SemaLinker-specific issues, primarily involving sym- 705

bol resolution and code generation. Using x86-64 v6.1 kernel 706

as a representative case (Table II), the most common failure 707

(59.572%, or 10.747% of all modules) comes from unresolved 708

symbols or undefined references during transformation or com- 709

pilation. Another 22.518% result from malformed C source files 710

generated by transformation, often caused by unhandled corner 711

cases in the complex ordering of declarations, definitions, and 712

macros. Symbol conflicts between kernel and user-space en- 713

vironments contribute 7.743% of failures, while missing source 714

files (3.705%) and miscellaneous issues (6.461%) constitute the 715

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 9

TABLE III
EXECUTION SPEEDUP ACHIEVED WITH LIBHW, WHICH ELIMINATES

KERNEL-EMULATOR CONTEXT SWITCHES. KERNEL DRIVERS PERFORM READ

(R) OR WRITE (W) OPERATIONS ON HARDWARE ADDRESSES (hw_addr) OR C
EXPRESSIONS. RESULTS SHOW THE MEAN AND STANDARD DEVIATION OF

KERNEL-SIDE I/O REQUESTS PER SECOND OVER 1,000 EXECUTIONS.

remainder. These failures highlight opportunities for improving716

symbol analysis and handling of edge cases in future work.717

Answer to RQ1 SemaLinker automates the transformation718

of kernel modules across different versions and architectures,719

resolving symbol dependencies and linking them with LKL to720

produce user-space programs for the host machine.721

V.-B. Execution Performance (RQ2)722

Experiment Setup: To assess the framework’s execution per-723

formance (RQ2), we compare the execution speed of KMUTs724

from the mainline x86-64 6.6 kernel with the same code executed725

in QEMU/KVM. The comparison is conducted at two levels:726

syscall (evaluating the benefit of using LKL) and hardware727

(evaluating the benefit of using LibHW).728

For hardware-level benchmarking, we test E1000 Ethernet729

and NVMe block driver KMUTs using LibHW (QEMU back-730

end) with workloads from the libnvme test suite [33] and731

E1000 self-test programs. Additional tests for virtio-blk, xHCI,732

and FTGMAC100 KMUTs are written using the LTP frame-733

work. For syscall-level benchmarking, we select 20 syscall test734

programs from the LTP project (listed in Table IV).735

To ensure fair comparison, noise from time sampling and com-736

pilers is minimized. Each benchmark program is executed 1,000737

times. Kernel code for both MINORIS and QEMU is compiled738

with clang-12 using consistent kernel configurations to avoid739

differences in compilation flags. Benchmarks are executed with740

CPU resources limited to a single core.741

Results: The execution performance comparison between742

MINORIS and QEMU/KVM is presented in Table III (hardware-743

level) and Table IV (syscall-level). Program behaviors have been744

verified to be consistent across both environments, indicating745

that KMUTs can be run on MINORIS preserving fidelity. From746

tables, MINORIS shows consistent performance improvements747

with low variance, as results were gathered over 1,000 itera-748

tions using precise hardware timers, e.g., RDTSC, to measure749

execution cycles.750

At the hardware level, MINORIS achieves an average speedup751

of ×7.38 (geometric mean) with LibHW. Read and write oper-752

ations to MMIO regions are improved by ×15.15 and ×4.95,753

TABLE IV
EXECUTION SPEEDUP ACHIEVED WITH LKL, WHICH ELIMINATES

USER-KERNEL CONTEXT SWITCHES. BENCHMARK PROGRAMS PERFORM

VARIOUS MEANINGFUL SYSCALLS. RESULTS SHOW THE MEAN AND STANDARD

DEVIATION OF SYSCALL EXECUTION RATES PER SECOND

OVER 1,000 ITERATIONS.

