Shedding Light on Shadows: Automatically Tracing Illicit
Money Flows on EVM-Compatible Blockchains

YICHENG HUQ?, Zhejiang University, China

YUFENG HU?, City University of Hong Kong, China

YAJIN ZHOU i , Zhejiang University, China

TING YU, Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates
LEI WU, Zhejiang University, China

CONG WANG, City University of Hong Kong, China

The pseudo-anonymity and rapidly expanding ecosystem of Decentralized Finance (DeFi) have brought about
significant liquidity on EVM-compatible blockchains, making them lucrative targets for cybercriminals. In the
modern financial landscape, the need for an automated, high-speed, and effective illicit money tracing system
is more urgent than ever to support regulators, on-chain service providers and security practitioners in their
efforts to combat the frequent and large-scale occurrences of cyber financial crimes.

In this paper, we propose MFTRACER, an automated system for tracing illicit money flows on EVM-compatible
blockchains. Against the backdrop of a domain where tracing remains labor-intensive and expert-driven,
MFTRACER is developed in response to two pressing real-world demands: operational efficiency and forensic
effectiveness. In response to the sophisticated fund transfer mechanisms enabled by the EVM environment, we
introduce a novel fine-grained technique that enables protocol-agnostic transaction-level fund flow analysis.
We further propose MFA, a lightweight and purpose-built graph abstraction with a tailored storage backend,
to support efficient data retrieval. We also present a simulation algorithm for downstream illicit flow discovery.
We implemented MFTRACER. Its infrastructure for data retrieval achieves 3.7X to 9.4x higher storage efficiency
while being 14.1x to 300X faster than the leading graph database systems. Furthermore, applied to real-world
cybercrime incidents, MFTRACER achieved 94.09% coverage of illicit money flows. It also newly reported
686 blockchain addresses and 4183 related transactions involved in money laundering that were previously
undiscovered. MFTRACER was able to reconstruct complete fund flow trajectories and provide strong evidence
to investigators for $120.9 million in stolen assets.

CCS Concepts: » Security and privacy — Economics of security and privacy.
Additional Key Words and Phrases: Illicit Money Flow Tracing; Anti-Money Laundering; Blockchain

ACM Reference Format:

Yicheng Huo, Yufeng Hu, Yajin Zhou, Ting Yu, Lei Wu, and Cong Wang. 2025. Shedding Light on Shadows:
Automatically Tracing Illicit Money Flows on EVM-Compatible Blockchains. Proc. ACM Meas. Anal. Comput.
Syst. 9, 3, Article 63 (December 2025), 35 pages. https://doi.org/10.1145/3771578

*Part of this work was conducted while the author was a research intern at BlockSec.
*Corresponding author: Yajin Zhou (yajin_zhou@zju.edu.cn).

Authors’ Contact Information: Yicheng Huo, yicheng_huo@zju.edu.cn, Zhejiang University, Hangzhou, China; Yufeng Hu,
yufenghu@zju.edu.cn, City University of Hong Kong, Hong Kong, China; Yajin Zhou, yajin_zhou@zju.edu.cn, Zhejiang
University, Hangzhou, China; Ting Yu, ting.yu@mbzuai.ac.ae, Mohamed bin Zayed University of Artificial Intelligence,
Abu Dhabi, United Arab Emirates; Lei Wu, lei_wu@zju.edu.cn, Zhejiang University, Hangzhou, China; Cong Wang,
congwang@cityu.edu.hk, City University of Hong Kong, Hong Kong, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2476-1249/2025/12-ART63

https://doi.org/10.1145/3771578

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://orcid.org/0009-0009-2226-8749
https://orcid.org/0009-0009-5132-3284
https://orcid.org/0000-0001-7610-4736
https://orcid.org/0000-0002-7054-5773
https://orcid.org/0000-0003-1675-5283
https://orcid.org/0000-0003-0547-315X
https://doi.org/10.1145/3771578
https://blocksec.com/
https://orcid.org/0009-0009-2226-8749
https://orcid.org/0009-0009-5132-3284
https://orcid.org/0000-0001-7610-4736
https://orcid.org/0000-0002-7054-5773
https://orcid.org/0000-0003-1675-5283
https://orcid.org/0000-0003-0547-315X
https://doi.org/10.1145/3771578

63:2 Yicheng Huo et al.

1 Introduction

Fueled by the smart contract [50] functionality and DeFi landscape, EVM-compatible blockchains
have emerged as a dominant force in the blockchain industry, attracting significant capital flows
and maintaining high liquidity levels. Meanwhile, blockchain’s nature of anonymity creates oppor-
tunities for malicious entities to commit fraud and attacks, such as phishing scams [65], contract
exploits [71], DeFi protocol attacks [113], etc. Throughout the cybercrime landscape, to avoid in-
vestigation and regulatory enforcement, criminals commonly employ money laundering tactics to
conceal illicit fund flows. Specifically, they strategically transfer illegally acquired cryptocurrencies
(upstream money) into downstream money that appears clean and legitimate. (In this paper, we use
money or funds to denote cryptocurrencies on the blockchain.) If no one can trace the connection
between downstream money and upstream illicit money, the illicit funds evade regulatory scrutiny,
signifying complete success of the crime.

As a result, illicit money flow tracing plays a crucial role in real-world anti-money laundering
(AML) efforts. Tracing refers to identifying how illicit money moves and where it is eventually
directed. The ability to trace the flow of illicit money invalidates efforts by criminals to sever links
between the origin and destination of illicit assets, thus yielding actionable evidence and facilitates
prosecution. However, existing research efforts in the field of AML for cryptocurrencies [49, 54, 67,
68,79, 80, 98, 106] focus on detecting and predicting anomalous behavior on blockchains, rather than
developing automatic illicit money flow tracing systems that meet real-world demands for speed
and effectiveness. Several studies [78, 82, 86, 112] introduce heuristic methods to analyze (rather
than trace) money flows on Bitcoin, but they fall short in two key aspects: @ These approaches are
not applicable to EVM-based blockchains, which operate under a fundamentally different execution
model that supports complex smart contract functionality. These methods are also constrained by
their reliance on predefined money laundering patterns, limiting their scalability and generalizability
to diverse and evolving cybercrime scenarios involving EVM-compatible blockchains. @ They do
not offer approaches to meet the efficiency demands of practical investigations. Real-world forensic
scenarios—be it regulators conducting rapid investigations and timely interventions in recurring
cybercrimes, service providers performing large-scale crime risk assessments for their know-your-
customer (KYC) obligations, or any tracing task that demands timeliness and scale—hinge on
systems that can efficiently organize and retrieve massive volumes of data in live blockchain
environments. Existing studies lack the performance solution needed for operational deployment.

In today’s reality and practice, tracing illicit money flows is still a daunting challenge that relies
heavily on the manual efforts of security experts. How to build an efficient and effective automated
tracing system is still an open research question, and so far no substantial research has been devoted
to solving it. Through a systematic study of real-world cases, we surface two critical yet unsolved
obstacles to developing automated illicit-flow tracing systems on EVM-compatible chains.

Challenge-I: EVM-compatible blockchains offer criminals complex fund transfer mechanisms,
allowing money laundering via intricate smart contracts and diverse fungible (ERC-20) tokens.

The EVM environment enables highly sophisticated and diverse mechanisms for transferring
funds. In many cybercriminal cases with significant losses [4, 5, 35, 43], we have seen that crimi-
nals leverage DeFi protocols or self-deployed sophisticated smart contracts to create transfers of
considerable types of ERC-20 tokens. Even within a single transaction, criminals can manipulate
contract semantics to generate money flows that are difficult to trace. Fig. 1 presents an example.
The criminal executed a Multi-call [41] transaction to invoke multiple functions in the Uniswap

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:3

o~ @) 5

AN quuldlty Pool 0 Q)‘ﬂ@

@ "VETH 'Sw. d])
Liquidity POD[M ﬁ

- 3 ~IW. Crlmmal Controlled
" m‘ﬁ ! EOA1

ﬁ 4800 USDT @ 4000 USDT 5 LP Token
Criminal- UNISWAR ! Liquidity Pool 2 -
Controlled D EX Aggregator \----: .- ;l_d """ (i i r

.................................. : A Liquidity ' ;

EOA 0 o ETHl‘POwETH woadddliquidity 7 >

—>»: explicit transfers ~ SOOIUSDT +2.5wETH

Criminal-Controlled
Smart Contract

-
i 1: implicit semantics Wrap,
fooa

------ &

------ »: underlying flows -
wETH Contract Liquidity Pool 3

Fig. 1. A real-world example illustrates how a criminal executed a Multi-call transaction on a DEX aggregator
to obscure illicit fund flows as part of their laundering strategy. The execution of this transaction can be divided
into seven sub-processes (see Appendix A for details), including DeFi semantics of a Wrap, an AddLiquidity
and four Swaps. This transaction caused $14,400 in illicit assets to flow out of EOA 0, with $9,600 directed to
EOA 1 and $4,800 to a criminal-controlled smart contract.

(a decentralized-exchange) aggregator contract. By utilizing self-deployed contract and DeFi se-
mantics like Swap and AddLiquidity [42], this transaction triggered transfers of multiple token
types across multiple addresses. While ERC-20 transfers are visible in complex transactions, the
functional roles of addresses, the semantic meaning of token interactions, and the underlying flow
of funds are often implicit and opaque. Interwoven token transfers can form cyclic structures,
making it difficult to even identify the true providers and recipients of the funds. Addressing this
complexity necessitates the design of fine-grained, transaction-level fund flow analysis methods,
which poses a non-trivial challenge for developing automated systems. (Interested readers may
find more details of the example of Fig. 1 in Appendix A.)

Challenge-1II: There is no efficient data retrieval infrastructure tailored to the heavy and pattern-
specific data retrieval demands of tracing systems, posing a major obstacle to building practical
solutions that achieve the efficiency required in real-world forensic investigations.

The low cost of account creation and rapid block production leads to a massive accumulation
of fund transfers on the blockchain. This imposes a direct requirement for tracing systems to
effectively organize large-scale data. In addition, criminals tend to employ long fund transfer paths
to hinder tracing efforts. As an example, by limiting breadth-first search to a maximum of 15
hops (while the longest laundering path exceeds 18 hops) from the victim to identify potentially
related addresses, the perpetrators of the incident [108] managed to create a downstream space
containing over 56.4 million token transfers. Accurately identifying illicit fund flows within such
a vast downstream space requires tracing systems to analyze massive volumes of transactions,
resulting in a heavy data processing burden.

To meet the efficiency demands of real-world investigations and practical deployment, a high-
performance data retrieval infrastructure is essential for tracing systems to handle queries, searches,
and analyses on the enormous volume of data. Graph structure is a powerful approach to organize
fund transfer data [69, 73, 75, 76]. However, the typical approach is to load raw transfer records into
general-purpose graph databases, yet our benchmarks (Section 4.1) show that even leading systems

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:4 Yicheng Huo et al.

suffer up to an order-of-magnitude overhead in both storage and time under high-throughput
blockchain workloads, impractical for real-world use. The absence of a dedicated data retrieval
infrastructure poses a significant obstacle to building tracing systems that are fast and scalable
enough to support timely intervention in massive and frequent cybercrime events.

