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Abstract—Vulnerabilities in the Linux kernel can be exploited
to perform privilege escalation and take over the whole system.
Fuzzing has been leveraged to detect Linux kernel vulnerabilities
during the last decade. However, existing kernel fuzzing techniques
highly use QEMU/KVM as the underlying infrastructure, thus
suffering from unnecessary costs due to user-kernel context switch
and kernel-emulator context switch. This degrades the fuzzing
performance. In this paper, we propose a kernel module fuzzing
framework named MINORIS. It moves the kernel module under
testing (KMUT) out of both real kernel and emulator, thus elimi-
nating unnecessary context switches. However, implementing such
a system requires solving the dependency challenges. We solve
these challenges by automatically linking kernel module with LKL,
and performing initialization functions on-demand to prepare the
required status. Besides, a hardware-emulation library is pro-
posed to provide underlying hardware support. Our system not
only improves the fuzzing speed but also can easily integrate ma-
ture fuzzing techniques, such as user-space memory sanitizer. We
evaluate MINORIS on five different KMUTs. Compared with the
state-of-the-art solution, MINORIS achieves an average execution
speedup from x3.31 to x7.38. It improves the fuzzing throughput
(x102.58), explores more code coverage (89.51% more branches),
and detects 6 new bugs.

Index Terms—Operating systems, security, fuzzing.

1. INTRODUCTION

INUX kernel, as one of the most popular OS kernels, its
L code size! has grown from 6.2 million lines of source code
in v2.6.12 (2005) to 35.7 million lines of source code in v6.12
(2024). With the kernel’s increased code size and complexity,
the number of CVEs in the Linux kernel has grown from 264 in
2005 to 3,109 in 2022. By exploiting these vulnerabilities, an
attacker can escalate privileges to perform malicious tasks, e.g.,
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! The statistic about the code size of the kernel is reported by CLOC tool [1].
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Fig. 1. Typical kernel fuzzers [2], [3], [4] and our system. Our system moves
the kernel modules into user space, removing the user-kernel and kernel-
emulator context switches.

leaking other users’ privacy and/or taking over the whole com-
puting infrastructure. The increased number of vulnerabilities
and serious consequences urge the need for an automatic Linux
kernel bug detection system.

Fuzzing, an effective testing technique, has been adapted to
discover kernel vulnerabilities. Some kernel fuzzing systems
focus on specific kernel components like file systems, TCP
stacks, and USB driver stacks [5], [6], [7], [8], [9], [10]. Some
of them are generally purposed for the whole kernel [11],
[12]. Furthermore, sophisticated techniques, such as symbolic
execution [12], [13], [14], vulnerability pattern summary [15],
[16] and exploitation assessment [17], [18], [19], [20], [21] are
applied to find more difficult-to-discover vulnerabilities.

Specifically, Trinity [22], started in 2006, was widely used for
testing syscalls with a random but type-aware fuzzing fashion.
The testing syscalls are executed in a real kernel. Therefore, it
achieves a native performance but might corrupt the host system.
With the development of hardware virtualization (e.g., Intel
VT-x), software emulators (e.g., QEMU) can improve perfor-
mance with hardware virtualization acceleration. Accordingly,
kernel fuzzing frameworks that combine with emulators (e.g.,
QEMU/KVM) have been proposed [2], [3], [4]. Syzkaller, a
representative state-of-the-art emulator-based kernel fuzzer, has
hunted thousands of kernel bugs. Though with hardware virtu-
alization, the emulator-based kernel fuzzing systems still have
high-performance overhead. Recently, techniques for improving
the performance overhead have been proposed. Some of them
reduce the emulation overhead [9], [23], [24], but introduce
non-negligible manual efforts and still cannot achieve native
performance. Some of them try to complete the hardware de-
pendency [6], [14], [25], [26], but may introduce extra overhead
or high false positives on emulation.
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Motivation: Even though hardware virtualization can be lever-
aged for accelerating OS kernel fuzzing, emulator-based kernel
fuzzing still suffers from unavoidable performance overhead on
user-kernel context switch and kernel-emulator context switch
(see the left of Fig. 1). For the user-kernel context switch, a cross-
ring system call will take up additional CPU time for saving and
restoring contexts. For the kernel-emulator context switch, the
emulator introduces overhead when forwarding instructions and
I/0O requests. The performance overhead is non-negligible. This
can be seen from the fact that the community is trying to avoid
VM-Exitevents in QEMU/KVM raised by the kernel [27]. These
two types of overhead become much more significant in kernel
fuzzing scenarios since fuzzing involves many system calls and
frequent hardware interactions. As a result, the effectiveness of
fuzzing is hindered.

Compared to fuzzing kernel modules in emulators, intuitively,
itis more beneficial to fuzz a kernel module as a native user-space
program on the host computation platform. By doing this, it
removes the overhead introduced by user-kernel context switch
and kernel-emulator context switch, which is naturally unneces-
sary in kernel fuzzing.

Our Approach: In this work, we propose a fuzzing framework
named MINORIS to fuzz kernel modules (extracted from the
AArch64 and the x86-64 Linux kernel) as user-space programs
on the host computation platform (x86-64 architecture). Specif-
ically, we choose to get the kernel module under testing (KMUT
in this paper) running with the fuzzer as a standalone user-space
process (as shown in the right part of Fig. 1). Additionally, a
user-space library OS (i.e., LKL in our design) and a hard-
ware emulation library (i.e., LibHW) are integrated to provide
the necessary OS kernel and underlying hardware environment
support, respectively. By doing so, we could implement a high-
performance kernel fuzzing framework without kernel-emulator
context switch nor user-kernel context switch overhead.

MINORIS brings two benefits. First, it accelerates the ker-
nel fuzzing at native speed without additional requirements.
The typical emulator-based kernel fuzzers launch the testing
kernel inside QEMU with the KVM acceleration, which de-
mands a homogeneous CPU architecture between the testing
and host kernel. In contrast, MINORIS removes such limitations
as MINORIS compiles the KMUT to run as a user program
on the host platform, regardless of the original architecture
hosting the kernel module. Second, fuzzing kernel module as
a user-space program enables the easy integration of the off-
the-shelf user-space fuzzing techniques. With the popularity
of fuzzing, many techniques have been proposed to improve
fuzzing effectiveness, such as using symbolic execution or static
program analysis to assist the fuzzer in exploring deeper pro-
gram states. Most of these techniques target user-space pro-
grams, and porting them to kernel-fuzzing systems would re-
quire considerable manual effort. With MINORIS, the user-space
fuzzing techniques can be easily adapted for fuzzing the kernel
modules.

Challenges: Despite the benefits, building and fuzzing a ker-
nel module as a user-space program is not as simple as it looks.
Technique challenges are faced because the kernel module is not
self-contained and has external dependencies. We characterize
these challenges into the following three categories.

Challenge 1. Symbol Dependency at Compile Time: Due to
the inconsistency between the linked user-space kernel library
(LKL) and the original kernel source code that the kernel module
depends on, compiling and linking a kernel module into a user-
space program may bring symbol dependency issues, such as
undefined references, multiple definitions, or inconsistent decla-
rations. The symbols include macros, data structures, variables,
functions, etc.

Challenge Il and I11. State Dependency and Hardware Depen-
dency at Runtime: Although LKL is provided as the user-space
kernel library, the corresponding kernel runtime state must also
be set up properly before fuzzing, especially for the dynamically
probed devices. This can ensure that the KMUT is accessible
from system call interfaces issued by the fuzzer. Moreover,
during fuzzing, the KMUT needs to interact with the underlying
hardware to function properly. A lack of hardware interaction
would greatly hinder fuzzing execution. We conclude these two
runtime issues as state dependency and hardware dependency,
respectively.