respectively. For instance, writes to NVMe hardware addresses 754

achieve speedups of ×4.68 and ×2.71 at addresses 0 and 4, 755

respectively. Furthermore, the FTGMAC100 driver, originally 756

executed in the QEMU ARM emulator, can be compiled into 757

LKL and executed on an x86-64 host, demonstrating MINORIS’s 758

versatility. Performance gains are also attributed to LibHW 759

optimizations such as Divirtualized Hardware Access, which 760

caches memory mappings and directly invokes corresponding 761

C functions for devices. These improvements confirm that MI- 762

NORIS delivers notable hardware-level acceleration. 763

At the syscall level, MINORIS achieves an average speedup 764

of ×3.31 with LKL. 19 out of 20 syscall benchmarks exhibit 765

improved performance compared to QEMU/KVM. The median 766

speedup, driven by the mmap syscall, is ×2.29, with larger 767

gains observed for syscalls such as ioctl (loop) and ulimit, 768

which achieve speedups of ×11.81 and ×18.91, respectively. 769

Some syscalls, however, show limited or negative performance 770

impacts. For example, pipe performs worse in MINORIS due 771

to cache-issuing memory access to the set_freepointer 772

function when allocating SLUB objects in LKL. This can be im- 773

proved from the LKL side in the future. Additionally, memory- 774

intensive syscalls like add_key, read, and vmsplice show 775

marginal speedups as their performance is limited by heavy 776

memory operations. In such cases, KVM mitigates the overhead 777

of memory simulation through shadow page mapping, reducing 778

the relative advantage of MINORIS. 779

Answer to RQ2 Our system can achieve an average speed 780

up ×3.31 and ×7.38 with LKL and LibHW, eliminating the 781

kernel-emulator context switch and user-kernel context switches. 782

C. Fuzzing Performance 783

Experiment Setup: To demonstrate the fuzzing performance of 784

MINORIS (RQ3), we compare it against syzkaller using 5 fuzzing 785

targets: E1000, Netlink, VTY, NVMe, and Cadence GEM. The 786

KMUTs are instrumented. The kernel image used by syzkaller 787

IE
EE P

ro
of

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

Fig. 4. Branch coverage and fuzzing throughput for five kernel modules under test (KMUTs). Subfigure (a) presents the branch coverage of E1000, and subfigure
(b) shows its fuzzing throughput. The remaining subfigures (c)–(k) display the branch coverage and fuzzing throughput for the other four KMUTs: Netlink, VTY,
NVMe, and Cadence GEM, respectively. The shaded areas around the lines represent the standard deviation across ten repeated evaluations per target.