Our Solution. This paper proposes a system MFTRACER that provides the capabilities to auto-
matically trace illicit money flows by solving the above challenges. To the best of our knowl-
edge, MFTRACER is the first automated system for tracing illicit money flows on EVM-compatible
blockchains. In addition, it does not rely on specific traits or patterns of money laundering behavior.
It traces illicit money flows through effective searches and simulations of money transfers rather
than identifying or matching patterns of criminal behavior. This endows MFTRACER with versa-
tility and adaptability, enabling it to be applied to tracing tasks in various forms of cybercrime
without being restricted by specific laundering traits. Specifically, to address Challenge-I, we
propose an innovative fine-grained money flow analysis method with generalized protocol-agnostic
parsing logic to decipher complex token transfers inside each transaction. For Challenge-II, we
propose a purpose-built lightweight graph structure called Money Flow Abstract (MFA) along with
a corresponding storage design to efficiently structure and store fund flow data.

The First Dataset. Moreover, due to the lack of relevant research, there is currently no publicly
available real-world dataset for evaluating tracing systems on EVM-compatible blockchains. To
address this gap, we curated LaunderNetEvm41. It is the first open and, to date, the largest dataset
of ground-truth laundering flows on EVM-compatible blockchains. LaunderNetEvm41 traces $125
million in illicit transactions, documenting 1,939 blockchain addresses linked to criminal activities
and 6,701 detailed records of illegal fund flows. Each entry was manually validated by professionals
from a leading blockchain security firm! and domain experts from the broader security community
to ensure its reliability. The dataset construction took over 350 hours of manual effort. In addition
to enabling the evaluation of tracing systems, the dataset also offers address labels and annotations
with visualizations of laundering behaviors, which can be used to support blockchain forensic and
threat intelligence research. We release? it publicly to facilitate future advancements in this area.
Our Contribution. We summarize the contributions of this paper as follows:

e Novel System. We present an automated system for tracing illicit money flows on EVM-
compatible blockchains.

o Real-world Dataset. We released a large-scale dataset from real-world cybercrime cases.

¢ Efficient Solution and Implementation. We implemented MFTRACER and evaluated its data
retrieval infrastructure, which delivers 3.7-9.4X better storage efficiency and 14.1-300% faster
performance than leading graph databases. Our work removes a long-standing performance
barrier to developing tracing systems by proposing a high-performance infrastructure design.

o Effectiveness and Practical Impact. Applied to real-world cybercrime incidents, MFTRACER
achieved 94.09% coverage of illicit flows and reported® for the first time 686 previously unknown
laundering addresses plus 4,183 related transactions. The system was able to reconstruct fund
flow trajectories and provide strong evidence to investigators for $120.9 million in stolen assets.

2 Background
2.1 EVM-Compatible Blockchain Basics

EVM. The Ethereum Virtual Machine (EVM) [18] is a decentralized virtual environment that
executes code consistently across all nodes in a blockchain network. EVM-compatible blockchains

BlockSec: https://blocksec.com/

Zhttps://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
3https://github.com/blocksecteam/MFTracer/tree/main/findings

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/codes
https://github.com/blocksecteam/MFTracer/tree/main/findings
https://blocksec.com/
https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/findings

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:5

[90], such as Ethereum, BSC, Avalanche, are blockchain networks that integrate EVM support,
enabling seamless execution of EVM-based smart contracts without requiring modifications.
Address. Addresses are unique identifiers used to hold funds and send transactions on the
blockchain. Each address is associated with one of two types of accounts: Externally Owned
Account (EOA) or Contract Account (CA) [21]. EOAs are controlled by individuals to initiate
transactions. CAs are controlled by smart contracts and can run predefined code.

Transaction. In EVM-compatible blockchains, external transactions are signed messages initiated
by EOAs to transfer funds, interact with decentralized applications (dApps) [48], or deploy smart
contracts. Internal transactions [45] are issued by smart contracts, instead of EOAs, to interact with
other smart contracts, with similar functionalities as external transactions.

Smart Contract. Smart contracts are self-executing programs that are immutable once deployed.
A smart contract is triggered to execute when it receives an external or internal transaction at its
corresponding CA, and it can transfer tokens or further invoke other smart contracts by initiating
internal transactions.

2.2 ERC-20 Tokens and Price Oracle Services

ERC-20 Standard. The ERC-20 [16] standard defines a set of interface rules that any fungible token
must implement. An ERC-20 token is a fungible token with its smart contract implementing the
ERC-20 interface. All operations involving an ERC-20 token, such as transfers, approving allowances
[61], and checking balances, are executed by functions specified in the token’s smart contract that
complies with the ERC-20 standard. In addition, whenever an ERC-20 token is transferred, an event
log is emitted by the corresponding token contract, known as the Transfer Event Log [16]. The
Transfer Event Log records essential details, including the token type, transferred amount, source
address, destination address, and timestamp of the transfer. This ensures transparency and serves
as a basis for monitoring token activities on the blockchain.

Price Oracle Services. The price oracles [15] are tools used to view price information about
ERC-20 tokens. There are many mature price oracle service providers, such as Chainlink [11],
Euler [20], CoinMarketCap [10], etc. These services aggregate data from multiple sources, such as
different decentralized-exchanges (DEXs) or centralized-exchanges (CEXs), and then apply various
algorithms [55, 81, 83, 89] to figure out token prices, providing accurate USD valuations.

2.3 lllicit Money Flows on the Blockchain

Upstream & Downstream. Common forms of cybercrimes on the blockchain include phishing
scam [65], contract attack [71], exploitation of DeFi protocols [113], etc. These criminal activities
enable perpetrators to siphon cryptocurrencies from victims’ blockchain addresses into their own.
Addresses controlled by criminals that directly receive cryptocurrencies from victim addresses are
referred to as upstream addresses. Due to their close association with victim addresses, upstream
addresses are subject to regulatory scrutiny and enforcement, making it impossible for them to
directly cash out illegally acquired funds through on-chain service providers (such as centralized
exchanges). To evade detection, criminals systematically move funds from upstream addresses
through layers of controlled addresses, using laundering techniques to obscure fund flows and hinder
tracing. Eventually, these funds flow into downstream addresses that are strategically distanced
from victim addresses and appear to be legally compliant and free of suspicion.

Illicit Money Flow Topology. As illicit funds flow from upstream to downstream, they traverse
multiple addresses, generating intricate transactional relationships between these addresses. This
process can be described using graph topology, where nodes represent the addresses involved and
edges denote fund transfers. Formally, we call this topology the illicit money flow topology, a directed
graph structure G = (V, F). Here, V denotes the set of addresses that criminals use to launder

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:6 Yicheng Huo et al.

Building Process Tracing Process

Addresses Ayjc

N On-disk Infrastructure In-memory @ rclevant (Graph Search
@ ! fitinlaiateel 1 MFAs on MFAs Inputs
Blockchain Price Oracle —> ! % !f _ Victim / Source

'
load & decbdy
'

Network Service
| H @ suspicious
tx|traces token|prices Money Flow 1 O R 6
° ° 3 Abstracts 1 Relevant MFAs ‘topologms @‘}
[=l \ {Gs = (Vs, 5)}
) '
'

Encoding

Scheme
>

pl110019
j100110J
U011 158
<

Tx-

£

Granularity

Money Flow e money flows
Analysis

(Detailed)
Money Flows

--------- g flows .
Suspicious Flows — Illicit Money Flow
Topology G = (V,F)

lr[%% lEi @ suspicious Simt'iﬁ"“ O“tPlltS%
..A X 7

1 1 I—r

o v

@"’E T a Money Flow 5

1 :
1
1
1
1

Fig. 2. An overview of the building process and the tracing process of MFTRACER. Tx is the abbreviation
of Transaction. During the (one-time) building process, MFTRACER sets up the infrastructure required for
handling tracing tasks. In tracing tasks, MFTRACER takes the set of victim (source) addresses A;. as input
and derives the illicit money flow topology G = (V,).

illicit money, and ¥ : V X V. — {0, 1} denotes the directed edges indicating the existence of illicit
fund flows between these laundering addresses. For u,0 € V, ¥ (u,0) = 1 means that there occur
illicit fund transfers from u to v; otherwise, there is no such illicit fund movement. As discussed
in Challenge-I and Challenge-II, criminals employ money laundering strategies to deliberately
obscure and distort the true movement of illicit funds, essentially hiding the underlying illicit
money flow topology. In judicial contexts, uncovering this topology invalidates criminals’ attempts
to obscure the connection between the downstream money they cash out and the upstream money
they siphon from victims, thereby furnishing strong evidence for legal enforcement.

3 MFTRACER Design
3.1 Overview

This paper presents MFTRACER, an automated system for tracing illicit money flows on EVM-
compatible blockchains. MFTRACER builds a dedicated on-disk infrastructure that systematically
organizes fund transfers to support high-performance data retrieval for tracing tasks. Our system
adopts a "build-once, reuse-indefinitely" infrastructure model. The infrastructure encompasses
all blockchain transaction data within a given time frame and is independent of specific criminal
events. Once built, it supports tracing for any event within that time frame. This modeling approach
enables MFTRACER to be applicable to both historical and ongoing cybercrime incidents.

Figure 2 provides an overview of MFTRACER, where the left part illustrates the phases of infras-
tructure construction, which we call the Building Process, and the right part depicts the phases
of tracing task execution using the built infrastructure, which we call the Tracing Process. In the
tracing process, MFTRACER takes the victim addresses (since in most cases illicit cryptocurrencies
are siphoned from victim addresses, in this paper we interchangeably refer to source addresses
as victim addresses) as input, performs searches and simulations based on the infrastructure, and
finally outputs the illicit money flow topology. As discussed in Section 2.3, this topology can
serve as significant legal evidence that connects upstream and downstream funds. Our system is
therefore designed to uncover it, which can be used by regulatory bodies and blockchain forensic
investigators for further investigation.

Building Process. In the building process, MFTRACER first retrieves execution traces of all trans-
actions within a given time frame from the blockchain network, together with the necessary token
price information from the token price oracle service provider (@ in the left part of Figure 2). Next,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:7

MFTRACER applies transaction-level money flow analysis to decipher how funds are transferred
between relevant addresses in each transaction. The transaction-granular analysis algorithm takes
the trace of each transaction and the required token price as inputs, effectively detects and outputs
all underlying fund flows triggered by the transaction (). Subsequently, MFTRACER uses the
extracted fund flows to construct a lightweight graph structure (®), which we call Money Flow
Abstract (MFA). MFA encodes all fund transfers occurring on the blockchain within the given time
frame, supporting efficient graph search and pruning for large-scale fund flow analysis. It is used
in the Graph Search phase of the tracing process. In the final step (@), the lightweight MFA, which
preserves only essential topology and timestamp information, and the complete details of money
flows produced by the transaction-granularity analysis are separately encoded and stored on disk,
making up the two core components of the infrastructure. The encoding scheme segments MFA
into chronological subsets and optimizes the retrieval process of detailed money flows. This allows
only data subsets relevant to the ongoing criminal investigation to be loaded into memory, further
reducing data processing overhead.
Tracing Process. For the fund flow tracing task in a cybercrime incident, MFTRACER takes the
victim addresses (source addresses) as input. The relevant MFA subsets following the crime event’s
occurrence time are then retrieved from disk, loaded into memory and decoded (@ in the right
part of Figure 2). Following this, MFTRACER executes a parallel graph search on the MFAs, using
the victim addresses as the root nodes. This search quickly reconstructs a coarse-grained topology
of the downstream fund flow network associated with the victim addresses (). This suspicious
topology, a superset of the true illicit money flow topology, captures all potential addresses and
paths traversed by illicit funds. Then, based on the address and transactional relationships indicated
by the suspicious topology, MFTRACER retrieves the relevant suspicious fund flow details from
disk and loads them into memory. Finally, these suspicious flows are utilized in the money flow
simulation phase (@) to generate the output.

The following subsections explain the design goals and details of each phase. For clarity, the
Graph Search phase is elaborated in Section 3.3 alongside the MFA data structure.