Our Solution: We solve the above dependencies to fuzz ker-
nel modules as user-space programs. Specifically, we propose
SemalLinker to solve symbol dependency at compile time auto-
matically. SemaLinker transforms the source code of the kernel
module by resolving symbol dependency issues and linking with
LKL to generate an executable. Next, to solve state dependency,
MINORIS retrieves the required initialization functions of the
KMUT automatically and explicitly makes LKL invoke them so
that the KMUT gets initialized properly. Moreover, the neces-
sary system calls are also identified and issued before fuzzing
to prepare the user-space states. Lastly, a hardware-emulation
library (i.e., LibHW) is coupled to provide underlying hardware
support. The interaction between the KMUT and the underlying
(emulated) hardware in LibHW is bridged by MINORIS auto-
matically. LibHW is implemented based on QEMU to utilize its
rich virtual device assets and mature framework for adding new
devices. With the above dependencies solved, we can integrate
various user-space fuzzing techniques and fuzz the KMUT with
high throughput.

We comprehensively evaluated MINORIS on various targets.
We take the x86-64, AArch64, and Android kernels as targets.
First, our evaluation shows that SemaLinker can automatically
fix the symbol dependency of kernel modules and successfully
link with LKL to generate user-space programs. Second, MI-
NORIS can achieve an average execution speedup from x3.31 to
x7.38 by removing the user-kernel context switch and kernel-
emulator context switch. Third, we compared MINORIS with the
state-of-the-art kernel fuzzer syzkaller [2] for fuzzing through-
put, code coverage, and bug finding. MINORIS greatly improves
the fuzzing throughput (x102.58), has more code coverage
(89.51% more branches), and detect 6 new bugs.

Contributions: This work makes the following main contri-
butions.

® We summarize two performance issues for emulator-based

kernel fuzzing and propose a new fuzzing framework
MINORIS to solve these issues. It tests kernel modules as
user-space programs on the host machine to improve the
performance and enables the easy integration of user-space
fuzzing techniques.

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184



185
186
187
188
189
190
191
192
193
194
195
196

197

198

199
200
201
202
203
204
205
206
207
208
209
210
211

212

213
214
215
216
217
218
219
220
221
222
223
224

225

226
227
228
229
230
231
232
233
234
235

XIANG et al.: MINORIS: PRACTICAL OUT-OF-EMULATOR KERNEL MODULE FUZZING 3

® Welocate three challenges when implementing the system,
including symbol dependency during compilation, state
dependency, and hardware dependency at runtime. We also
propose corresponding solutions for these challenges.

* We implemented a prototype and evaluated the scalability
of transforming the kernel module into a user-space pro-
gram, the execution speedup, and the effectiveness. Our
evaluation shows that MINORIS can gain x3.31 to x7.38
execution speedup compared with the QEMU/KVM-based
kernel fuzzing systems and can greatly improve the fuzzing
throughput, achieve high code coverage, and detect more
bugs.

II. BACKGROUND
A. Kernel Module

Kernel modules enhance OS functionality by adding features
like device drivers. They can be either statically linked into
the kernel image (configured with y) or dynamically loaded at
runtime (configured with m).

A loadable kernel module can be loaded using the mod-
probe command in two stages. First, undefined symbols are
resolved via the kernel’s symbol table (kallsyms). Second,
the module’s memory is initialized, and its initialization function
is invoked via the module_init entry point. Once loaded,
the module runs in the kernel’s address space with full system
privileges. In contrast, statically linked modules are part of the
kernel image and are initialized during system boot using the
same initialization functions.

B. Kernel Fuzzing

Fuzzing has become a key technique for uncovering kernel
vulnerabilities. Compared to user-space fuzzing, kernel fuzzing
poses distinct challenges. First, kernels need to interact with di-
verse hardware devices. Emulator-based approaches attempt to
handle hardware dependencies through custom device emulation
but suffer from context-switching overhead and fail to provide
the rich hardware dependencies needed for effective testing. Sec-
ond, generating valid test cases requires synthesizing complex
structured inputs, like syscalls, whose specifications are buried
in kernel code. Third, the kernel’s low-level execution environ-
ment complicates state monitoring and result interpretation, and
scalability issues grow during extended fuzzing campaigns.

C. Context Switches During Kernel Fuzzing

Kernel fuzzing efficiency is affected by two main kinds of
context switch overhead.

User-Kernel Context Switches: Real syscalls require the
cross-ring transitions, switching between user mode and ker-
nel mode, except for those optimized calls executed mostly
in user space via mechanisms, like clock_gettime via
vDSO. These transitions, involving saving and restoring CPU
and memory states, typically take hundreds of nanoseconds to
microseconds per call, depending on hardware. While vital for
security and resource management in regular programs, this

overhead accumulates noticeably during kernel fuzzing, where
real syscalls are frequent.

Kernel-Emulator Context Switches: Hardware operations or
privileged instructions cause VM-exit events, triggering context
switches to the hypervisor (e.g., QEMU/KVM) for instruction
emulation or I/O handling. This adds notable latency, as seen
in ongoing efforts to reduce such exits [27]. Fuzzing workloads
with frequent hardware interactions are particularly affected by
this overhead.

D. Lkl

Our framework relies on LKL to solve symbol dependency
for KMUTs. LKL, a LibOS, re-implements a new architecture
interface that adapts to the host environment for Linux and
therefore makes the OS kernel a user-space library. By linking
it, an application can send syscalls to the embedded kernel and
gain nearly complete kernel functionality. However, LKL is
designed to run a user application and cannot provide hardware
dependency for KMUTs.

III. SYSTEM DESIGN

The goal of MINORIS is to provide a framework to fuzz
kernel modules (extracted from the AArch64 and the x86-64
Linux kernel) as user-space programs on the host computation
environment, i.e., the x86-64 desktop PC. By doing so, the kernel
module fuzzing can achieve high throughput while at the same
time can directly integrate the off-the-shelf user-space fuzzing
techniques, e.g., ASAN and SYMCC [28], [29]. Figure 2 shows
the overall flow of how MINORIS works. Specifically, for the
kernel module to be fuzzed, our system extracts it from the kernel
source tree and compiles it as a separate compilation module,
which involves the automatic process of recursively extracting
the dependent header files from the kernel source code (@). We
then link it with the LKL and LibHW (a hardware emulation
library provided by our system, detailed in Section III-C) to
generate an executable (@). After that, it will be loaded and
fuzzed as a normal user program. During this process, the
KMUT interacts with LKL for needed kernel functions (©)
and libHW for the underlying hardware environment (@). Noted
that MINORIS fuzzing eliminates both kinds of context switches
mentioned in the introduction. The fuzzer and LKL merely call
the LKL (®) and LibHW (@) functions directly, eliminating
the overhead of kernel-emulator context switch and user-kernel
context switch.

The idea of building and fuzzing a kernel module as a
user-space program looks straightforward. However, it faces
several technical challenges, including the symbol dependency
during compilation, and the state dependency and hardware
dependency at runtime, respectively. First, when compiling and
linking a kernel module into a user-space program, the dependent
symbols (e.g., macros, definitions of data structures, and global
variables) and inconsistency between the linked user-space ker-
nel library (LKL) and the original kernel source code pose a
serious challenge. Second, when running KMUT in user space,
the kernel module states (initialized by the Linux kernel) and the
necessary user-space states (created by the init process and other
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Kernel e Kernel
Source Code Module

Compilation Time

Fig.2. The overview of MINORIS.

system daemons) are missing. This may cause the KMUT to be
inaccessible from LKL. Third, a kernel module usually depends
on the underlying hardware to function properly. The lack of
underlying hardware will greatly impact the code coverage of
KMUT and the effectiveness of fuzzing.