is instrumented with KASAN and Kcov. The KMUTs and LKL788

are instrumented by ASAN and Sanitize Coverage. Then, we789

deploy the fuzzer applications for the KMUTs in combination790

with other user space testing techniques, SymCC. All the tests791

are executed continuously for 24 hours without seed corpora.792

Both systems are given the same hardware resources, 2 CPU793

cores and 4 GB memory. Each target is run 10 times repeatedly.794

In addition to considering KMUT execution, we also elimi-795

nate the differences in the coverage collecting methods for the796

fuzzing benchmark. Since syzkaller utilizes Kcov and the lib-797

Fuzzer used by MINORIS utilizes Sanitize Coverage, we collect798

the corpus during fuzzing periodically and run the corpus on799

Sanitize Coverage instrumented KMUTs after fuzzing to get800

final basic block coverage on the code.801

Throughput and Coverage: Fig. 4 shows that MINORIS out-802

performs syzkaller in terms of throughput and code coverage.803

The average fuzzing branch coverage of MINORIS outperforms804

syzkaller with QEMU/KVM with the increase of 89.51% , as805

shown in the first row of Figure 4. The reason is the improvement806

in execution speed (as shown in RQ2). The current evaluation807

uses the same fuzzing algorithm as syzkaller. Our system may808

use more advanced user-space fuzzing techniques (one benefit809

of MINORIS is integrating user-space fuzzing techniques easily)810

to further the performance. During the experiment, syzkaller is811

stuck on the E1000 device driver. The reason is that the network812

functionality of the testing kernel is broken, but the syzkaller813

executor uses it to communicate with the fuzzer out of the814

emulator. We do not fix it and treat the problem as a performance815

issue of syzkaller, since the fix to avoid some syscall inputs may816

make fuzzing never touch the related coverage.817

The average fuzzing throughput of MINORIS beats syzkaller818

persuasively with an increase of×102.58, as shown in the second819

row of Figure 4. The execution per second is KMUT-sensitive.820

The throughput of Netlink fuzzing has an increase of×12.37. In821

particular, syzkaller performs 54.51 executions per second, and822

MINORIS performs 674.26 executions per second.823

Stability: The fuzzing adopted by MINORIS did not crash by824

moving KMUT from kernel to user space, proving the stability825

of KMUTs. In particular, the MINORIS is even more stable826

than syzkaller. This is based on the observation that syzkaller’s 827

executor did not respond to the fuzzer during the experiment on 828

the E1000 target. We learn that the syscall execution may corrupt 829

the network channel to the fuzzer, which means the fuzzer itself 830

can be affected by the fuzzing target. MINORIS fuzzer itself does 831

not rely on KMUT or LibOS, which helps MINORIS avoid the 832

limitation. 833

Detected Bugs: MINORIS found 24 bugs during the continuous 834

fuzzing in months, and five of them are new bugs, as shown in 835

Table V. The bugs can be reproduced in the original kernel, and 836

the community has confirmed new bugs. 837

The bug located indelete_char is found to cause use after 838

free, stack buffer overflow, and double free. This proves that our 839

system can leverage user-space memory sanitizer ASAN to find 840

kernel memory bugs. Another interesting bug is the presence 841

of a UAF in route4_change, where routing rules that have 842

been removed remain in the global hash table. Triggering the bug 843

requires creating a large number of system resources through 844

syscalls. Our system can detect such a bug with the assistance 845

of user-space symbolic execution [29]. 846

Answer to RQ3 Our system performs better than syzkaller in 847

fuzzing throughput (×102.58), explores 89.51% more branches, 848

and detects 24 bugs. Among the found bugs, 6 are new bugs. 849

VI. DISCUSSION 850

Binary-level SemaLinker: We have implemented SemaLinker 851

at the source-code level, hence it cannot analyze the closed- 852

source loadable kernel modules. The binary-level SemaLinker 853

must overcome challenges about how to identify and patch 854

instructions that access missing hardware or kernel objects 855

inconsistent with LKL. Possible solutions include pattern-based 856

identification of target instructions. 857

Limitation of LKL: LKL does not have MMU and SMP. It 858

means that the related code cannot be tested currently, such as 859

components directly related to virtual address translation and 860

concurrent execution of the kernel. To solve this limitation, LKL 861

could leverage LibHW to support MMU and reimplement thread 862

scheduling to support SMP in future. 863

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 11

TABLE V
BUGS DETECTED BY MINORIS

Extending Hardware Runtime: MINORIS can support more864

backends for LibHW, such as real hardware [25] and symbolic865

hardware modules [14], [26]. With these backends, more code866

related to specific hardware can be fuzzed by MINORIS. These867

efforts are orthogonal to MINORIS and can be ported to our868

framework.869

VII. RELATED WORK870

Fuzzing Systems and Frameworks:Fuzzing is a general test-871

ing technique and has identified thousands of zero-day bugs872

in real-world programs, leveraging fuzzer engines [34], [35],873

[36] and fuzzing platforms with continuous integration [37],874