3.2 Tx-Granularity Money Flow Analysis

Motivation. As discussed in Challenge-I, the expressive nature of the EVM allows for sophisticated
mechanisms for fund transfers. In addition to leveraging known DeFi protocols, criminals can freely
deploy custom smart contracts deliberately designed to obscure fund movement. Even a single
transaction can trigger transfers of multiple token types across multiple addresses and generate hard-
to-trace fund flows. These realities lead to two key design insights for automated tracing systems:
@ Tracing systems must support fine-grained analysis of fund transfers, capable of inferring fund
flows from within transaction internals (see Section 2.1 and 2.2 for internal transactions and ERC-20
token transfers), rather than relying solely on raw transaction outputs involving native tokens
as in prior work. @ Tracing systems must have generalized parsing logic capable of interpreting
complex transactions involving arbitrary smart contracts and token operations beyond known
DeFi protocols. To this end, we propose a fine-grained technique for MFTRACER that enables
protocol-agnostic transaction-level fund flow analysis.

In the Tx-Granularity Money Flow Analysis, MFTRACER extracts all fungible token transfers
from the transaction trace. It not only considers the native token explicitly transferred within the
transaction but also the native token moved via internal transactions that are issued by smart con-
tracts, along with all ERC-20 token transfers recorded in Transfer event logs. By incorporating these
factors, MFTRACER ensures a comprehensive coverage of token transfers inside each transaction.

MFTRACER employs a three-step process to dissect the interwoven token transfers and determine
the actual underlying fund flows caused by a transaction. First, it standardizes token values in USD

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:8 Yicheng Huo et al.

Algorithm 1 Tx-Granularity Money Flow Analysis

Input: tx: a transaction; O: the price oracle.
Output: out: the list of all underlying money flows caused by tx.
1: GL « newDirectedGraph() > G, is the local money transfer graph of tx.
2: B « newMap[Address — Balance]() > B is the local balance change table of tx.
> For a € B.keys, B[a] denotes balance change of address a.
3: for t in tx.tokenTransfers do > covering tx, its internal transactions and Transfer event logs

4: m «t.value * O(t.token; tx.timestamp)

> O(k; m) outputs the price per unit of token k at time m.
5: Gy.addEdge(t.from, t.to, m) > add G, an edge with weight m
6: Blt.from] « B[t.from] — m; B[t.to] < B[t.to] + m
7: end for
8: for saddr in B.keys where B[saddr] < 0do > These are net sources that providing funds.
9: for taddr in B.keys where B[taddr] > 0 do > These are net targets that receiving funds.
10: flowThru « Gp.maxFlow(saddr, taddr)
11: ubound «— min(—B[saddr], flowThru, B[taddr])
12: out.append(newFlow (saddr ubound taddr, tx.Info))

> Append an underlying flow from saddr to taddr with value ubound to the result list.
13: end for
14: end for

to unify the analysis of various tokens involved in a transaction. Then it constructs a balance change
table for each address to quantify fund inflows and outflows in USD. This table helps identify the
source addresses providing funds and the target addresses receiving them. Finally, it determines
the maximum possible (upper bound) amount transferred from each source address to each target
address to ensure that all underlying fund flows resulting from each transaction are fully captured.
The identified fund flows are later used to build the MFA, which in turn ensures that the MFA can
fully capture on-chain fund movements and support a coarse-grained graph search for building
suspicious topologies. These flows are also used during the flow simulation. By imposing an upper
limit on each simulated outgoing flow and treating victim addresses as the unique, finite source of
illicit funds, MFTRACER can precisely recover downstream illicit movements from the analytically
derived upper bounds while avoiding simulated flows that exceed what is physically possible.
Details. Algorithm 1 presents the details. For each transaction tx, MFTRACER iterates through the
token transfers triggered by the transaction (line 3). Then MFTRACER determines the real monetary
value of each token transfer in USD based on the price oracle O (line 4). With the values, it builds a
local money transfer graph Gy, for tx and constructs the balance change table B for the addresses
involved (line 5, 6). In the graph Gi, the nodes represent addresses and the directed edges are
weighted by the transfer values in USD. B highlights the profits and deficits caused by tx for the
involved addresses, thus revealing the sources and targets of the net money flows. That is, B[a] < 0
means that address a is a source providing money; B[a] > 0 means it’s a target receiving money.
Next, MFTRACER applies the maximum flow algorithm [88] on Gy, to compute the maximum amount
of money that flows from each source through each target (line 10). The minimum value among
this amount, the source’s deficit, and the target’s profit indicates the upper bound of the amount of
funds that the source address can provide to the target address (i.e., the maximum possible amount).
Finally, MFTRACER appends the obtained fund flow along with necessary transaction information,
such as the hash value and timestamp, to the result list and outputs the list (line 12).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:9

.
 Time 2000
.
N
N

Time810

@ Timesoo
a >
uo u1

.
Time 100 4
.

Victim ’
Address Time 500,
.

.
.
.

Fig. 3. A suspicious topology formed by addresses excluding x and y. Each u; is a laundering address. x, y, v;
and vy are innocent addresses, which are filtered out in the graph pruning and simulation phases. Red edges
indicate the transfers of illicit funds. The clean funds transferred from uy to v; originate from x (time 600)
and uj (time 450), and those transferred from uy to va come from y.

In Appendix A, we include an example describing the walkthrough of Algorithm 1 applied to
the transaction of Figure 1 to facilitate understanding.

3.3 Money Flow Abstract

To optimize the organization of fund flow data, we develop a novel lightweight graph structure
termed Money Flow Abstract (MFA). Instead of relying on raw transaction records, MFTRACER
constructs the MFA using the accurate flows generated by the tx-level money flow analysis (@ in
the left part of Figure 2). This enables the MFA to provide a precise and reliable representation of
fund movements. MFA’s data structure is purposefully designed to support rapid graph searches
and time-based pruning (applied in the Graph Search phase of the Tracing Process), enabling the
efficient identification of the topology formed by the addresses reachable from the victim addresses,
which we call the suspicious topology.

MFA Formulation. Formally, MFA is a graph G, = (V, E, T), where V is the set of addresses
as vertices and E represents directed edges describing the existence of money flows. T is the set
of attributes associated with edges, where MFTRACER stores timestamps to enable pruning in the
Graph Search phase. For u,v € V, we use 7, , € T to represent the collection of timestamps for all
direct money transfers from u to v. To construct the MFA, for each flow from u to v derived from
the Tx-Granularity Money Flow Analysis, MFTRACER adds u and v into V, updates E by adding an
edge from u to v, and updates T by adding the flow’s timestamp to 7.

MFA is a graph-based representation of fund transfers, where reachability indicates the presence
of potential fund movements. For example, if there exists a reachable path from address u to v in
the MFA, it implies that there is a potential fund movement from u to v. We define the suspicious
topology as the topology formed by addresses reachable from the victim addresses and their fund
flow relationships. As a superset of the illicit money flow topology, it includes all possible laundering
addresses and paths. MFTRACER constructs this topology in the Graph Search phase. And it is then
further processed and refined in the Money Flow Simulation phase to extract the final output. We
present an example of suspicious topology in Fig. 3 to enhance intuitive comprehension.

In the following, we start by introducing the data structure of MFA and then discuss how this
structure enables efficient construction and pruning of the suspicious topology.

MFA Data Structure. We develop a data structure for MFA, designed with innovation to meet its
specific needs. The data structure enables rapid graph searches and fast time-aware pruning. It

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:10 Yicheng Huo et al.

consists of only one hash map and four integer arrays. Its lightweight nature allows a large volume
of graph data to reside in memory, eliminating the need for frequent disk access in the tracing
process and significantly improving overall data retrieval efficiency.

structure(Gpfa) = (M, P, N, Tiin, Tiax)-

We use structure(Gpf,) to denote the data structure of a MFA Gy, where M is a hash map
[56], and P, N, Tiin, and Tyax are integer arrays. M maps each address in Gyg’s address set
V = {v1,02..,0y|} to an integer in the integer set {1, 2, ..., |[V|}, which can be considered as the
index of the address. P is an array of size |V|+1, with P[0] = 0, and for 0 < i < |V, P[i] — P[i—1]
gives the number of neighbors for v;. Then, the indices of the neighbors of v; are placed in the
array N, starting at the P[i—1]-th element and ending at the P[i]-th element. In other words,
assuming that v;’s neighbors are {ny, ny, ..., ni} and that k = P[i] — P[i—1], then N[P[i—1]:P[i]]
will be {M[n;], M[nz], ..., M[ni]}, with M[n;] denoting the index of address n;. Tin and Trax
are arrays used to store timestamp data, with each entry corresponding to an entry in array
N. Continuing with the previous notation, then T, [P[i—1]:P[i]] stores {min 7y, p,, ..., min 7y, ,,, }
and Tyax [P[i—1]:P[i]] stores {max 7, 5, ..., Max 7y, n, }. Here min 7, ,, and max 7, ,, represent the
minimum and maximum of elements in Toin;s respectively. Readers may recall the definition of 7,,,
in the MFA Formulation section. Only the maximum and minimum timestamps are retained to
further streamline the MFA, which are used for the pruning.

Why is MFA Lightweight. A potential concern is whether the MFA data structure is truly
lightweight and whether its storage overhead is tolerable. The answer is affirmative, owing to two
key design choices. ©® Edge compression. As shown above, the MFA structure compresses multiple
transfers between the same pair of addresses into a single edge. This compression significantly
reduces the total number of edges the system needs to store, thereby lowering storage costs. @
Compact representation. For each edge, the source address is stored in array P and the destination
address in array N, each requiring only one integer cell. Moreover, multiple edges with the same
source address share a single entry in P, avoiding duplication. Consequently, each edge requires on
average less than or equal to two integer slots. Taken together, these two factors—® compressed
edge representation and @ extremely compact per-edge storage—make the MFA structure highly
space-efficient, as verified by the empirical evaluation in Section 4.1.

Suspicious Topology Construction. In the Graph Search phase, MFTRACER constructs the
suspicious topology G by performing graph search from each victim address Ay;c on the MFA. The
search traverses downstream reachable nodes and edges, adding them to Gs. It is worth noting that
the search begins by mapping the victim address set to an index set using M, and all subsequent
operations are performed in the index space, eliminating further access to M. Hence, accessing
the hash map imposes almost no overhead. The final output is G = (V;, ¥5), where V; is the set of
address indices and 75 : Vs X V5 — {0, 1} encodes edge existence.

During the graph search process, retrieving the neighbors of a given address is the most fun-
damental unit of operation. The specialized data structure of MFA is optimized for this opera-
tion. Specifically, for an address with index i, all its neighbors can be accessed directly through
N[P[i—1] : P[i]]. At the assembly instruction level, this access requires only two memory address
lookups: @ the first contiguously reads two integers at the address of the (i — 1)-th element in the
integer array P (calculated as the base address of P plus i times the integer size); @ the second
reads a contiguous block of bytes at the address of the P[i — 1]-th element in the integer array
N (calculated as the base address of N plus P[i — 1] times the integer size). This assembly-level
optimization significantly improves graph search performance on MFA.