MINORIS proposes corresponding solutions. First, MINORIS
automatically analyzes the kernel module to add the necessary
symbol declarations or definitions. It also resolves the conflicts
between LKL and the original kernel source code to link the
kernel module with LKL (and LibHW). Second, we retrieve
the initialization functions of the KMUT and make LKL in-
voke them to prepare the proper kernel module states. Besides,
the needed system calls to prepare the user-space states are
identified and issued. Third, MINORIS redirects the interaction
between the KMUT and the underlying hardware to a user-space
hardware emulation library (LibHW). We will elaborate them in
Section III-A, Section III-B, and Section III-C in the following.

A. Symbol Dependency

1) Problem Statement: The root cause of the symbol depen-
dencies is the original kernel source code that the kernel module
depends on is different from the user-space kernel library LKL.
Vendor customization, mainline kernel differences, or architec-
ture differences can all introduce differences. Fig. 3 shows four
examples of symbol dependency issues. First, an SoC vendor
may add header files with SoC-specific declarations missing
in LKL (E1). Second, the vendor may modify declarations like
adding dev_socdata tostructdevice, incompatible with LKL
(E2). Third, since LKL aligns with the mainline kernel at major
versions, incompatible declarations (E3) could be caused when
the kernel module relies on the minor versions of the mainline
kernel. Fourth, architecture-dependent macros like rmb need to
be replaced when extracting ARM modules to an x86-64 host
(E4).

To better illustrate the problem, we model the process of com-
pilation and linking the kernel module with the dependent sym-
bols. Specifically, during the compilation, the compiler sees ev-
ery symbol reference s =< nameg, declg, ref, > or symbol def-
inition d =< nameg, decly, def; >. When some symbol refer-
ence ref ¢ is used in the source file, the compiler will generate the
instructions and memory allocations according to the declaration
decly, and the linker will link the reference ref,; to the definition
def . The compiler and the linker identify a unique symbol entity

; 3] |

; > LKL

» KMUT —» Fuzzing
9, LibHW

User-space Process

Running time

E1: header missing

#include <soc/samsung/exynos-pd.h>

E2: vendor added field

struct device {
+ struct dev _socdata socdata;
struct fwnode handle *fwnode;

};

E3: shifted enum constant definition

enum { // PM QOS RESERVED
RESERVED, CPU DMA LAT, NETWORK LAT,

+ /* 11 enums */, BUS_THROUGHPUT_ MAX,
NETWORK THROUGHPUT, /* 23 enums */,
NUM_CLASSES,

}

E4: architectural specific macro

#define rmb() dsb()

Fig. 3. Four concrete examples of unresolved symbol dependencies.

e € {s,d} by its name name,. We assumes that a kernel module
S has the property named compilation correctness in its origi-
nal kernel O, which says that Vs € S,Vd € D,(OUS) ={d €
O U S | name; = nameg}, |[def p_oug)| = 1 A decl; = decly.

Based on the above model, we accordingly summarize the
possible symbol dependencies, when compiling the kernel mod-
ule with LKL T, as the following three categories.

Case 1: 3s € S,|defp_(pug)| = 0. The compiler complains
an undefined reference of the symbol. It possibly happens when
the dependent modules are not compiled into the 7.

Case 2: 3s € S,|defp_(rug)| > 1. The compiler complains
about multiple definitions for a symbol. This happens when the
symbol occurs in both the module .S and LKL 7T'.

Case 3: Is € S,d € D,(T'US),|defp, (rus)| = 1 A decl,
= decly. The linker can link refg to the def; by names, but
runtime errors will be raised, such as segmentation fault, due to
inconsistent declaration.

Our experience when developing MINORIS shows that symbol
dependencies are common. Specifically, nearly all the mod-
ules contain undefined symbols (Case 1) when extracting ker-
nel modules from AArch64 5.1, Android 5.4. And there are
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Algorithm 1: Transform Algorithm.

1: procedure Transform

2: input: S represents the kernel module. O represents
the original kernel, while 7" represents LKL.

3:  output: adjusted LKL 7", adjusted kernel module S”,
and header files H used by S”.

4: expand macros in S by T as S’
5: expand rest undefined macros in S’ by O as S”
6: forse S” do
7 if s is intercepted by fuzzing developers then
8: pass
9:  elseif |defp (pugry| = O then

10: emit a stub definition of decl, to H

11:  elseif [defp_(7ygn| > 1 then

12: R<—RUdefDS(T)

13: else if decl, # decl, for d € Dy(T U S”) then
14: try

15: replace declg with decl; and compile S”
16: catch CompileError caused by replacement
17: patch 7" to adapt decl s

18: end try

19: end if

20: end for

21: rename R in T to avoid name conflict with S”
22: (H,T') + (H Udeclp,T)
23: end procedure

hundreds of inconsistent symbols (Case 2 and Case 3) when
extracting kernel modules from kernels of different architectures
or kernel configurations.

2) Our Solution: We propose SemaLinker to solve the sym-
bol dependencies automatically in two steps. First, the symbol
semantics of the kernel module, the original kernel, and LKL are
collected, respectively. Then, with complete symbol semantics,
SemaLinker transforms the kernel module into the KMUT and
adjusts LKL accordingly to ensure the KMUT has compilation
correctness property maintained in the adjusted LKL. We show
these two steps in the following.

Step I. Collect Symbol Semantics: SemaLinker runs a collect-
ing procedure on the parsed AST with semantics produced by
Clang. It performs areachability symbol analysis and records the
semantic information of symbols, i.e., symbol reference s and
symbol definition d, simultaneously. The collected semantics
cover several major categories associated with SemaLinker,
including macro, function, type, and variable symbols repre-
senting preprocessing, control flow, memory protocols, and the
state of a program.

SemaLinker checks semantic information at the AST level
instead of the IR level because Clang does not emit correct
IR if there are syntax or semantic errors in the source files.
SemaLinker can handle or ignore errors produced by the Clang
parser and analyze the kernel modules from the original kernel,
even if the AST contains errors.

Step I1. Transform Kernel Modules: Our transform algorithm
is shown in Algorithm 1. The algorithm aims to solve three
illustrated possible symbol dependencies by taking the kernel

module, the original kernel, and LKL with their associated
symbol semantics extracted in previous step as inputs. As a
result, the adjusted LKL 7", adjusted kernel module S”, and
header files H containing symbol declarations used by S”, are
generated as outputs. The combination of S” and H forms the
KMUT, which has compilation correctness property preserved
in the adjusted LKL 7".

First, SemaLinker expands the macros in S. It first expands
S by the macro definitions from 7" (Line 4in Algorithm 1). This
solves the issues caused by macros in Case 2 and Case 3. It is
correct since the macro definition in the 7" usually has the same
functionality as that defined in the original kernel. SemaLinker
then expands the rest of undefined macros by O (Line 5in
Algorithm 1), solving Case 1. Our macro expansion strategy is
crucial when transforming kernel modules from an ARM kernel,
which usually contains architecture-dependent macros.