[38], [39]. Zhu et al. [40] conducted an extensive study of875

fuzzing techniques, providing a roadmap for research in the876

field. Fuzzing combines with many analysis techniques to877

improve performance and effectiveness. Instrumentation tech-878

niques guide fuzzing, which leverages static analysis results and879

dynamic behavior detection to collect execution metrics [41],880

[42], [43] and create oracles [28], [44], [45], [46]. Moreover,881

fuzzers are often combined with symbolic execution to create882

general-purpose hybrid fuzzing systems [29], [47], [48], [49],883

[50].884

High Performance OS Kernel Fuzzing: Several approaches885

have been proposed to improve the performance of OS kernel886

fuzzing. Agamotto utilizes virtual machine checkpoints to elimi-887

nate duplicated executions, but still results in expensive memory888

consumption with the inevitable overhead of checkpoints [23].889

EASIER [24] speed up kernel fuzzing by running a virtual ma-890

chine snapshot containing the testing module in the dUnicorn, a891

lightweight CPU emulator. As a result, it outperforms traditional892

kernel fuzzing using the QEMU emulator. However, it does not893

solve the hardware dependency of testing modules. Additionally,894

setting up snapshot introduces overhead.895

Solving Hardware Dependency: The kernel modules may be896

directly or indirectly coupled with some hardware, causing hard-897

ware dependency. And it is an open research question to solve the898

hardware dependency of testing modules. Feng et al. [51] pro- 899

vide a systematic analysis of the challenges and solutions posed 900

by hardware dependencies, particularly in firmware testing. 901

Some systems redirect hardware requests to real hardware. 902

Charm creates stub devices in QEMU to forward MMIO and in- 903

terrupt requests between the device driver and real hardware [6]. 904

However, manual efforts are required to transplant device drivers 905

to the hosted kernel in the emulator. It does not support DMA 906

operations as well. Similarly, PeriScope proxies IO requests by 907

page faults [25]. This requires additional overhead to switch the 908

interrupt states. 909

Other approaches replace certain kernel layers with emulated 910

implementations. Some works adopt automated solutions such 911

as symbolic execution to simulate virtual devices [14], [26], 912

[52], [53]. The hardware models learned by symbolic execution 913

can improve the diversity of virtual devices. However, they are 914

not equivalent to the real implementation and produce false 915

positives. 916

VIII. CONCLUSION 917

We propose a new kernel fuzzing framework that can fuzz 918

kernel modules as normal user-space programs to gain nearly 919

native execution performance. We solved a couple of challenges 920

and implemented a prototype named MINORIS. The evaluation 921

shows that compared with the state-of-the-art system, MINORIS 922

can achieve an average execution speedup from×3.31 to×7.38, 923

and improves the fuzzing throughput (×102.58). It can explore 924

more code coverage and detect new bugs. 925

REFERENCES 926

[1] A. Danial, “CLOC: Count lines of code,” 2009. [Online]. Available: http: 927
//cloc.sourceforge.net/ 928

[2] Google, “SYZKaller: SYZKaller is an unsupervised coverage-guided 929
kernel fuzzer,” 2015. [Online]. Available: https://github.com/google/ 930
syzkaller/ 931

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
https://github.com/google/syzkaller/
https://github.com/google/syzkaller/

IE
EE P

ro
of

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 0, NO. 0, 2025

[3] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,932
“{kAFL}:{Hardware-Assisted}feedback fuzzing for {OS} kernels,” in933
Proc. 26th USENIX Secur. Symp., 2017, pp. 167–182.934

[4] D. Jones, “Triforce Linux syscall fuzzer,” 2017. [Online]. Available: https:935
//github.com/nccgroup/TriforceAFL/936

[5] J. Corina et al., “DIFUZE: Interface aware fuzzing for kernel drivers,”937
in Proc. 2017 ACM SIGSAC Conf. Comput. Commun. Secur., 2017,938
pp. 2123–2138.939

[6] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani,940
and Z. Qian, “Charm: Facilitating dynamic analysis of device drivers941
of mobile systems,” in Proc. 27th USENIX Secur. Symp., 2018,942
pp. 291–307.943

[7] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing file944
systems via two-dimensional input space exploration,” in Proc. 2019 IEEE945
Symp. Secur. Privacy, 2019, pp. 818–834.946

[8] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding semantic947
bugs in file systems with an extensible fuzzing framework,” in Proc. 27th948
ACM Symp. Operating Syst. Princ., 2019, pp. 147–161.949

[9] H. Peng and M. Payer, “USBFuzz: A framework for fuzzing {USB}950
drivers by device emulation,” in Proc. 29th {USENIX} Secur. Symp., 2020,951
pp. 2559–2575.952

[10] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu, “{TCP-Fuzz}:953
Detecting memory and semantic bugs in {TCP} stacks with fuzzing,” in954
Proc. 2021 USENIX Annu. Tech. Conf., 2021, pp. 489–502.955

[11] E. J. Crowley, G. Gray, and A. J. Storkey, “Moonshine: Distilling with956
cheap convolutions,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,957
2018, pp. 2893–2903.958

[12] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “HFL:959
Hybrid fuzzing on the Linux kernel,” in Proc. Netw. Distrib. Syst. Secur.960
Symp., 2020.961