Suspicious Topology Pruning. MFTRACER employs an efficient pruning strategy by leveraging
timestamp information in the MFA during graph search. For a money flow path a; — a; —

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:11

- — ay, with t; denoting the timestamp between address a; and a;41, a valid flow requires that
V1<i<mn, t; >tj_1. This ensures temporal consistency along the path. We formally prove that a
valid flow in Gy,¢, must satisfy the following inequality. The proof can be found in Appendix B.

max Tg; q;,, 2 Oriljai(i min 7g,

sAj+1*

During graph search, MFTRACER uses the above time-based inequality for pruning when visiting
neighbors. Only those neighbors {a;,1} that satisfy the inequality are visited from address a;. Similar
to the neighbor access mechanism in graph search, the data structure of MFA optimizes timestamp
access at the assembly level, ensuring efficiency in this pruning strategy. The left-hand value of the
inequality can be accessed directly through T« [P[i — 1] : P[i]] with only two memory addressing
operations. The right-hand represents the maximum of min 74, 4,,,, Where the a;s are addresses in
the current path between the current in-visit address a; and the source address. After each visit, a;4;
is appended to the tail of the current path, and the right hand value can be immediately updated by
accessing Tpin [P[i — 1] : P[i]].

For an intuitive understanding, we use Fig. 3 as an example. The search starts from u to traverse
downstream paths. After visiting uy, the current path is 4y — u; — uy, and the right-hand
value of the inequality is min 7,,,, = 800. Then, when it comes to visit v;, the left-hand value is
max 7y, ,, = 600 and it does not satisfies the inequality. Thus v; is pruned. In contrast, when visiting
us, the left-hand value is max 7, ,, = 820 that satisfies the inequality, and thereby us is not pruned.

3.4 Encoding Scheme

Motivation. In the Encoding phase, MFTRACER encodes and stores MFA and detailed money flows
onto disk (@ in the left part of Figure 2), establishing the infrastructure required for the Tracing
Process. To optimize the organization of the infrastructure, our encoding scheme is designed to
achieve two primary objectives: © The MFA graph should be appropriately partitioned so that,
during the Tracing Process, only the necessary portions related to the current fund flow tracing
task are loaded into memory, reducing data processing and memory pressure. @ The system should
be able to quickly retrieve the corresponding detailed money flows from disk into memory based
on the addresses and transaction relationships indicated by the suspicious topology, ensuring the
efficiency of the Tracing Process. To this end, we develop an encoding scheme based on Pebble[34]’s
LSM-Tree-based [84] on-disk key-value storage. We opt for key-value storage in our infrastructure
for two key reasons. First, the key-value structure allows data to be partitioned using different keys
and stored as subsets on disk. Compared to other storage solutions such as relational databases, key-
value storage offers more direct and efficient access to these subsets. Second, due to the lightweight
nature of MFA, intensive computation and data processing are conducted in memory, eliminating
the need for frequent disk access. The straightforward disk access methods provided by key-value
storage (e.g., get, scan) are sufficient for our needs. This choice reduces system complexity and
improves system stability. Next, we introduce the partitioning and encoding strategy.
Partitioning Strategy. MFTRACER partitions fund flow data based on time, segments them into
time-sequenced subsets. During MFA construction, the fund flows derived from the Tx-Granularity
Analysis are sorted by the block numbers (heights) of their corresponding transactions. The money
flows from every K consecutive blocks are grouped into the same subset, and MFTRACER constructs
an MFA for each subset. As a result, when analyzing a crime event, MFTRACER can selectively load
into memory, at granularity K, only the MFA subsets corresponding to blocks greater than or equal
to the crime event’s block number, while keeping older subsets on disk and excluding them from
computation. This strategy significantly reduces computation and storage overhead.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:12 Yicheng Huo et al.

Encoding MFAs. For an MFA slice Gr(nrg) constructed using money flows with block numbers
between mK and (m + 1)K, MFTRACER uses the following key-value pairs to encode it.

{KeYGr(nr;;) - Valuecgg} = {(ky,m) — M(structure(Gé]'?;))}.

Here, k, is a specific byte used to indicate the type of key. And structure(GI(nr?a)) is the data structure

of Gli:?a) described in Section 3.3. M(+) refers to MessagePack [59], a highly efficient binary encoding
method. Evaluation on large-scale data [64, 85] shows that it outperforms JSON and Protocol Buffers
in both compacting and decoding efficiency for hash tables and arrays, making it well-suited for
the data structure of MFA.

Encoding Money Flows. As explained in 3.1 (Fig.2 right ©), after graph search, MFTRACER
loads into memory the suspicious flows—detailed fund transfers between address pairs (u,v) in the
suspicious topology Gs, where ¥5(u, v) = 1. To improve the efficiency of this retrieval, we design
the following key-value format to encode money flows.

{Key pm — Value o } = {(kp, m, Mn[u], My [0]) — M(ESZ))},

Here, k is a specific byte used to indicate the key type. Fér:}) denotes the set of all money flows
from address u to address v within blocks numbered from mK to (m + 1)K (i.e., the m-th subset

produced by the partitioning strategy). M,, is the hash map in the data structure of the MFA Gr(nr?a).

M, [u] and M,, [v] denote the indices of address u and v in the index space of anTa), respectively.
This encoding strategy enables efficient retrieval of all money flows between two addresses within
a specific block range directly using the address indices in V;, eliminating the dependency on the
construction of the reverse hash table M;,'. This helps accomplish the second objective.
Enabling Parallel Search. Moreover, the encoding scheme naturally partitions MFAs by time,
enabling MFTRACER to perform searches on relevant slices independently. During graph search, MF-
TRACER runs parallel searches across multiple MFA slices to construct the corresponding suspicious
topologies, further reducing search time and improving tracing efficiency. A complete description
of the parallelization strategy is provided in Appendix C for interested readers.

3.5 Money Flow Simulation

The purpose-built MFA structure and encoding scheme enable MFTRACER to efficiently retrieve
large volumes of fund transfer data, laying the foundation for the Money Flow Simulation phase.
In this phase, MFTRACER executes an effective fund flow simulation algorithm that sequentially
models how illicit funds propagate from source addresses to downstream over time. This enables
the system to pinpoint downstream illicit flows and further remove irrelevant addresses from the
suspicious topology to refine the output. The algorithm relies on detailed fund flow information
(i.e., suspicious flows) to guarantee simulation accuracy. Specifically, MFTRACER first retrieves all
suspicious flows Fs into memory following the method described in 3.4. Then, the system simulates
suspicious flows in temporal order to trace the movement of siphoned funds from source addresses.
In the simulation, by filtering out irrelevant addresses uninvolved in the flow, MFTRACER finally
identifies the addresses used to launder illicit funds and reconstructs the illicit money flow topology.
Details. Algorithm 2 presents the details. The simulation takes the victim addresses Ay;. and
suspicious flows Fs as input and outputs the final illicit money flow topology G. During the
simulation, MFTRACER maintains a balance table B (line 3) to track the amount of illicit funds
held by each downstream address. These illicit funds originate from upstream victim addresses
(line 7). MFTRACER iterates through the suspicious flows in time order and updates B to simulate the
movements of illicit funds in the downstream (line 14, 15). The balance of each address determines

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:13

Algorithm 2 Pseudocode of Money Flow Simulation

Input: Suspicious Flows Fs, Victim (Source) Address Set Ayic.
Output: Illicit Money Flow Topology G = (V,).
Config. Parameter: Reserve Ratio €.
1: (V,F) < newEmptyTopology() > first initial the output G as an empty topology
2: VeV UAy > initial the topology’s address set V with source addresses
3: B «— newEmptyMap[Address — Balance]()
> B[u] gives the balance of address u during the simulation.

4: for flow f; in Fs.SortedByTime() do > iterate the suspicious flows of F; in time order
5 if f;.from ¢ V then continue > the from address haven’t seen illicit funds, filter out f;
6: end if

7: if f;.from € Ay then

8 out flow « f;.value > fully release the illicit money
9 else

10: reserve < B[f;.from] x € > compute the reserve requirement
11: out flow < min(B][f;.from] — reserve, f;.value)

12: end if

13: if out flow > Threshold then

14: B[f;.from] « B[f;.from] — out flow

15 B[f;.to] « B[f;.to] + out flow > handle the flow in the simulation
16: V « VU {f.to} > mark f;.to as laundering address
17: F (fi.from, f;.to) « 1 > update the topology
18: end if

19: end for

the upper limit for the amount of illicit funds it can provide (line 11). If the from address of a flow f;
is unable to provide an amount of illicit funds exceeding a small threshold, MFTRACER filters f; out
(line 13). And consequently, f;’s to addresses, which do not handle the movements of illicit money,
is not marked as a laundering address. Moreover, if a flow’s from address has not seen illicit funds,
MFTRACER directly filters it out (line 5).

For intuitive understanding, we continue to use Fig.3 as an example. First, the irrelevant flow
of time 100 from u; to u; occurs before u; is marked as a laundering address. It is filtered out by
matching the condition in line 5. Second, y does not exist in the suspicious topology. Therefore, the
flow from y to uy that provides the clean money transferred from u; to v, is not simulated and does
not increase uy’s balance. Illicit funds are transferred to us, uy and us, and u;, holds insignificant or
no illicit funds at time 2010. Thus the out flow value (line 11) for the flow from u; to v, is smaller
than the threshold, and thereby v, is filtered out (line 13). In addition, the simulation algorithm is
robust to aggregation of mixed (clean + illicit) balances. Concretely, suppose the transfer u; — u; at
time 100 carries clean funds, while a later transfer at time 810 carries illicit funds, and these amounts
are aggregated and moved to u; at time 810 in a single operation. Algorithm 2 will still correctly
simulate the correct illicit amount transferred from u; to u, and tags u, as laundering-related.
This correctness follows from the constraint in line 11, which ensures that the simulated illicit
outflow does not exceed the illicit balance associated with u; (i.e., the amount of illicit funds actually
received by time 800). This constraint prevents the simulation from attributing more illicit value to
transfers than is physically possible.

Moreover, inspired by reserve requirements [58, 62] in financial systems, we propose a reserve
mechanism to control liquidity distribution in the downstream. By adjusting the reserve ratio €

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:14 Yicheng Huo et al.

(line 10), MFTRACER can achieve improved performance. Interested readers may consult Section
5.1, Appendices D and E for detailed theoretical analysis and empirical validation. And we also
include a guide in Section 5.1 for practitioners to set a proper threshold (line 13) in practice.

4 Evaluation

We implement MFTRACER with 12,381 lines of Golang code (source code can be found here) and
evaluate our system along two key dimensions: Efficiency and Effectiveness. As discussed in
Section 1, tracing systems must meet the efficiency demands of real-world forensic investigations,
be practically deployable in high-throughput blockchain environments and capable of processing
massive fund transfer data and frequent cybercrimes to enable timely intervention. Effectiveness
measures the system’s ability to comprehensively and accurately trace illicit flows. A tracing system
must ensure that no critical link in illicit fund flow is overlooked, which is essential for supporting
law enforcement and compliance efforts. Together, these metrics assess the system’s real-world
readiness. In the following, we answer six research questions RQ1 - RQ6 to guide our evaluation.
Environment Setup. We conducted the evaluation on three identical machines. Multiple machines
were used to enable distributed and multi-node deployments of Neo4j [29] and Elasticsearch [13],
ensuring that both systems were tested under optimal conditions for a fair efficiency comparison
(see RQ3). Each machine has two Intel Xeon Gold 5318Y (24-core, 2.1GHz, hyper-threading disabled),
128 GB DRAM, and three 1 TB SSDs, running Ubuntu 22.04.1 LTS (Kernel v5.15.0).