Then, SemalLinker iterates all symbol references in the ad-
justed kernel module S” and solves the symbol dependencies
issue when encountered. For an undefined reference (Case 1),
SemalLinker generates a stub definition based on the declaration
from O to compile the KMUTSs (Line 9-10in Algorithm 1). This
strategy is previously discussed in EASIER paper [24]. As for
Case 2, this happens when the symbol definition occurs in both S
and 7. At this time, we would like to make the kernel module use
its symbol definition. Specifically, SemaLinker collects dupli-
cated definitions in 7" (Line 12in Algorithm 1) and then renames
them to avoid name conflicts with S” (Line 21in Algorithm 1).
Moreover, their corresponding references in 7' itself are also
renamed. When the decl; of a symbol reference in S” conflicts
with the decl; of the corresponding symbol definition in LKL
(Case 3), SemaLinker prefers to replace decls with decl, at first.
If the replacement causes compilation errors when compiling the
kernel module with the declarations decl;, SemaLinker reverts
the replacement and tries to patch LKL to adapt decl, instead.
For example, when the vendor adds a new field to the struct
device (example E2), the issue with Case 3 occurs. If the
kernel module does not use the field, the compilation should
succeed, and the decl; is used. Otherwise, the error hints that
the kernel module depends on the added field, hence we should
add the missing field to LKL by patching the source code of
LKL. Since replacing decl, likely works, this helps stabilize the
LKL runtime by avoiding unnecessary patches.

Discussion: The design of Algorithm 1 is based on the as-
sumption that S has compilation correctness property in O.
Our algorithm believes that the conflict symbols keep similar
semantics so that automatic transformation becomes possible.
If the kernel versions differ a lot, the algorithm may fail since
there are too many inconsistent declarations. One reason that
we chose LKL as our user-space kernel implementation is that
LKL is aligned with the mainline kernel at major versions. We
can always choose the LKL that is closest to target Linux kernel
version.

B. State Dependency

With SemaLinker, the KMUT is ready for linking with
LKL. However, to ensure the KMUT is accessible from system
calls issued by the fuzzer at runtime, the kernel module states
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(initialized by the Linux kernel) and the necessary user-space
states (created by the init process and other system daemons)
should be prepared before fuzzing. In this section, we illustrate
how MINORIS solves the state dependency issue.

Kernel Module State Preparation: In the Linux kernel, kernel
modules (including loadable modules) can be directly built into
the kernel. If the kernel module is built into the kernel, the
initialization vectors (i.e., functions) of the kernel module will
be invoked for kernel module state initialization during kernel
booting (i.e., start_kernel). We observe that the Linux
kernel provides a mechanism, named initcalls, to allow the
kernel module to register its initialization vectors to different
boot stages by annotating its initialization vectors. Based on
this observation, during compilation, MINORIS automatically
identifies the initialization vectors of the KMUT in the source
files and inserts them into the corresponding boot stage of LKL.
Then, at runtime, the KMUT’s initialization vectors are invoked
with appropriate timing during the LKL boot process. As aresult,
the kernel module states of the KMUT are set up properly.

User-space State Preparation: Due to the limited user-space
component support of LKL (such as the lack of system dae-
mons), the necessary user-space states of the KMUT are missing.
Therefore, MINORIS prepares the necessary user-space states
before fuzzing. For example, mknod syscalls should be emitted
to create the device file entries in the filesystem to run device
driver fuzzing, which is originally issued by the user space
daemon udevd, which does not exist in LKL. Another example
is a few virtual network devices that must be created by syscalls
to run fuzzing on the network subsystem. For this, we manually
write the program to issue the required syscall sequences.

C. Hardware Dependency

At runtime, the KMUT (mainly the device driver) usually
depends on the bidirectional interaction with the underlying
hardware to function properly. Specifically, the KMUT may
need to perform IO access to the device, while the device
side could trigger a hardware interrupt targeting the KMUT.
However, there is no hardware backend provided by LKL, which
will greatly hinder the execution of the KMUT, thus affect-
ing the effectiveness of fuzzing. To solve the above hardware
dependency issue, MINORIS integrates a user-space hardware
emulation library (LibHW) with the LKL and KMUT to provide
a hardware backend. Furthermore, a KMUT-agnostic design
is adopted by MINORIS to bridge the bidirectional interaction
between the KMUT and the corresponding backend device in
LibHW seamlessly. Lastly, the design of linking the kernel (i.e.,
LKL) and the hardware emulation (i.e., LibHW) together brings
additional optimization opportunities for hardware access to
achieve better performance and analysis robustness.

LibHW: LibHW is constructed on top of QEMU’s hardware
emulation framework. Specifically, we customize QEMU to
serve as a user-space library and could be invoked for hardware
device (including interrupt controller) emulation while leaving
QEMU’s CPU and memory emulation unused. By doing so, we
can utilize its rich virtual device assets and mature framework for
adding new virtual devices. In addition, there have been solutions

proposed for real device integration [25] and automated virtual
device generation [14], [26] for QEMU. They can also be
integrated to provide richer hardware device support for LibHW.

Moreover, LibHW leverages device tree configuration to tell
the kernel (LKL and the KMUT) how to access the emulated
hardware resources. Specifically, at runtime, LibHW is invoked
to initialize its hardware resources with the specified hardware
configuration (including the devices that the KMUT depends
on). A device tree configuration describing the emulated hard-
ware resources by LibHW is generated after the initialization
of LibHW. Then, the device tree configuration is passed to
LKL, so that LKL can boot with the correct and consistent
hardware resource description with LibHW. Since the absence
of the bootloader in LKL, we patch LKL with the device tree
configuration (i.e., . dtb) loading support. For example, for the
PCI device, a customized PCI controller kernel module is also
added to LKL to support the PCI bus scanning.

Routing the 10 Requests from the KMUT: Since the Linux
kernel provides a well-defined abstraction for the KMUT to
perform 1O access, MINORIS is able to intercept 10 requests
from the KMUT via the well-defined abstraction and redirect
them to LibHW.

o MMIO&PIO: The readX/writeX (X € {b,w,l}) and
inX/outX (X € {b,w,l}) functions are provided by
Linux kernel for the KMUT to perform MMIO and PIO
operations, respectively. By hooking these low-level 10
access functions, MINORIS could capture MMIO/PIO op-
erations issued by the KMUT at runtime and then redirect
them to LibHW.

® DMA: Regardless of the variations of the kernel DMA
APIs, they are eventually transformed into map_page,
unmap_page to access the mapped virtual memory.
When MINORIS captures the invocation of map_page, it
will instruct LibHW to insert the corresponding memory
region into the address space emulated by QEMU (i.e.,
LibHW) and assign a higher priority. In this way, whenever
the KMUT accesses the virtual memory or the backend
device accesses the emulated address space, they are both
reading or writing the same part of physical memory in the
host machine. When unmap_page is invoked, MINORIS
performs an inverse operation of map_page. MINORIS
removes the memory region for DMA from the emulated
address space. Additionally, a pool of memory regions is
managed by MINORIS for higher performance on small
page mapping.