[13] S. Y. Kim et al., “{CAB-Fuzz}: Practical concolic testing techniques for962
{COTS} operating systems,” in Proc. 2017 USENIX Annu. Tech. Conf.,963
2017, pp. 689–701.964

[14] W. Zhao, K. Lu, Q. Wu, and Y. Qi, “Semantic-informed driver fuzzing965
without both the hardware devices and the emulators,” in Proc. Netw.966
Distrib. Syst. Secur. Symp.2022.967

[15] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “RAZZER:968
Finding kernel race bugs through fuzzing,” in Proc. 2019 IEEE Symp.969
Secur. Privacy, 2019, pp. 754–768.970

[16] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “KRACE: Data race fuzzing971
for kernel file systems,” in Proc. 2020 IEEE Symp. Secur. Privacy, 2020,972
pp. 1643–1660.973

[17] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes,974
“Unleashing use-before-initialization vulnerabilities in the Linux kernel975
using targeted stack spraying,” in Proc. Netw. Distrib. Syst. Secur. Symp.,976
2017.977

[18] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “{FUZE}: Towards978
facilitating exploit generation for kernel {Use-After-Free} vulnerabili-979
ties,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 781–797.980

[19] Y. Chen and X. Xing, “SLAKE: Facilitating slab manipulation for exploit-981
ing vulnerabilities in the Linux kernel,” in Proc. 2019 ACM SIGSAC Conf.982
Comput. Commun. Secur., 2019, pp. 1707–1722.983

[20] W. Chen, X. Zou, G. Li, and Z. Qian, “{KOOBE}: Towards facilitating984
exploit generation of kernel {Out-of-Bounds} write vulnerabilities,” in985
Proc. 29th USENIX Secur. Symp., 2020, pp. 1093–1110.986

[21] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SYZScope: Revealing987
high-risk security impacts of fuzzer-exposed bugs in Linux kernel,” in988
Proc. 31st USENIX Secur. Symp., 2022, pp. 3201–3217.989

[22] D. Jones, “Trinity: Linux system call fuzzer,” 2011. [Online]. Available:990
https://github.com/kernelslacker/trinity/991

[23] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz,992
“Agamotto: Accelerating kernel driver fuzzing with lightweight vir-993
tual machine checkpoints,” in Proc. 29th USENIX Secur. Symp., 2020,994
pp. 2541–2557.995

[24] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic analysis framework996
for android device drivers,” in Proc. 2020 IEEE Symp. Secur. Privacy,997
2020, pp. 1088–1105.998

[25] D. Song et al., “Periscope: An effective probing and fuzzing framework999
for the hardware-os boundary,” in Proc. Netw. Distrib. Syst. Secur. Symp.,1000
2019.1001

[26] Z. Ma et al., “PrintFuzz: Fuzzing Linux drivers via automated virtual1002
device simulation,” in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Testing1003
Anal., 2022, pp. 404–416.1004

[27] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc. 1005
USENIX Annu. Tech. Conf., FREENIX Track, 2005, vol. 41, pp. 10–55. 1006

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, 1007
“{AddressSanitizer}: A fast address sanity checker,” in Proc. 2012 1008
USENIX Annu. Tech. Conf., 2012, pp. 309–318. 1009

[29] S. Poeplau and A. Francillon, “Symbolic execution with {SymCC}: 1010
Don’t interpret, compile!,” in Proc. 29th USENIX Secur. Symp., 2020, 1011
pp. 181–198. 1012

[30] L. Developers, “LibTooling - LibTooling is a library to support writing 1013
standalone tools based on clang,” 2024. [Online]. Available: https://clang. 1014
llvm.org/docs/LibTooling.html 1015

[31] Google, “LibProtobuf-Mutator: Library for structured fuzzing with 1016
protobuffers,” 2022. [Online]. Available: https://github.com/google/ 1017
libprotobuf-mutator 1018

[32] O. Purdila, L. A. Grijincu, and N. Tapus, “LKL: The Linux kernel library,” 1019
in Proc. 9th RoEduNet IEEE Int. Conf., 2010, pp. 328–333. 1020