4.1 Efficiency

To evaluate the efficiency of MFTRACER under realistic conditions, we selected Ethereum as the
target blockchain due to its status as the most representative EVM-compatible platform with the
richest DeFi ecosystem (efficiency analysis on other chains covered in Section 5.4). This choice
ensures that the evaluation reflects the complexity and scale commonly encountered in real-
world investigations. We built MFTRACER’s infrastructure using over two years of full Ethereum
transaction data (August 8, 2022 to September 7, 2024; blocks 15,300,000 to 20,700,000), totaling
831.7 million transactions. This large-scale data serves as a rigorous benchmark for assessing
infrastructure performance. We set the partition size K (as defined in 3.4) to 100,000, dividing the
data into 54 subsets, each spanning 100,000 blocks (about 15.4 million transactions per subset)
for MFA construction. On this foundation, we evaluate the efficiency of two core components: ©
the infrastructure building process, and @ the data retrieval operations conducted on top of this
infrastructure. This approach enables us to evaluate MFTRACER’s ability to operate in real-world
high-throughput blockchain environments. In the following, we answer three research questions.
ROQ1: How efficient is the Building Process of MFTRACER? MFTRACER’s data retrieval func-
tionality is supported by infrastructure constructed during the Building Process. The performance
of this process is crucial for ensuring timely infrastructure updates. We assessed the infrastructure
construction time for the 54 subsets. In Figure 4, the dark gray bars show the time required for
the phases of Tx-Granularity Money Flow Analysis (Alg. 1) and MFA Construction, while the light
gray bars depict the time taken for encoding and writing to disk (@ in Figure 2). On average, each
subset takes 394.8 seconds to process, while it takes about 11.8 days to produce these blocks. This
means MFTRACER builds infrastructure about 2,600% faster than the block generation rate. Such
efficiency allows MFTRACER to handle real-time updates with ease, making it suitable for both
historical analysis and ongoing investigations.

RQ2:Is the MFA lightweight enough to be stored in memory? What is the storage efficiency
of MFTRACER? As discussed in 3.3, MFA is implemented as a lightweight data structure that
supports in-memory graph search and pruning without relying on disk I/O. To verify whether
the MFA can indeed be efficiently held in memory to improve the overall performance of data

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://github.com/blocksecteam/MFTracer/tree/main/codes

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:15

5 I Alg.1 & MFA Construction —— structure(Gmra) F 500
S 600 1 Encoding & Writing to Disk —+— M(structure(Gma))
o
a L 450
» 500 1 —_
§ om
2 La00 2
2 400 1 v
F £
ie} -
S 300 T B0
@ o
o 0]
o N
= 200 3003
[
®
[
@ 100 250
€
£

0 - - 200

153 165 175 185 195 206
The Index of Each Subset Containing K= 100000 Blocks

Fig. 4. Time cost for the Building Process and the corresponding MFA size of each subset. On average, each
subset (~15.4 million transactions) takes 394.8 seconds to process. The MFA instances constructed from two
years of transaction data occupy 17.2 GB of memory in total. The average size of each instance is 327.1 MB.

retrieval, we measured the footprint of all 54 MFA instances. As shown in Fig.4, the structure(Gps,)
line indicates raw size, while M(structure(Gy,s,)) shows the size after binary encoding. The full set
of MFAs, built from two years of transaction data, occupies 17.2 GB in total, averaging 327.1 MB
per subset. Even conservatively estimated at 400 MB each, 90 GB of RAM can hold more than 230
subsets—enough to cover all the transaction data on Ethereum. The evaluation results demonstrate
MFA’s lightweight nature and applicability for in-memory use.

Additionally, including full detailed money flow data (i.e. the output of Alg. 1) and all MFA

instances, the entire infrastructure uses 107.1 GB on disk (about 1.98 GB per subset). In comparison,
constructing a graph storage using Neo4j on the same data (i.e. the output of Alg. 1) results in a
disk usage of 1010.9 GB. (To ensure a fair comparison, we used a single-machine deployment to
minimize Neo4j’s storage overhead.) Moreover, the graph constructed using two leading in-memory
graph databases, Memgraph [25] and RedisGraph [38], each exceeded 400 GB in size, rendering
them impractical for large-scale blockchain data. Even the combined memory of our three machines
was insufficient to hold such graphs. In summary, MFA’s lightweight design yields a 23.3X to
58.7x improvement in storage efficiency over the mainstream graph databases. Even with full data
included, MFTRACER is still 3.7X to 9.4X more efficient in terms of storage.
RQ3: How efficient is MFTRACER in data retrieval? Retrieval speed directly impacts how
long MFTRACER takes to complete a tracing task, and is critical to enable timely intervention.
We evaluated MFTRACER’s data retrieval performance by deploying it in realistic scenarios and
executing real-world tracing workflows. We measured the time from providing MFTRACER with
source addresses to the completion of the graph search and retrieval of all suspicious flows into
memory. Based on this, we compute its fund flow retrieval speed.

To ensure that the test data was unbiased and representative of actual blockchain data distribu-
tions, we adopted the following strategy: In each round, we randomly selected a source address that
had not been visited in previous graph searches, and used it to initiate a new tracing task, repeating
until all addresses across the two-year data were covered. As a baseline comparison, we repeated the
test tasks with Neo4j [29] and Elasticsearch [13], replacing MFTRACER’s on-disk infrastructure with
these leading disk-backed storage systems. To ensure a fair and rigorous comparison, both systems
were deployed in their recommended distributed configurations across three identical physical

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:16 Yicheng Huo et al.

Table 1. Data retrieval speed comparison between MFTRACER’s data retrieval infrastructure and two leading
storage backends that support graph data organization and query.

MFTRACER Neo4j Elasticsearch

Retrieve Flows (per ms) 90.02 6.37 0.30
Speedup - 14.13% 300.0%

Table 2. Overview of the top-level cybercrime incidents. "Money" refers to the amount of money siphoned
from victims. "Addresses" is the number of blockchain addresses involved in money laundering. "Records"
refers to the number of illicit money flow records.

‘ Time ‘ Money ‘ Addresses ‘ Records
TxPhish [35] | 2024/08-2024/09 | $54M | 151 | 292
LIFI [3] | 2024/07-2024/09 | $11M | 93 | 135
Atomic [1] | 2023/06-2023/07 | $10M | 389 | 1080
HB [2] | 2023/01-2023/02 | $50M | 469 | 3887
XScam [108] | 2022/06-2022/11 | $583k | 837 | 1307

machines with purpose-built indexing strategy, allowing them to fully leverage their designed
scalability and performance optimizations. Elasticsearch was set up as a three-node cluster with
properly distributed shards and JVM heap capped under 32 GB to avoid GC issues [22], following
official best practices [23]. Similarly, Neo4j used Causal Clustering [96] with one core server per
machine. These setups ensured both systems operated under optimal conditions.

Table 1 shows the data retrieval speed (i.e., the average number of flows retrieved per millisecond).
Compared to Neo4j and Elasticsearch, MFTRACER achieves a 14.1x and 300.0x speedup, respec-
tively. In practical cybercrime investigations (such as [1, 43, 108, 110]), especially with increasing
laundering depth as discussed in Challenge-II, the number of fund flows to analyze often exceeds
107. Neo4j takes over four hours just to load the data, rendering it unsuitable as a backend for
operational use. MFTRACER’s optimized infrastructure reduces this to less than 15 minutes. This
level of performance underscores its practicality and suitability for real-world forensic use.

A potential concern is that, in the retrieval-efficiency evaluation, the chosen source addresses are
not all known illicit addresses, and that illicit flows may exhibit different patterns from normal traffic.
One might therefore ask whether the evaluation realistically reflects the system’s performance in
actual criminal investigations. We argue that it does. MFTRACER’s retrieval stage is designed to fetch
suspicious flows that are covered by the suspicious topologies (® in the right part of Fig.2). These
suspicious flows are a superset of illicit flows, and normal (benign) flows included in the suspicious
flows are pruned during simulation (see Section 3.3 and 3.4). As mentioned above, in operational
cases the volume of suspicious flows to retrieve and simulate commonly reaches 10”. Because
normal flows vastly outnumber illicit ones within the suspicious flow set—usually by several orders
of magnitude—the retrieval workload is overwhelmingly dominated by normal flows. Consequently,
the workload of retrieving suspicious flows is effectively identical to that of retrieving normal flows.
Therefore, our evaluation strategy provides a realistic measure of retrieval cost. For completeness,
we also repeated the experiments using a large set of confirmed laundering addresses (drawn from
the dataset described in Section 4.2); these runs produced consistent results.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:17

4.2 Effectiveness

Large-scale Ground Truth Dataset. Currently, there are no truly deployable baseline systems
capable of operating on the massive-scale data typical of high-throughput blockchain environments
and automatically handling real-world cybercrime investigations on EVM-compatible platforms,
leaving us unable to demonstrate the effectiveness of MFTRACER through comparisons with baseline
methods. Furthermore, no publicly available dataset exists for such evaluation. To address this gap
and enable rigorous evaluation of MFTRACER, we collaborated with investigators from a leading
security firm! to build LaunderNetEvm41. It is the first publicly available and, to date, the largest
dataset of ground-truth laundering flows on EVM-compatible blockchains. In total, it contains 1,939
accounts involved in money laundering activities and 6,701 detailed illicit fund flow records—an
order of magnitude larger than any previously disclosed (Bitcoin) illicit flow dataset, collectively
covering over US $125 million in stolen assets. Categorized by victim addresses, the dataset
includes 41 laundering cases drawn from some top-level cybercrime incidents between 2022 to 2024
(Table 2). Its cybercrime coverage spans phishing, smart contract exploits, private-key theft, social-
engineering scams, etc., reflecting the modern threat surface. This diversity allows evaluating the
generalizability and robustness of tracing systems under various real-world laundering scenarios.
To guarantee the reliability of each entry, seven experts from a leading blockchain security
firm! and the broad security community annotated and cross-validated it using their domain-
specific insights. The dataset was created in strict accordance with real-world forensic investigation
workflows and a consensus-driven review process. Details of the dataset creation process can be
found in the dataset repository or in Appendix F. On average, annotating and verifying a single
record—including accurately extracting fund flows from massive transaction traces, understanding
smart contract logic, interpreting DeFi protocol behavior and assessing laundering strategies—takes
approximately 3-4 minutes. Cumulatively, the over six thousand records result in more than 350
hours of specialized manual effort. To foster further research in this field, we have open-sourced
the dataset along with address labels and case annotations with detailed visualizations. We hope
this will serve as a stepping stone for reproducible evaluation and future benchmarking in this area.
Formally, the dataset can be modeled as a weighted graph G = (Vg, M), where V, represents
the set of addresses used for money laundering, and My : V; X V; — [0, +c0) indicates the
volume of illicit fund flows between them. The address set V; is composed of three subsets: V, =
Avic U Vinter U Vierminal- Avic includes the victim addresses where illicit funds originate. Vipe, contains
addresses used for intermediate transfers. And Vieyminal represents endpoints where the funds
are ultimately cashed out. For addresses u,v € Vj, Mg(u, v) specifies the amount of illicit money
transferred from address u to v. Then, we evaluate MFTRACER by providing it with the source address
set Ayic as input and analyzing the generated illicit money flow topology G = (V, ¥). Readers may
recall the formal definition of G provided in Section 2.3. Our evaluation of its real-world forensic
effectiveness is guided by research questions RQ4 - RQ6.
Overall Performance. MFTRACER achieves a flow coverage of 94.09% in the real-world laundering
crimes. In terms of asset value, it successfully traces the final destinations of 96.27% of the stolen
funds. This high coverage demonstrates its effectiveness in tracing illicit flows end-to-end and
providing actionable forensic evidence that links upstream sources and downstream laundering
endpoints. Furthermore, MFTRACER newly identified 686 addresses involved in money laundering
and 4183 previously undiscovered illicit fund movements. We have reported these new findings
to the security community to support forensic and threat intelligence research. The complete list
of addresses and transactions can be found here. In total, MFTRACER reconstructed complete flow
trajectories and provided strong evidence for illicit assets worth up to $120.9 million, highlighting
its practical impact. We hope that this will contribute to the security of DeFi ecosystem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://blocksec.com/
https://blocksec.com/
https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/findings

63:18 Yicheng Huo et al.