Routing Interrupts from the Emulated Hardware: We handle
interrupts delivered from the LibHW simply and effectively.
When delivering an interrupt, LibHW will invoke the interrupt
handler inside the LKL directly (since they are inside the same
process). This eliminates the dependency on the involvement of
CPU emulation for interrupt delivery. We made minor modifi-
cations to the interrupt signal-raising logic of QEMU to achieve
this, so that our modification is KMUT-agnostic. It’s a one-time
effort for each system architecture. Correspondingly, LKL is
patched with the interrupt controller driver for each architecture
to translate architecture-specific hardware interrupt resources to
the interrupt abstraction of the Linux kernel.
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Algorithm 2: Divirtualized Hardware Access.
1: procedure DivirtualizedMMIOReadForE1000
2: input: addr is the captured input arguments of readX.
output: the return value of readX.
get last accessed MMIO Region M
if M is valid and addr is in range of M then
if QEMUTypeOf(M .parent) = ’e1000” then
returne1000_mmio_read(M.parent, addr)
else
9: return /. mmioRead (addr)
10: end if
11:  endif
12: M’ + addressSpaceTranslate(addr)
13:  set accessed MMIO Region M’
14: return M'. mmioRead(addr)
15: end procedure

A A

Divirtualized Hardware Access: Inspired by the divirtual-
ized C++ virtual function dispatching, MINORIS applies an op-
timization named divirtualized hardware access to route the
MMIO&PIO requests. We illustrate the divirtualized readX for
e1000 KMUT by Algorithm 2. When the e1000 KMUT invokes
readX, MINORIS captures the input arguments and the physical
address to access. At first, no memory region is accessed, so MI-
NORIS translates the physical address into the memory region by
the address space of QEMU and calls the MMIO handler stored
in the memory region. The translation result is saved in a global
cache for KMUT, e.g., a thread-local variable. Then, when the
KMUT re-accesses the same MMIO region, MINORIS can vali-
date that the physical address located is in the saved memory re-
gion and serves the readX request in the fast path. Specifically,
if readX is called in the E1000 driver, the readX is specialized
to check the type of region’s parent to be an E1000 device and
call function e1000_mmio_read statically if possible.

The divirtualized hardware access can also benefit the dy-
namic analysis for the KMUT. Since the LKL and the LibHW
are linked together in the same process, the underlying emulation
code for readX is in the same process. When routing the readX
in a fast path, the dynamic analysis can reach the underlying
emulation code within a function call. For instance, symbolic
execution can benefit from it. We believe that the combination
of kernel and hardware emulation in the same process brings
additional optimization opportunities.

IV. IMPLEMENTATION

We have implemented a prototype of MINORIS. Specifically,
SemaLinker is based on Clang libTooling [30] (15,826 LoC).
The fuzzer is based on mutator from syzkaller and libprotobuf-
mutator [2], [31] (27,992 LoC). LibOS is based on LKL [32]
(200 LoC), and LibHW is based on QEMU [27] (701 LoC). For
simplicity, all the primary components of MINORIS work in a
single process on the host machine.

A. MINORIS

SemalLinker: SemaLinker implements an analysis crossing
different translation units of the kernel module symbols with
the help of Clang LibTooling. A translation unit is the root AST,
corresponding to an exact source file of the analyzed kernel mod-
ule. SemaLinker computes a closure on the reachability among
the symbols within a single translation unit. Then, SemaLinker
classifies whether a declaration or definition of the symbol is
required by completing the source file compilation and saves
the information as needed.

When the kernel module compilation involves multiple trans-
lation units, it is necessary to merge identical symbols and their
dependencies in different translation units. Here, SemaLinker
implements a string-based digest algorithm to merge the sym-
bols.

LibOS: We implemented a kernel runtime for KMUTSs based
on LKL. In particular, we integrate some device drivers into
LKL, such as the PCI host controller driver for the PCI bus and
the ARM GIC driver for ARM Interrupts.

The PCI host controller is implemented based on the generic
PCI controllers. It first reads device tree to get the shared MMIO
region and hardware IRQ number. It then scans the bus and
makes PCI drivers probe the PCI devices correctly.

LibHW: LibHW is a library built on QEMU to provide hard-
ware APIs for KMUTs. LibHW utilizes QEMU’s virtual device
framework while bypassing its CPU and RAM emulation. First,
LibHW accepts the command line options and builds virtual
devices according to options by the QEMU framework. Then,
to leave CPU and RAM emulation unused, we replace the thread
function of QEMU CPU threads with a dummy function so that
the CPU threads are idle during fuzzing. As for the QEMU
IO thread, because we choose to invoke the LibHW directly as
function calls and QEMU CPU threads keep idle, the IO thread is
also idle during fuzzing since there is no incoming request for it.

B. Fuzzer

We implemented a user-space kernel module fuzzer based
on MINORIS, integrating off-the-shelf fuzzing techniques. The
fuzzer employs libFuzzer as the fuzzing engine and syzkaller’s
mutator for mutation. We use ASAN and Sanitizer Coverage
to instrument both KMUTs and LKL for sanitization and cov-
erage collection. To handle LKL’s slab allocator, we patched
ASAN to support its custom memory management. Further-
more, SymCC [29], a symbolic execution technique, is leveraged
by us to assist the fuzzer in reaching a deeper program state,
which cannot be easily applied to the OS kernel drivers without
our system. Finally, the fuzzer is linked with the KMUT, LKL,
and LibHW to run as a user-space program.

V. EVALUATION

In this section, we comprehensively evaluate both the ef-
fectiveness of automatically transforming kernel modules into
user-space programs and the performance improvement of our
framework compared to the state-of-the-art virtualization-based
(KVM) kernel fuzzer, syzkaller. All experiments are conducted
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TABLE I
THE STATISTICS OF TRANSFORMING KERNEL MODULES UNDER TESTING
(KMUTS) BY SEMALINKER. COLUMNS SUMMARIZE STATISTICS ABOUT THE
KMUTS COMPILED UNDER ALLYESCONFIG. THE COLUMN “COMPILED
KMUTS” SHOWS THE PERCENTAGE OF KMUTS SUCCESSFULLY COMPILED
ACROSS ALL ATTEMPTED KMUTS (THE "TOTAL” COLUMN), AND THE
PERCENTAGE IN PARENTHESES REPRESENTS THE DIFFERENCE BETWEEN THE
NUMBER IN THIS ROW AND THAT IN CORRESPONDING LKL Row. {: LKL
DOES NOT COMPILE UNDER ALLYESCONFIG.

Version  Source Tree Arch W Compiled KMUTs
Count Total

Mainline LKL -t 65.968%

5.1 Mainline ~ x86-64 8937 9594  83.771% (+17.803%)

Mainline ~ AArch6d 8684 82.354% (+16.385%)
Mainline LKL } 75.251%

54 Mainline ~ x86-64 9273 9968 84.520% (+9.270%)

Android  AArch6d 9045 82.253% (+7.002%)
Mainline LKL ; 77.697%

510 Mainline  x8664 10178 10178 86.933% (+9.236%)
Mainline LKL - 78.271%

515 Mainline  x86-64 10608 0% 835200, (+5.251%)
Mainline LKL ; 76.555%

61 Mainline ~ x86-64 11674 7% 81.960% (+5.405%)
Mainline LKL ; 74.011%

66 Mainline ~ x86-64 11859 9% 80546% (+6.535%)
Mainline LKL - 75.638%

612 Mainline  x8664 12413 123 50,6499 (+5.011%)

on an Ubuntu 22.04 system with an Intel(R) Core(TM) 17-8700
6-core CPU @ 3.20 GHz and 32 GB RAM. Our evaluation
addresses the following research questions:

® RQ1: Can SemaLinker successfully compile kernel mod-
ules as native programs? (Section V-A)

e RQ2: Does our system improve the execution speed of
Kernel Modules Under Testing (KMUTs) over emulator-
based kernel fuzzing? (Section V-B)

* RQ3: How does our system’s fuzzing performance com-
pare to syzkaller? (Section V-C)

V.-A. Module Transformation and Compilation (RQ1)

Experiment Setup: To evaluate the scalability of MINORIS
(RQ1), we assess SemaLinker (Algorithm 1) by compiling
KMUTs with LKL across kernel versions and architectures.