[33] M. Belanger, “LibNVME: C library for NVM express on Linux,” 2024. 1021
[Online]. Available: https://github.com/linux-nvme/libnvme/ 1022

[34] K. Serebryany, “LibFuzzer - Library for coverage-guided fuzz testing,” 1023
2024. [Online]. Available: https://llvm.org/docs/LibFuzzer.html 1024

[35] M. Zalewski, “American fuzzy lop,” 2020. [Online]. Available: https:// 1025
lcamtuf.coredump.cx/afl/ 1026

[36] R. Swiecki, “HonggFuzz,” 2022. [Online]. Available: https://honggfuzz. 1027
dev/ 1028

[37] K. Serebryany, OSS-Fuzz - Google’s Continuous Fuzzing Service for 1029
Open Source Software. Vancouver, BC, Canada: USENIX Assoc., 1030
Aug. 2017. 1031

[38] A. Arya, O. Chang, M. Moroz, M. Barbella, and J. Metzman, “Open 1032
sourcing clusterfuzz,” Google, Inc., Feb., 2019, Accessed: Oct. 5, 2025. 1033
[Online]. Available: https://opensource.googleblog.com/2019/02/open- 1034
sourcing-clusterfuzz.html 1035

[39] Microsoft, “OneFuzz: A self-hosted fuzzing-as-a-service platform.” 2023. 1036
[Online]. Available: https://github.com/microsoft/onefuzz/ 1037

[40] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A survey for 1038
roadmap,” ACM Comput. Surv., vol. 54, no. 11s, pp. 1–36, 2022. 1039

[41] L. Developers, “Clang 19 documentation - Sanitizercoverage,” 2024. 1040
[Online]. Available: https://clang.llvm.org/docs/SanitizerCoverage.html 1041

[42] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “{ParmeSan}: Sanitizer- 1042
guided greybox fuzzing,” in Proc. 29th USENIX Secur. Symp., 2020, 1043
pp. 2289–2306. 1044

[43] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “{APISan}: Sani- 1045
tizing {API} usages through semantic {Cross-Checking},” in Proc. 25th 1046
USENIX Secur. Symp., 2016, pp. 363–378. 1047

[44] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race de- 1048
tection in practice,” in Proc. Workshop Binary Instrum. Appl., 2009, 1049
pp. 62–71. 1050

[45] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Context-sensitive and 1051
directional concurrency fuzzing for data-race detection,” in Proc. Netw. 1052
Distrib. Syst. Secur. Symp., 2022. 1053

[46] L. Developers, “UBSAN: Undefinedbehaviorsanitizer is a fast undefined 1054
behavior detector,” 2024. [Online]. Available: https://clang.llvm.org/docs/ 1055
UndefinedBehaviorSanitizer.html 1056

[47] C. Cadar et al., “KLEE: Unassisted and automatic generation of high- 1057
coverage tests for complex systems programs,” in Proc. 8th USENIX Symp. 1058
Operating Syst. Des. Implementation, 2008, pp. 209–224. 1059

[48] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for 1060
in-vivo multi-path analysis of software systems,” in Proc. 16th Int. 1061
Conf. Architectural Support Program. Lang. Operating Syst., 2011, 1062
pp. 265–278. 1063

[49] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical concolic 1064
execution engine tailored for hybrid fuzzing,” in Proc. 27th USENIX Secur. 1065
Symp., 2018, pp. 745–761. 1066

[50] J. Chen et al., “{SYMSAN}: Time and space efficient concolic execution 1067
via dynamic data-flow analysis,” in Proc. 31st USENIX Secur. Symp., 2022, 1068
pp. 2531–2548. 1069

[51] X. Feng, X. Zhu, Q.-L. Han, W. Zhou, S. Wen, and Y. Xiang, “Detecting 1070
vulnerability on IoT device firmware: A survey,” IEEE/CAA J. Automatica 1071
Sinica, vol. 10, no. 1, pp. 25–41, Jan., 2023. 1072

[52] M. J. Renzelmann, A. Kadav, and M. M. Swift, “{SymDrive}: Testing 1073
drivers without devices,” in Proc. 10th USENIX Symp. Operating Syst. 1074
Des. Implementation, 2012, pp. 279–292. 1075