Table 3. For multi-perspective presentation, evaluation results are disaggregated by metrics, parameters and
top-level incidents. F.C. refers to FlowCoverage. T.C. refers to TerminalCoverage. P means Precision. € is the
reserve ratio discussed in Section 3.5 and 5.1. More values of € are presented in Appendix E.

| TxPhish | LIFI | Atomic | HB | XScam

Metric | FC. TC. P | FC. TC. P | FC. TC. P | FC. TC. P| EC. TC. P

€ =0.00 | 0.9534 0.92550.8455| 0.9948 0.9953 0.6212| 0.9621 0.9634 0.8118| 0.9713 0.9995 1.0| 0.8231 0.7382 0.7401
€ =10.05 | 0.9582 0.9424 0.8320| 0.9930 0.9970 0.5222| 0.9410 0.9273 0.8290| 0.9699 0.9995 1.0| 0.8335 0.7477 0.7185
€=0.15 | 0.9601 0.9326 0.8319| 0.9954 0.9974 0.4855| 0.9187 0.8767 0.8207 | 0.9711 0.9995 1.0| 0.7967 0.6912 0.7162
€ =10.35 | 0.9618 0.9517 0.8166| 0.9929 0.9968 0.4555| 0.8915 0.8042 0.8297 | 0.9692 0.9968 1.0 0.7754 0.6698 0.6958

RQ4: How effective is MFTRACER in uncovering howillicit money moves? A core requirement
for tracing tools is the ability to expose how stolen assets actually propagate on-chain. To answer
this, we assess the FlowCoverage of MFTRACER, defined as the proportion of illicit fund flows that
are successfully captured in the output topology G generated by the system.

Zu,UEVﬂVg T(u’ Z)) * Mg(ua 0)
Zu,z;eVg Mg(u’ U)

A higher coverage rate means the tracer has recovered a larger share of the real laundering paths.
Table 3 reports the results. With the reserve-ratio parameter left at 0%, MFTRACER already attains
an average flow coverage of 94.09%, convincingly revealing the trajectories of illicit funds—often
regarded as the most critical challenge of laundering forensics. Tightening the reserve-ratio further
nudges coverage upward, yet overall flow coverage stays above 90% under all tested settings. These
numbers confirm that MFTRACER consistently reconstructs almost the entire flow graph, giving
investigators a near-complete picture of the money laundering scheme.

RQ5: Is MFTRACER effective in tracing where illicit money is eventually directed? In addition
to overall path coverage, another critical concern in real-world forensic investigations is how well
a tracing system can identify the endpoints of illicit fund transfers—formally defined as

Zuevvgoevay, F (u,0) * Mg(u,0)
Zuevg,uew Mg(u, v) ’

where V; refers to Vieyminal- The denominator indicates the total volume of illicit money flowing to
the terminal addresses and the numerator is the portion that MFTRACER successfully traces. The
terminal addresses correspond to centralized service providers where criminals attempt to cash
out stolen assets. The ability to trace and identify these endpoints significantly strengthens the
evidentiary basis for requesting cooperation from centralized entities during investigation and
recovery efforts. The test results are shown in Table 3. MFTRACER achieves an average address-level
terminal coverage of 92.43%. When measured by asset value, it successfully identifies the endpoints
of 96.27% illicit funds, meaning virtually all high-value outflows are captured. This high terminal
fidelity is essential for issuing subpoenas, freezing accounts, and ultimately recovering funds.
In short, MFTRACER not only maps how dirty money moves but also where it stops, supplying
investigators with actionable targets for downstream intervention.

RQ6: What is the precision of MFTRACER? To answer this, we measure how many of the
identified addresses are truly involved in laundering activities. The metric is Precision = [VNV,]|/|V].
Precision reflects the proportion of correctly identified laundering addresses among all addresses
flagged by the system. It affects the manual effort required during legal verification, where human
analysts must examine the output as potential evidence. A higher precision reduces the time

FlowCoverage =

TerminalCoverage =

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:19

and cost of forensic review. MFTRACER delivers an average precision of 80.37%—enough to be
operationally useful while still preserving near-exhaustive coverage of illicit flows. In practice,
that means analysts need to only filter a small fraction of the returned entities, shrinking the
evidence-building effort from hundreds of manual hours to just tens of minutes.

Take some laundering cases in LIFI as a stress-test: the laundering path stretched over 21 hops
and potentially entangled about 950,000 addresses via extensive interaction with popular on-chain
services. Even under this extreme fan-out, MFTRACER’s fine-grained flow analysis, pruning and
simulation logic retained > 99% flow coverage yet kept precision above 60%. Because every item
submitted to court must ultimately be checked by a human, completeness of coverage (low false-
negative rate) outweighs perfect purity for an automated tracer. Over-optimising for precision
would risk omitting critical evidence links and undermine the investigation. MFTRACER therefore
aims for a forensics-friendly trade-off: broad coverage to ensure no key flow is lost, coupled with
sufficient precision to keep the review queue manageable—an alignment that our field partners
confirm meets real-world investigative needs. Beyond the quantitative results, we investigated the
underlying reasons for false positives. Details and mitigation strategies are discussed in Section 5.3.

5 Discussion
5.1 Guidance: Setting Proper Parameters in Practice

Partition Size K. The partition size K controls the number of blocks included in each subset during
infrastructure construction. Increasing K enlarges each MFA instance, covering more transactions
and reducing the total number of instances. Since MFTRACER is designed to execute parallel graph
searches (detailed in Appendix C) over multiple MFAs, decreasing K (i.e., producing more instances)
enables better utilization of available hardware threads and can accelerate tracing. More instances
also provide finer-grained temporal slicing, preserving more precise maximum and minimum
timestamp information (see Section 3.3, MFA Data Structure) and thereby improving time-based
pruning, which reduces the number of suspicious flows that must be loaded into memory before
the money flow simulation stage. However, there are trade-offs. Each MFA uses a hash map to
map addresses to integers and store edges in integer space. Fewer MFA instances (i.e., larger
K) reduce the number of times active addresses—often spanning long periods and generating
many transactions—are redundantly stored across hash maps. Similarly, the edge-compression
mechanism of MFA (see Section 3.3, Why is MFA Lightweight) benefits from larger K, since more
transfers can share a single integer entry in array P, further improving storage efficiency. In
practice, practitioners can tune K based on the deployment environment. With abundant hardware
threads, using a smaller K helps to fully exploit parallelism; with limited threads, a larger K reduces
redundancy and alleviates memory and storage pressure. Empirically, maintaining each MFA
instance between 200 MB and 500 MB yields an effective balance.

Reserve Ratio €. The reserve ratio is a parameter used in the fund-flow simulation algorithm
(Section 3.5). It controls the breadth and depth of the topologies produced by the simulation:
increasing the reserve ratio associates more outflows with the same inflow, concentrating liquidity
closer to the source addresses; decreasing it shifts liquidity farther away, thereby increasing topology
depth. A theoretical analysis of how reserve ratio affects topology width and depth is provided in
Appendix D. Because this parameter operates during the tracing (simulation) stage rather than
during infrastructure construction, practitioners can run the same forensic task with multiple
reserve-ratio settings and select the most appropriate topology by comparing outcomes. In practice,
an excessively large reserve ratio yields inflated intermediate balances and traps large fractions of
illicit funds in intermediate laundering addresses that do not progress downstream; this can be
detected by inspecting terminal nodes (out-degree 0) to see whether they correspond to plausible

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:20 Yicheng Huo et al.

cash-out services. Conversely, an overly small reserve ratio produces overly sparse topologies
that contain too few addresses and have cash-out endpoints very far from the source, indicating
that the reserve ratio should be increased. Empirical results (Appendix E) show that lowering the
reserve ratio tends to increase precision at the cost of flow coverage, while raising it increases
coverage but also raises the false-positive rate. Empirically, a reserve ratio in the 5%-10% range
yields near-optimal overall performance.

Simulation Threshold. Line 13 of Algorithm 2 implements a per-flow threshold. A flow is
discarded when its illicit amount (as computed in line 11) falls below this threshold. This parameter
controls the fineness (granularity) of the resulting illicit-flow topology: lowering the threshold
includes smaller-value illicit flows and yields a finer-grained topology, whereas raising it coarsens
the topology by filtering out lower-value flows. The granularity is not unilaterally desirable to
maximize: for example, in a case involving on the order of $1 billion in stolen funds, movements of
only a few cents or a few dollars are typically immaterial to investigators. Practically, practitioners
care more about how substantial sums are moved and cashed out—information that matters for
asset recovery and prosecution. A properly chosen threshold thus reduces the manual review
burden for court evidence: an excessively small threshold produces many low-value "noise" flows
and increases review effort, whereas an overly large threshold may omit legally important transfers
and weaken evidentiary value. Because this parameter, like the reserve ratio, operates during the
tracing stage, it can be tuned at low cost for each investigation. Empirically, we find that setting the
threshold 0.01%-0.1% of the total implicated amount offers a good balance between coverage and
reviewer workload. Adversarial note: Some adversaries may deliberately split illicit funds into many
micro-transactions at very low rates. In such cases a large threshold will cause the reconstructed
topology to contain far fewer addresses/edges and fail to cover illicit flows adequately. If this
behavior is detected, simply lowering the threshold and rerunning the tracing process recovers
the missed micro-flows. Reasonable automated diagnostics include: @ monitoring the number of
nodes/edges in the result and flagging unusually sparse topologies; @ checking the fraction of total
asset value captured by terminal addresses in the topology; and @ detecting heavy tail distributions
of addresses’ transaction counts that suggest micro-structuring.

5.2 Evasion Techniques and Countermeasures

MFTRACER operates based on execution traces recorded by EVM and has a small trusted computing
base, making it inherently more robust against evasion attempts. Here, we discuss potential evasion
techniques that occur under normal network conditions. For threats that compromise the blockchain
itself (e.g., consensus splits, large-scale DDoS), we refer readers to prior studies [51, 60, 63, 87, 102],
which provide detailed discussions on attack vectors and defense mechanisms in such contexts.

® Non-Fungible Tokens (NFTs). Unlike fungible tokens, NFTs are unique and indivisible assets
identified by globally unique public IDs. Criminals may attempt to exploit NFT transfers for
laundering to evade detection by MFTRACER. But each NFT transfer triggers a standardized Transfer
event (ERC-721 [17] or ERC-1155 [14]) that includes the NFT’s public identifier. This makes each
NFT’s on-chain movement easily traceable and thus less attractive for money laundering. In
addition, mature NFT monitoring tools (e.g., OpenSea [32], NFTScan [30], Zapper [46]) are widely
available. MFTRACER can integrate with an ERC-721/1155 log decoder or existing monitoring tools
to effectively address NFT-based laundering schemes.

® Decentralized Cross-Chain Bridges. Unlike centralized services subject to regulatory oversight,
decentralized cross-chain bridges often lack legal entities, making them attractive for illicit fund
transfers. Criminals may exploit them to move assets to new ledgers and evade tracing. However,
MFTRACER is designed with inherent multi-chain deployability that can efficiently model bridge
interactions as atomic in/out edges in the MFA. When coupled with a specialized bridge transaction

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:21

parser (e.g., MetaSleuth [26], OKLink [31], Pulsar Finance [37]), MFTRACER can prevent evasion
through bridges and reconstruct the full path across networks without altering its core.