The algorithm requires three inputs: the original kernel O,
the target kernel 7', and a symbol set S from O. For O, we
select mainline x86-64, mainline AArch64, common Android,
and LKL kernels, with versions 5.1, 5.4, 5.10, 5.15, 6.1, 6.6,
and 6.12—all recent LTS releases. This covers both x86-64 and
ARM architectures and includes Android and LKL distributions.
For T', SemaLinker uses mainline LKL matching O’s major
version, as discussed in Section III-A. For S, source files are
grouped into KMUTSs using CONFIG variables, then a symbol
set .S is extracted for each KMUT.

Additionally, we compile kernels using allyesconfig and retain
only KMUTs that successfully compiled in the original kernel
as the theoretical upper bound of KMUTS to compile. We
choose allyesconfig because Linux experts use it for regression
compilation testing. Table I normalizes these module counts per
kernel version using the union set. For example, in mainline v5.1,
of 11,483 identified modules, 8,937 KMUTs targeting x86-64
(T3,), and 8,684 KMUTs targeting AArch64 (T,) are compiled

TABLE 11
SUMMARY OF FAILURE REASONS OF MODULE TRANSFORMATION
BY SEMALINKER

Reason Count  Percentage
Missing Symbols 1254 59.572%
Malformed Code Generation 474 22.518%
Conflict Symbols 163 7.743%
Others 136 6.461%
Missing Files 78 3.705%

under allyesconfig. The union |T,, UT,| = 9,594 represents
our estimated KMUTs to evaluate SemaLinker for this kernel
version.

Finally, Algorithm 1 is executed on each KMUT to determine
compilation success.

Transformation Results: Table 1 presents the transformation
results, demonstrating SemaLinker’s scalability by compiling
kernel modules into user-space programs with substantial suc-
cess rates. The LKL rows, representing the case of O = T (i.e.,
trivial transformations), serve as a baseline. For instance, the
LKL v5.1 row shows that adjusting CONFIG variables per LKL’s
defconfig enables compilation of 65.968% of 9,594 KMUTs.
Across LTS versions (v5.4-v6.12), SemaLinker maintains ro-
bust performance, consistently achieving over 74.011% success
rates and confirming reliability for intra-distro transformations.

The rest rows reveal SemaLinker’s value in enabling testing
of x86 and ARM kernel modules with LKL. For example, when
transforming x86-64 modules from mainline v5.1, SemaLinker
achieves 83.771% compilability, improving 17.803% over base-
line. That is because SemaLinker resolves additional symbol
dependencies, such as undefined references, using information
available only in the original kernel. Similarly, SemaLinker
compiles 82.354% AArch64 modules from mainline v5.1.

SemaLinker can also handle non-mainline distributions,
demonstrated by its 82.253% success rate with Android
AArch64 modules from mainline v5.4. This capability is crucial
for testing modified or out-of-tree KMUTSs, such as those found
in Android kernels but absent in the mainline.

Failure Analysis: While Semalinker achieves substantial
transformation success, it does not achieve high bound due to
the complexity of Linux’s million-line codebase. Two primary
failure categories are identified. First, 34.032% of modules from
LKL v5.1 fail to compile, due to missing symbol dependencies
beyond those included in LKL’s defconfig. Noted that LKL is
not compiled under allyesconfig.

Second, approximately 20% of x86-64 and A Arch64 modules
fail due to SemaLinker-specific issues, primarily involving sym-
bol resolution and code generation. Using x86-64 v6.1 kernel
as a representative case (Table II), the most common failure
(59.572%, or 10.747% of all modules) comes from unresolved
symbols or undefined references during transformation or com-
pilation. Another 22.518% result from malformed C source files
generated by transformation, often caused by unhandled corner
cases in the complex ordering of declarations, definitions, and
macros. Symbol conflicts between kernel and user-space en-
vironments contribute 7.743% of failures, while missing source
files (3.705% ) and miscellaneous issues (6.461%) constitute the
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TABLE III
EXECUTION SPEEDUP ACHIEVED WITH LIBHW, WHICH ELIMINATES
KERNEL-EMULATOR CONTEXT SWITCHES. KERNEL DRIVERS PERFORM READ
(R) OR WRITE (W) OPERATIONS ON HARDWARE ADDRESSES (hw_addr) orR C
EXPRESSIONS. RESULTS SHOW THE MEAN AND STANDARD DEVIATION OF

TABLE IV
EXECUTION SPEEDUP ACHIEVED WITH LKL, WHICH ELIMINATES
USER-KERNEL CONTEXT SWITCHES. BENCHMARK PROGRAMS PERFORM
VARIOUS MEANINGFUL SYSCALLS. RESULTS SHOW THE MEAN AND STANDARD
DEVIATION OF SYSCALL EXECUTION RATES PER SECOND

KERNEL-SIDE I/0O REQUESTS PER SECOND OVER 1,000 EXECUTIONS.

OVER 1,000 ITERATIONS.

Kernel-Side I/O Requests per Second

Benchmark

QEMU/KVM MINORIS T
NVMe (hw_addr 0) w:28.57k + 7.10% w:132.38k + 7.28% x4.68 £+ 0.67
NVMe (hw_addr 4) w:58.94k + 6.49% w:158.25k + 7.30% x2.71 +£0.37
E1000 (hw_addr 0) 1:50.83k + 12.73% 1:608.69k + 10.36% x12.26 4+ 2.79
E1000 (hw_addr 8) r:16.71k + 24.85% r:243.53k £+ 7.03% x14.90 + 4.67
1:30.53k + 18.77% 1:550.37k £+ 6.10% x18.30 £ 4.50
E1000 (hw_addr 32) wi28.69k + 18.45%  w:297.07k + 10.62%  x10.68 + 3.04
virtio-blk (notify) w:12.67k £ 6.98% w:99.53k £ 9.09% XT7.97 +£1.27
xHCI (db_addr) w:38.33k &+ 2.15% w:67.96k + 3.86% x1.78 £ 0.11
XHCI (op_regs status) 1:66.78k + 3.45% 1:902.79k + 10.43% x13.72 +£1.90
- w:103.66k + 2.36% w:909.26k + 6.50% x8.82 £+ 0.78
FTGMACI100 (hw_addr 24)  w:57.43k +14.20%  w:209.40k + 23.52% x3.99 £+ 1.46
Geometric Mean (read) - - x15.13 £ 1.11
Geometric Mean (write) - - %x4.95 + 1.09
Geometric Mean - - X7.38 £ 1.51