[53] K. Cong, F. Xie, and L. Lei, “Symbolic execution of virtual devices,” in 1076
Proc. 13th Int. Conf. Qual. Softw., 2013, pp. 1–10. 1077

https://github.com/nccgroup/TriforceAFL/
https://github.com/nccgroup/TriforceAFL/
https://github.com/kernelslacker/trinity/
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/linux-nvme/libnvme/
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://honggfuzz.dev/
https://honggfuzz.dev/
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://github.com/microsoft/onefuzz/
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

IE
EE P

ro
of

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 13

Yangxi Xiang is currently working toward the PhD1078
degree with the College of Computer Science and1079
Technology, Zhejiang University, and interning with a1080
leading blockchain company, BlockSec. His research1081
interests mainly focus on system security, smart con-1082
tract security, and DeFi security.1083

1084

Feng Wang received the bachelor’s degree in network1085
engineering from the Nanjing University of Post and1086
Telecommunication, Nanjing, China, in 2016, and1087
the master’s degree from the University of Chinese1088
Academy of Sciences from ShanghaiTech University,1089
in 2019, under the supervision of Prof. Fu Song. He1090
is now working with Skyward Lab of Ant Group.1091

1092

Yuan Chen received the bachelor’s degree in com-1093
puter science and technology from Zhejiang Univer-1094
sity, in 2019, and the PhD degree in cyberspace secu-1095
rity from Zhejiang University, in 2024. His research1096
interests focus on confidential computing, system1097
security, and blockchain security.1098

1099

Qiang Liu (Member, IEEE) received the PhD degree1100
from Zhejiang University (ZJU), in 2023, under the1101
guidance of Prof. Yajin Zhou. He is a postdoc with1102
EPFL, working with Prof. Mathias Payer with the1103
HexHive Laboratory. His research in cybersecurity1104
focuses on 1) developing prior-to/after-release secu-1105
rity enforcement of software based on deep under-1106
standing, and 2) building the chain of trust examined1107
by full-chain exploits. His work has been recognized1108
with all the top security conferences: IEEE S&P,1109
Usenix Security, ACM CCS, and ISOC NDSS. He1110

received the Best Paper Awards with USENIX Security’24 and ACM RAID’24.1111
He is also serving on the program committee for IEEE/ACM ASE’25 and1112
USENIX Security’25, and is a reviewer for ACM Computing Surveys and ACM1113
Transactions on Software Engineering and Methodology.1114

1115

Haoyu Wang received the PhD degree in computer1116
science from Peking University, in 2016. He is a1117
professor with the School of Cyber Science and Engi-1118
neering, Huazhong University of Science and Tech-1119
nology. His research covers a wide range of topics in1120
software analysis, privacy and security, eCrime, inter-1121
net/system measurement, and AI security. More infor-1122
mation is available at: https://howiepku.github.io/1123

1124

Jiashui Wang is the head of Ant Security Skyward 1125
Lab and the main founder of Ant Security Light-Year 1126
Lab. 1127

1128

Lei Wu received the PhD degree from North Carolina 1129
State University, in 2015. He is an associate pro- 1130
fessor with Zhejiang University and the co-founder 1131
of BlockSec, and primarily focuses his research on 1132
system security and blockchain security. 1133

1134

Yaoguang Chen is a senior security expert with Ant 1135
Group, specializing in cybersecurity defense, mobile 1136
security, and AI security. He has extensive practical 1137
experience in cybersecurity defense, having discov- 1138
ered hundreds of security vulnerabilities and obtained 1139
more than 50 CVE numbers. He has also collaborated 1140
with universities to co-author several highquality aca- 1141
demic papers. 1142

1143

Yajin Zhou is a professor with Zhejiang University. 1144
His research focuses on system security, blockchain 1145
security, and cybercrime. He has published more than 1146
50 papers in top-tier venues with more than 10,000 1147
citations and was recognized by AMiner as one of the 1148
Most Influential Scholars. He served on the program 1149
committees of major security conferences such as 1150
ACM CCS, IEEE S&P, and USENIX Security. 1151

1152

https://howiepku.github.io/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