® Zero-knowledge Mixing Services. Zero-knowledge mixers like Tornado Cash [40] cryptograph-
ically sever the link between input and output addresses, preventing any on-chain tracer like
MFTRACER from following assets through the mixing pool. Under AML compliance requirements,
the widespread imposition of rigorous off-chain scrutiny on mixers across jurisdictions and the
refusal of service providers to handle funds originating from them have served as a deterrent to
their usage. There also exists a distinct line of off-chain research [57, 66, 92, 104] that focuses on
recovering the linkability through social media activity, network traffic and other side-channel
signals. Our work is orthogonal to these off-chain de-anonymization efforts and we address distinct
layers of the problem space. These complementary methods can be used to reconnect flows around
the pool, after which MFTRACER seamlessly resumes downstream tracing,.

5.3 Limitation: False Positives and Mitigation Strategies

While MFTRACER demonstrates strong performance in flow coverage, a limited number of false
positives were observed in certain real-world tasks. To better understand these, we conducted a
detailed comparison between MFTRACER’s tracing outputs and the ground truth fund flows. Our
analysis reveals two primary sources of false positives.

@ Parameter Sensitivity. The reserve ratio parameter affects the depth and breadth of the generated
fund flow topology (discussed in Section 5.1). An overly conservative or aggressive setting can
inflate the scope of simulated flows, resulting in false positives. Due to the high running efficiency
of MFTRACER, this issue is readily identifiable: by running MFTRACER under multiple reserve ratio
settings and comparing the topological differences, investigators can isolate spurious branches and
quickly discard them. This strategy offers a fast and low-effort diagnostic mechanism for tuning
the system’s sensitivity. Practitioners may also refer to Section 5.1 for details.

@ Token Volatility and Temporal Value Drift. A more subtle source of false positives stems from
temporal valuation errors due to fluctuations in token prices. MFTRACER’s fund flow simulation
relies on USD-denominated token prices to infer monetary value at the moment of each transaction.
The valuation performs well for short-term flows, but may exhibit slight deviations in the context of
long-term laundering strategies. For example, suppose an attacker transfers $100,000 worth of ETH
to address A in December 2024. These assets remain idle for over two months before being moved
entirely to address B in February 2025. If ETH depreciates during that time, and is only worth
$80,000 at the time of the outbound transaction, MFTRACER’s simulation will record a residual
balance of $20,000 at address A. As a result, subsequent unrelated transactions from A may be
falsely flagged as laundering activity—since the system assumes part of the illicit funds remain
there. This phenomenon arises from valuation drift—a mismatch between the token’s market price
at time #; (deposit) and #; (withdrawal). Similar distortions occur in the presence of price slippage.
For instance, during panic-induced sell-offs, DeFi swaps may execute at unfavorable rates, causing
a discrepancy between the input and output values. From a balance-sheet perspective, part of the
"missing" value is effectively transferred to public liquidity pools. Without address-level contextual
information, MFTRACER may incorrectly interpret such residual value flows as criminal transfers,
leading to false labeling of common service addresses as laundering participants.

Manual Review and Mitigation Potential. As discussed in RQ6, the false positives can often be
filtered out manually within a few dozen minutes by inspecting token types and public address
tags. Here, to minimize human review time, we propose two practical improvements: @ Token-
Aware Asset Balances. Currently, MFTRACER maintains per-address USD-denominated balance
sheets. We propose extending this to token-specific multi-asset ledgers. By appending token type
metadata to the transaction-level fund flow outputs, MFTRACER can construct asset-based rather

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:22 Yicheng Huo et al.

Table 4. Counts of external native token transfers, internal native token transfers, and ERC-20 token transfers
across six mainstream EVM-compatible platforms, covering all transactions up to March 5, 2025. Following
gas fee based rule [27], native token transfers with amounts below 0.001 were filtered out to accurately count
non-dust [12, 91] transfers that cause effective fund movement.

Chain ‘ External Native Internal Native ERC-20 Token Total
Ethereum 1,298,145,992 2,203,265,568 2,041,316,016 5,542,727,576
BSC 1,362,908,846 1,856,106,341 9,762,413,707 | 12,981,428,894
Optimism 94,435,717 295,031,281 1,131,759,616 1,521,226,614
Arbitrum 229,462,448 710,453,173 1,650,238,189 2,590,153,810
Base 486,773,952 485,954,349 2,583,982,243 3,556,710,544
Avalanche 82,150,539 247,168,056 595,087,068 924,405,663

than value-based balance states. This approach would eliminate valuation drift caused by market
fluctuations. Although this enhancement may marginally increase storage overhead, MFTRACER
already achieves a 3.7X—9.4X improvement in storage efficiency, making this trade-off acceptable.
@ Integration with Address Labeling Systems. To address errors stemming from price slippage
and transfers to public infrastructure, we suggest integrating MFTRACER with blockchain address
labeling services such as Etherscan [19], Moralis [95], MetaSleuth [26], or Chainlabs [24]. These
platforms maintain curated labels for exchanges, bridges, liquidity pools, and other non-adversarial
service addresses. Incorporating such data into MFTRACER’s simulation phase would allow the
system to avoid flagging known public infrastructure as part of laundering trails—particularly in
cases where residual value "leaks" to public endpoints during volatile market conditions.

5.4 Efficiency: Applying MFTRACER to Other EVM-Compatible Platforms

Section 4.1 demonstrated that MFTRACER can efficiently handle Ethereum’s massive transaction
scale. We next examine whether it can handle other common EVM-compatible blockchains, which
differ in both data volume and transaction throughput.

Table 4 summarizes the total number of fund transfers across six mainstream EVM-compatible
chains, covering all the three categories that MFTRACER processes in its tx-level money flow analysis
stage (@ in the left part of Figure 2): external native token transfers, internal native token transfers,
and all types of ERC-20 token transfers. Most of these chains (Optimism, Arbitrum, Base, Avalanche)
exhibit total transfer volumes well below Ethereum (e.g., Optimism at 1.5B, Avalanche under 1B),
suggesting that Ethereum already represents a worst-case baseline for our system.

The only exception is BSC, which recorded 12.98 billion transfers—2.34x the total observed on
Ethereum—primarily due to its heavy reliance on ERC-20 token operations (9.76B alone). Even
under this scale, MFTRACER’s MFA graph representation would require at most 2.34X the memory
used for Ethereum, i.e., 40.2 GB for two years of data, and even less in practice due to MFA’s edge
compression and compact representation (see Section 3.3, Why is MFA Lightweight). Such memory
usage is well within the capabilities of modern commodity servers.

Beyond data volume, throughput is another critical factor. Among the mainstream EVM-compatible
platforms, BSC exhibits the highest transaction throughput. On July 1, 2025, BSC increased its block
speed to sub-second levels (0.75s/block), boosting its transaction throughput to ~ 150 TPS—nearly
10x Ethereum’s rate [9]. Even so, MFTRACER maintains a processing rate of 39,013 TPS, which is
more than 260X faster than BSC’s post-upgrade generation speed. This ensures that MFTRACER
can not only keep pace with but also comfortably exceed the demands of real-time infrastructure
updates and tracing tasks of ongoing crimes on BSC, even under its fastest production settings.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:23

5.5 Extending MFTRACER Beyond EVM-Compatible Blockchains

Although MFTRACER is designed for EVM-compatible blockchains, its modular architecture enables
broader applicability across heterogeneous ledger models. Components such as the Money Flow
Abstract (MFA), time-partitioned on-disk encoding, and parallel graph search are largely blockchain-
agnostic—they rely only on generic money-flow records with timestamps and values rather than on
EVM semantics. These modules can thus be directly reused on UTXO- [97], DAG- [101], or resource-
based [7, 39] chains, provided that their transactions can be normalized into address-to-address
transfer tuples. Similarly, the money-flow simulation mechanisms, which operate on time-ordered
fund flows, remain effective regardless of the underlying virtual machine or consensus design.
The main adaptation effort lies in the transaction-level parser and semantic interpreter. On EVM
chains, MFTRACER reconstructs internal transfers and ERC-20 token transfer events from execution
traces and logs; for non-EVM blockchains, equivalent logic must be implemented to translate native
transaction semantics into standardized flow records. In UTXO-based chains, this involves resolv-
ing multi-input-multi-output transactions, detecting change outputs, and handling coin-mixing
patterns to express resulting flow records as equivalent (from, to,amount, time) tuples for MFA
ingestion and flow simulation. Similarly, extended UTXO and Move-based resource models [52]
would require chain-specific parsers to interpret datum fields or object transfers. DAG (Directed
Acyclic Graph) based ledgers require time-order reconstruction from partial confirmations, while
resource-oriented systems like Sui [39] or Aptos [7] necessitate extracting object transfers from VM
effects. Beyond the parser, modules for price normalization, bridge handling, and timestamp syn-
chronization may need moderate customization. Once these adapters are implemented, MFTRACER’S
existing infrastructure—its lightweight on-disk MFA encoding, high-throughput parallel graph
search, and simulation-based illicit-flow inference—can operate unmodified across heterogeneous
blockchain paradigms, preserving both scalability and forensic utility beyond the EVM domain.

6 Related Work

Fund Flow Analysis. Existing work has primarily focused on fund flow analysis on the Bitcoin
blockchain. Phetsouvanh et al. [86] developed EGRET, using path confluence to identify extortion-
related flows. Zhao and Guan [82] clustered addresses and visualized money flows in cases like Mt.
Gox [28]. Tovanich et al. [99] applied taint flow extraction and graph embeddings to analyze how
coin flow patterns vary by actor, enabling source attribution and actor classification. Meiklejohn et al.
[78] used co-spending heuristics and re-identification to uncover payment patterns for flow analysis.
Maser et al. [112] proposed a risk-scoring model to assess the likelihood of future blacklisting for
transaction flows.

MFTRACER vs. Previous Work. Compared to these studies, MFTRACER introduces several key
advancements: @ Full EVM-compatibility. While existing approaches are not applicable to the
sophisticated EVM environment, MFTRACER supports complex smart contracts and diverse token
types on EVM-compatible blockchains, enabling fine-grained, protocol-agnostic and robust tracing
across both standard DeFi protocols and adversarially crafted smart contracts. @ High-efficiency
infrastructure. Existing studies all need to process large-scale transaction data, but none of them
provides designs for fast and scalable data organization and retrieval. Thus, they are not able
to support timely intervention in real-world cybercrime events and do not meet the efficiency
demands of real-world investigations and practical deployment. MFTRACER fills this gap with a
domain-specific infrastructure-level design optimized for both speed and storage. ® Behavior-
agnostic tracing. Unlike existing studies that rely on predefined laundering patterns, MFTRACER
performs rapid search and simulation without assuming fixed behavioral signatures—ensuring
generalization to diverse and evolving money laundering strategies observed in the wild.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:24 Yicheng Huo et al.

Additional Work. Additional studies on AML in the cryptocurrency domain, which are not central
to our focus, are covered in Appendix G.

7 Conclusion

In this paper, we propose an automated system MFTRACER for tracing illicit money flows on
EVM-compatible blockchains. We are the first to identify the critical real-world challenges and
address them in a unified framework. Against the backdrop of a domain where tracing remains
labor-intensive and expert-driven, MFTRACER is developed in response to two pressing real-world
demands: operational efficiency and forensic effectiveness. © We propose a novel fine-grained tech-
nique that enables protocol-agnostic transaction-level fund flow analysis. @ We further propose a
lightweight and purpose-built graph abstraction MFA with a tailored storage backend to support
efficient data retrieval (14X to 300X speedup). @ We also present a simulation algorithm for down-
stream illicit flow discovery. Applied to real-world cybercrime incidents, MFTRACER successfully
traced 94.09% of illicit fund flows on average. And we newly reported 686 blockchain addresses
and 4183 related transactions involved in money laundering that were previously undiscovered.
MFTRACER was able to reconstruct complete fund flow trajectories and provide strong evidence
to investigators for US $120.9 million in stolen assets. We have also released the first open and
large-scale dataset, which we believe will support future forensic and threat intelligence research.