remainder. These failures highlight opportunities for improving

Benchmark Syscalls per Second
QEMU/KVM MINORIS T
access01 (faccessat) 21.28k £ 2.65% 54.69k £ 10.03% x2.60 £ 0.33
add_key01 (add_key) 88.49k +1.48% 126.11k £ 4.58% x1.43 £0.09
adjtimex01 (adjtimex) 314.55k £ 5.68 %0 418.40k + 4.46% x1.33 £0.07
bind01 (bind) 594.23k £+ 1.70% 1164.75k + 3.26% x1.96 £ 0.10
capset01 (capset) 614.35k +1.96% 1647.99k + 3.75% x2.69 £ 0.15
dup01 (dup) 622.41k £ 1.20% 5619.28k £ 15.69% x9.27 £ 1.56
fentl01 (fentl) 643.58k =£ 8.35 %0 5791.10k £ 2.82% x9.01 £0.33
getsockopt01 (getsockopt) 411.08k + 1.79% 3110.36k + 8.32% x7.63 £0.77
ioctl_loop01 (ioctl) 262.86 + 4.46% 2.99k £10.17% x11.81 4+ 1.72
keyctl01 (keyctl) 544.46k £ 7.71 %0 1753.00k =+ 6.32% x3.23 £0.23
listen01 (listen) 670.17k + 1.56% 7610.56k + 7.56% x11.43 £ 1.04
mmap02 (mmap) 227.57k £ 2.12% 518.21k + 5.26% x2.29 £0.17
nice01 (setpriority ) 503.55k % 6.49 %o 2315.38k + 5.97% x4.62 £ 0.31
openat02 (openat) 15.11k £ 13.42% 43.69k + 22.14% x3.13 £+ 1.08
pipe01 (pipe2) 353.76k + 1.51%  252.04k + 2.34% X0.71+ 0.03
read04 (read) 553.75k + 1.79% 651.05k + 23.44% x1.25 £ 0.31
timer_create(1 (timer_create)  283.22k + 59.65% 708.07k +19.51% x2.90 4 2.06
ulimit01 ( setrlimit) 765.03k + 1.20% 14292.29k +£10.29%  x18.91 £2.17
vmsplice01 (vmsplice) 246.45k + 2.13% 352.87k + 1.56% x1.43 £ 0.05
write01 (write) 113.82k & 3.25%0 166.93k £ 1.41% x1.47 £0.03
Geometric Mean — - x3.31+0.67

symbol analysis and handling of edge cases in future work.

Answer to RQ1 SemaLinker automates the transformation
of kernel modules across different versions and architectures,
resolving symbol dependencies and linking them with LKL to
produce user-space programs for the host machine.

V.-B. Execution Performance (RQ2)

Experiment Setup: To assess the framework’s execution per-
formance (RQ2), we compare the execution speed of KMUTSs
from the mainline x86-64 6.6 kernel with the same code executed
in QEMU/KVM. The comparison is conducted at two levels:
syscall (evaluating the benefit of using LKL) and hardware
(evaluating the benefit of using LibHW).

For hardware-level benchmarking, we test E1000 Ethernet
and NVMe block driver KMUTSs using LibHW (QEMU back-
end) with workloads from the 1ibnvme test suite [33] and
E1000 self-test programs. Additional tests for virtio-blk, xHCI,
and FTGMAC100 KMUTs are written using the LTP frame-
work. For syscall-level benchmarking, we select 20 syscall test
programs from the LTP project (listed in Table IV).

To ensure fair comparison, noise from time sampling and com-
pilers is minimized. Each benchmark program is executed 1,000
times. Kernel code for both MINORIS and QEMU is compiled
with clang-12 using consistent kernel configurations to avoid
differences in compilation flags. Benchmarks are executed with
CPU resources limited to a single core.

Results: The execution performance comparison between
MINORIS and QEMU/KVM is presented in Table III (hardware-
level) and Table IV (syscall-level). Program behaviors have been
verified to be consistent across both environments, indicating
that KMUTSs can be run on MINORIS preserving fidelity. From
tables, MINORIS shows consistent performance improvements
with low variance, as results were gathered over 1,000 itera-
tions using precise hardware timers, e.g., RDTSC, to measure
execution cycles.

At the hardware level, MINORIS achieves an average speedup
of x7.38 (geometric mean) with LibHW. Read and write oper-
ations to MMIO regions are improved by x15.15 and x4.95,

respectively. For instance, writes to NVMe hardware addresses
achieve speedups of x4.68 and x2.71 at addresses O and 4,
respectively. Furthermore, the FTGMAC100 driver, originally
executed in the QEMU ARM emulator, can be compiled into
LKL and executed on an x86-64 host, demonstrating MINORIS’S
versatility. Performance gains are also attributed to LibHW
optimizations such as Divirtualized Hardware Access, which
caches memory mappings and directly invokes corresponding
C functions for devices. These improvements confirm that MI-
NORIS delivers notable hardware-level acceleration.

At the syscall level, MINORIS achieves an average speedup
of x3.31 with LKL. 19 out of 20 syscall benchmarks exhibit
improved performance compared to QEMU/KVM. The median
speedup, driven by the mmap syscall, is x2.29, with larger
gains observed for syscalls such as ioct1 (loop) and ulimit,
which achieve speedups of x11.81 and x18.91, respectively.
Some syscalls, however, show limited or negative performance
impacts. For example, pipe performs worse in MINORIS due
to cache-issuing memory access to the set_freepointer
function when allocating SLUB objects in LKL. This can be im-
proved from the LKL side in the future. Additionally, memory-
intensive syscalls like add_key, read, and vimsplice show
marginal speedups as their performance is limited by heavy
memory operations. In such cases, KVM mitigates the overhead
of memory simulation through shadow page mapping, reducing
the relative advantage of MINORIS.

Answer to RQ2 Our system can achieve an average speed
up x3.31 and x7.38 with LKL and LibHW, eliminating the
kernel-emulator context switch and user-kernel context switches.

C. Fuzzing Performance

Experiment Setup: To demonstrate the fuzzing performance of
MINORIS (RQ3), we compare it against syzkaller using 5 fuzzing
targets: E1000, Netlink, VTY, NVMe, and Cadence GEM. The
KMUTs are instrumented. The kernel image used by syzkaller
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Branch coverage and fuzzing throughput for five kernel modules under test (KMUTSs). Subfigure (a) presents the branch coverage of E1000, and subfigure

(b) shows its fuzzing throughput. The remaining subfigures (c¢)—(k) display the branch coverage and fuzzing throughput for the other four KMUTs: Netlink, VTY,
NVMe, and Cadence GEM, respectively. The shaded areas around the lines represent the standard deviation across ten repeated evaluations per target.

is instrumented with KASAN and Kcov. The KMUTs and LKL
are instrumented by ASAN and Sanitize Coverage. Then, we
deploy the fuzzer applications for the KMUTSs in combination
with other user space testing techniques, SymCC. All the tests
are executed continuously for 24 hours without seed corpora.
Both systems are given the same hardware resources, 2 CPU
cores and 4 GB memory. Each target is run 10 times repeatedly.

In addition to considering KMUT execution, we also elimi-
nate the differences in the coverage collecting methods for the
fuzzing benchmark. Since syzkaller utilizes Kcov and the lib-
Fuzzer used by MINORIS utilizes Sanitize Coverage, we collect
the corpus during fuzzing periodically and run the corpus on
Sanitize Coverage instrumented KMUTs after fuzzing to get
final basic block coverage on the code.

Throughput and Coverage: Fig. 4 shows that MINORIS out-
performs syzkaller in terms of throughput and code coverage.
The average fuzzing branch coverage of MINORIS outperforms
syzkaller with QEMU/KVM with the increase of 89.51% , as
shown in the first row of Figure 4. The reason is the improvement
in execution speed (as shown in RQ?2). The current evaluation
uses the same fuzzing algorithm as syzkaller. Our system may
use more advanced user-space fuzzing techniques (one benefit
of MINORIS is integrating user-space fuzzing techniques easily)
to further the performance. During the experiment, syzkaller is
stuck on the E1000 device driver. The reason is that the network
functionality of the testing kernel is broken, but the syzkaller
executor uses it to communicate with the fuzzer out of the
emulator. We do not fix it and treat the problem as a performance
issue of syzkaller, since the fix to avoid some syscall inputs may
make fuzzing never touch the related coverage.

The average fuzzing throughput of MINORIS beats syzkaller
persuasively with an increase of x 102.58, as shown in the second
row of Figure 4. The execution per second is KMUT-sensitive.
The throughput of Netlink fuzzing has an increase of x 12.37. In
particular, syzkaller performs 54.51 executions per second, and
MINORIS performs 674.26 executions per second.

Stability: The fuzzing adopted by MINORIS did not crash by
moving KMUT from kernel to user space, proving the stability
of KMUTs. In particular, the MINORIS is even more stable

than syzkaller. This is based on the observation that syzkaller’s
executor did not respond to the fuzzer during the experiment on
the E1000 target. We learn that the syscall execution may corrupt
the network channel to the fuzzer, which means the fuzzer itself
can be affected by the fuzzing target. MINORIS fuzzer itself does
not rely on KMUT or LibOS, which helps MINORIS avoid the
limitation.

Detected Bugs: MINORIS found 24 bugs during the continuous
fuzzing in months, and five of them are new bugs, as shown in
Table V. The bugs can be reproduced in the original kernel, and
the community has confirmed new bugs.

The bug located in delete_char is found to cause use after
free, stack buffer overflow, and double free. This proves that our
system can leverage user-space memory sanitizer ASAN to find
kernel memory bugs. Another interesting bug is the presence
of a UAF in routed_change, where routing rules that have
been removed remain in the global hash table. Triggering the bug
requires creating a large number of system resources through
syscalls. Our system can detect such a bug with the assistance
of user-space symbolic execution [29].

Answer to RQ3 Our system performs better than syzkaller in
fuzzing throughput (x 102.58), explores 89.51% more branches,
and detects 24 bugs. Among the found bugs, 6 are new bugs.

VI. DISCUSSION

Binary-level SemaLinker: We have implemented SemaLinker
at the source-code level, hence it cannot analyze the closed-
source loadable kernel modules. The binary-level SemaLinker
must overcome challenges about how to identify and patch
instructions that access missing hardware or kernel objects
inconsistent with LKL. Possible solutions include pattern-based
identification of target instructions.

Limitation of LKL: LKL does not have MMU and SMP. It
means that the related code cannot be tested currently, such as
components directly related to virtual address translation and
concurrent execution of the kernel. To solve this limitation, LKL
could leverage LibHW to support MMU and reimplement thread
scheduling to support SMP in future.
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TABLE V

BUGS DETECTED BY MINORIS

Location
drivers/base/devtmpfs.c
drivers/clk/clk-ast2600.c
drivers/gpu/arm/mali_kbase.c
drivers/tty /vt/vt.c
include/asm-generic/uaccess.h
net/sched/cls_route.c
drivers/nvme/host.c
drivers/nvme/host/nvme.h
net/core/net_namespace.c
net/netfilter /ip_set_core.c
net/netfilter /nft_exthdr.c
net/netfilter /nft_limit.c
net/netfilter /nf_tables_api.c
net/netfilter/nf_tables_api.c
net/netfilter/nf_conntrack_netlink.c
net/sched/act_ife.c
net/sched/cls_api.c
net/sched/cls_api.c

net/sched/cls_route.c
net/sched/cls_tcindex.c
net/sched/cls_tcindex.c
net/sched/sch_api.c
net/sched/sch_dsmark.c
net/sched/sch_generic.c

Function Type New bug
devtmpfs_create_node Use after free yes/confirmed /merged
aspeed_g6_clk_probe Use before Initialization yes
set_schedule_time Divison by zero es
delete_char Data Corruption yes/confirmed /merged
__strncpy_from_user Stack buffer overflow yes/confirmed
route4_change Double free/Use after free yes/confirmed
nvme_cancel_request Null pointer dereference no
nvme_trace_bio_complete Null pointer dereference no
get_net_ns Null pointer dereference no
ip_set_utest Null pointer dereference no
nft_exthdr_ipv4_eval Heap Buffer Overflow no
nft_limit_init Integer Overflow no
nft_dump_basechain_hook Null pointer dereference no
nft_table_validate Dead Lock no
ctnetlink_create_conntrack Memory Leak no
tef_ife_init Null pointer dereference no
tef_chain_flush Infinite loop no
tef_exts_destroy Null pointer dereference no
route4_bind_class Use after free no
tcindex_partial_destroy_work Out of memory no
tcindex_set_parms Out of bound write no
te_bind_tclass Null pointer dereference no
dsmark_init Null pointer dereference no
qdisc_put Null pointer dereference no

Extending Hardware Runtime: MINORIS can support more
backends for LibHW, such as real hardware [25] and symbolic
hardware modules [14], [26]. With these backends, more code
related to specific hardware can be fuzzed by MINORIS. These
efforts are orthogonal to MINORIS and can be ported to our
framework.

VII. RELATED WORK

Fuzzing Systems and Frameworks:Fuzzing is a general test-
ing technique and has identified thousands of zero-day bugs
in real-world programs, leveraging fuzzer engines [34], [35],
[36] and fuzzing platforms with continuous integration [37],
[38], [39]. Zhu et al. [40] conducted an extensive study of
fuzzing techniques, providing a roadmap for research in the
field. Fuzzing combines with many analysis techniques to
improve performance and effectiveness. Instrumentation tech-
niques guide fuzzing, which leverages static analysis results and
dynamic behavior detection to collect execution metrics [41],
[42], [43] and create oracles [28], [44], [45], [46]. Moreover,
fuzzers are often combined with symbolic execution to create
general-purpose hybrid fuzzing systems [29], [47], [48], [49],
[50].

High Performance OS Kernel Fuzzing: Several approaches
have been proposed to improve the performance of OS kernel
fuzzing. Agamotto utilizes virtual machine checkpoints to elimi-
nate duplicated executions, but still results in expensive memory
consumption with the inevitable overhead of checkpoints [23].
EASIER [24] speed up kernel fuzzing by running a virtual ma-
chine snapshot containing the testing module in the dUnicorn, a
lightweight CPU emulator. As a result, it outperforms traditional
kernel fuzzing using the QEMU emulator. However, it does not
solve the hardware dependency of testing modules. Additionally,
setting up snapshot introduces overhead.

Solving Hardware Dependency: The kernel modules may be
directly or indirectly coupled with some hardware, causing hard-
ware dependency. And itis an open research question to solve the

hardware dependency of testing modules. Feng et al. [51] pro-
vide a systematic analysis of the challenges and solutions posed
by hardware dependencies, particularly in firmware testing.

Some systems redirect hardware requests to real hardware.
Charm creates stub devices in QEMU to forward MMIO and in-
terrupt requests between the device driver and real hardware [6].
However, manual efforts are required to transplant device drivers
to the hosted kernel in the emulator. It does not support DMA
operations as well. Similarly, PeriScope proxies IO requests by
page faults [25]. This requires additional overhead to switch the
interrupt states.

Other approaches replace certain kernel layers with emulated
implementations. Some works adopt automated solutions such
as symbolic execution to simulate virtual devices [14], [26],
[52], [53]. The hardware models learned by symbolic execution
can improve the diversity of virtual devices. However, they are
not equivalent to the real implementation and produce false
positives.

VIII. CONCLUSION

We propose a new kernel fuzzing framework that can fuzz
kernel modules as normal user-space programs to gain nearly
native execution performance. We solved a couple of challenges
and implemented a prototype named MINORIS. The evaluation
shows that compared with the state-of-the-art system, MINORIS
can achieve an average execution speedup from x3.31 to x7.38,
and improves the fuzzing throughput (x 102.58). It can explore
more code coverage and detect new bugs.
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