Acknowledgments

We would like to thank the anonymous reviewers for their comments that greatly helped improve
the presentation of this paper. We also want to thank Prof. Lucianna Kiffer for shepherding our
paper. In addition, the first author would like to thank Bowen He, Yuan Chen, and Zhuo Chen
for their help. This work is partially supported by the National Key R&D Program of China (No.
2022YFE0113200), the Innovation and Technology Commission of Hong Kong (ITC) under Mainland-
Hong Kong Joint Funding Scheme (MHK]JFS) under Grant MHP/135/23, the InnoHK initiative, the
Government of the HKSAR, and the Laboratory for AI-Powered Financial Technologies (AIFT).
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of funding agencies.

References

[1] 2023. Atomic Wallect Hack. https://atomicwallet.io/blog/articles/june-3rd-event-statement Referenced July 2, 2025.

[2] 2023. Harmony Bridge Attak. https://x.com/zachxbt/status/1619489550233133056 Referenced July 2, 2025.

[3] 2024. 2024 LLFI Hack. https:/li.fi/knowledge-hub/incident-report-16th-july/ Referenced July 2, 2025.

[4] 2024. How Lazarus Group laundered $200M from 25+ crypto hacks to fiat from 2020-2023. https://zachxbt.mirror.xyz/B0-
UJtxN41cJhpPtKvOv2LZ8u-0PwZ4ecMPEdX4I8VE Referenced July 2, 2025.

[5] 2024. Lazarus Group 305M DMM Bitcoin hack. https://x.com/zachxbt/status/1812466959109521649 Referenced July 2,
2025.

[6] 2025. Adding Liquidity vs. Taking Liquidity in Trading. https://www.zeiierman.com/blog/adding-liquidity-vs-taking-
liquidity-in-trading Referenced July 2, 2025.

[7] 2025. Aptos: The World’s Most Production-Ready Blockchain. https://aptosfoundation.org/ Referenced October 2, 2025.
[8] 2025. BlockSec Phalcon. https://blocksec.com/phalcon Referenced July 2, 2025.
[9] 2025. Chain Scalability. https://chainspect.app/chain/bnb-chain Referenced July 2, 2025.
[10] 2025. CoinMarketCap. https://coinmarketcap.com/ Referenced July 2, 2025.
[11] 2025. Decentralized oracle networks for any smart contract. https://chain.link/use-cases Referenced July 2, 2025.
[12] 2025. Dust Transactions. https://coinmarketcap.com/academy/glossary/dust-transactions Referenced July 2, 2025.
[13] 2025. Elasticsearch. https://www.elastic.co/elasticsearch/graph Referenced July 2, 2025.
[14] 2025. ERC-1155 Multi-Token Standard. https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/ Refer-

enced July 2, 2025.
[15] 2025. ERC-20 token price oracle. https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles Referenced
July 2, 2025.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://atomicwallet.io/blog/articles/june-3rd-event-statement
https://x.com/zachxbt/status/1619489550233133056
https://li.fi/knowledge-hub/incident-report-16th-july/
https://zachxbt.mirror.xyz/B0-UJtxN41cJhpPtKv0v2LZ8u-0PwZ4ecMPEdX4l8vE
https://zachxbt.mirror.xyz/B0-UJtxN41cJhpPtKv0v2LZ8u-0PwZ4ecMPEdX4l8vE
https://x.com/zachxbt/status/1812466959109521649
https://www.zeiierman.com/blog/adding-liquidity-vs-taking-liquidity-in-trading
https://www.zeiierman.com/blog/adding-liquidity-vs-taking-liquidity-in-trading
https://aptosfoundation.org/
https://blocksec.com/phalcon
https://chainspect.app/chain/bnb-chain
https://coinmarketcap.com/
https://chain.link/use-cases
https://coinmarketcap.com/academy/glossary/dust-transactions
https://www.elastic.co/elasticsearch/graph
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:25

(42

[43

—

]

— =

-

2025. ERC-20: Token Standard. https://eips.ethereum.org/EIPS/eip-20 Referenced July 2, 2025.

2025. ERC-721: Non-Fungible Token Standard. https://eips.ethereum.org/EIPS/eip-721 Referenced July 2, 2025.
2025. Ethereum Virtual Machine (EVM). https://ethereum.org/en/developers/docs/evm/ Referenced July 2, 2025.
2025. Etherscan. https://etherscan.io/ Referenced July 2, 2025.

2025. Euler Price Oracles. https://docs.euler.finance/euler-price-oracle/ Referenced July 2, 2025.

2025. Event Logs. https://blog.ambire.com/eoas-vs-smart-contract-accounts/ Referenced July 2, 2025.

2025. High JVM memory pressure. https://www.elastic.co/docs/troubleshoot/elasticsearch/high-jvm-memory-pressure
Referenced July 2, 2025.

2025. Important Elasticsearch Configuration. https://www.elastic.co/guide/en/elasticsearch/reference/current/
important-settings.html Referenced July 2, 2025.

2025. Labelled Datasets for Your Own Analysis. https://chainlabs.ai/wallet-labels/ Referenced July 2, 2025.

2025. Memgraph: Fastest, Most Affordable Graph Database. https://memgraph.com/ Referenced July 2, 2025.

2025. MetaSleuth. https://metasleuth.io/ Referenced July 2, 2025.

2025. Minimum Withdrawal Amounts. https://docs.zerohash.com/docs/are-there-minimum-withdrawal-amounts
Referenced July 2, 2025.

2025. Mt. Gox Event. https://trustwallet.com/ja/blog/cryptocurrency/mt-gox-explained Referenced July 2, 2025.
2025. Neo4j. https://neo4j.com/ Referenced July 2, 2025.

2025. NFTScan. https://viction.nftscan.com/ Referenced July 2, 2025.

2025. OKLink. https://www.oklink.com/ Referenced July 2, 2025.

2025. OpenSea. https://opensea.io/ Referenced July 2, 2025.

2025. Otterscan. https://github.com/otterscan/otterscan Referenced July 2, 2025.

2025. Pebble key-value store. https://github.com/cockroachdb/pebble Referenced July 2, 2025.

2025. A phishing transaction profited more than 54M Dai. https://x.com/BlockSecTeam/status/1826200855827390652
Referenced July 2, 2025.

2025. Providing Liquidity. https://docs.uniswap.org/contracts/v2/guides/smart-contract-integration/providing-
liquidity Referenced July 2, 2025.

2025. Pulsar Finance. https://app.pulsar.finance/ Referenced July 2, 2025.

2025. RedisGraph is a queryable graph database built on Redis. https://redis.io/docs/latest/operate/oss_and_stack/stack-
with-enterprise/deprecated-features/graph/ Referenced July 2, 2025.

2025. Sui delivers the benefits of Web3 with the ease of Web2. https://sui.io/ Referenced October 2, 2025.

2025. Tornado Cash. https://tornado.ws/ Referenced July 2, 2025.

2025. Uniswap Multicall. https://docs.uniswap.org/contracts/v3/reference/periphery/base/Multicall Referenced July
2, 2025.

2025. uniswap v2 protocol. https://docs.uniswap.org/contracts/v2/reference/smart-contracts/router-02 Referenced
July 2, 2025.

2025. WazirX hacked for over $230m USD. https://x.com/WazirXIndia/status/1814971015929409936 Referenced July 2,
2025.

2025. Welcome to the Ethereum Signature Database. https://www.4byte.directory/ Referenced July 2, 2025.

2025. What are Internal Transactions? https://docs.alchemy.com/docs/what-are-internal-transactions Referenced
July 2, 2025.

2025. Zapper.fi. https://zapper.fi Referenced July 2, 2025.

Ismail Alarab, Simant Prakoonwit, and Mohamed Ikbal Nacer. 2020. Competence of graph convolutional networks
for anti-money laundering in bitcoin blockchain. In Proceedings of the 2020 5th international conference on machine
learning technologies. 23-27.

Andreas M Antonopoulos and Gavin Wood. 2018. Mastering ethereum: building smart contracts and dapps. O’reilly
Media.

Massimo Bartoletti, Barbara Pes, and Sergio Serusi. 2018. Data mining for detecting bitcoin ponzi schemes. In 2018
crypto valley conference on blockchain technology (CVCBT). IEEE, 75-84.

Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper 3,
37 (2014), 2-1.

Rajasekhar Chaganti, Bharat Bhushan, and Vinayakumar Ravi. 2023. A survey on Blockchain solutions in DDoS
attacks mitigation: Techniques, open challenges and future directions. Computer Communications 197 (2023), 96-112.
Manuel MT Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael Peyton Jones, and Philip
Wadler. 2020. The extended UTXO model. In International Conference on Financial Cryptography and Data Security.
Springer, 525-539.

Longfei Chen, Hao Wang, Yuchen Zhou, Taiyu Wong, Jialai Wang, and Chao Zhang. 2025. SmartTrans: Advanced
Similarity Analysis for Detecting Vulnerabilities in Ethereum Smart Contracts. IEEE Transactions on Dependable and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://ethereum.org/en/developers/docs/evm/
https://etherscan.io/
https://docs.euler.finance/euler-price-oracle/
https://blog.ambire.com/eoas-vs-smart-contract-accounts/
https://www.elastic.co/docs/troubleshoot/elasticsearch/high-jvm-memory-pressure
https://www.elastic.co/guide/en/elasticsearch/reference/current/important-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/important-settings.html
https://chainlabs.ai/wallet-labels/
https://memgraph.com/
https://metasleuth.io/
https://docs.zerohash.com/docs/are-there-minimum-withdrawal-amounts
https://trustwallet.com/ja/blog/cryptocurrency/mt-gox-explained
https://neo4j.com/
https://viction.nftscan.com/
https://www.oklink.com/
https://opensea.io/
https://github.com/otterscan/otterscan
https://github.com/cockroachdb/pebble
https://x.com/BlockSecTeam/status/1826200855827390652
https://docs.uniswap.org/contracts/v2/guides/smart-contract-integration/providing-liquidity
https://docs.uniswap.org/contracts/v2/guides/smart-contract-integration/providing-liquidity
https://app.pulsar.finance/
https://redis.io/docs/latest/operate/oss_and_stack/stack-with-enterprise/deprecated-features/graph/
https://redis.io/docs/latest/operate/oss_and_stack/stack-with-enterprise/deprecated-features/graph/
https://sui.io/
https://tornado.ws/
https://docs.uniswap.org/contracts/v3/reference/periphery/base/Multicall
https://docs.uniswap.org/contracts/v2/reference/smart-contracts/router-02
https://x.com/WazirXIndia/status/1814971015929409936
https://www.4byte.directory/
https://docs.alchemy.com/docs/what-are-internal-transactions
https://zapper.fi

63:26 Yicheng Huo et al.

Secure Computing (2025).

[54] Weili Chen, Zibin Zheng, Edith C-H Ngai, Peilin Zheng, and Yuren Zhou. 2019. Exploiting blockchain data to detect
smart ponzi schemes on ethereum. IEEE Access 7 (2019), 37575-37586.

[55] Yuzhou Chen and Hon Keung Tony Ng. 2019. Deep learning ethereum token price prediction with network motif
analysis. In 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 232-237.

[56] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT
press.

[57] Hanbiao Du, Zheng Che, Meng Shen, Liehuang Zhu, and Jiankun Hu. 2023. Breaking the anonymity of ethereum
mixing services using graph feature learning. IEEE Transactions on Information Forensics and Security (2023).

[58] Joshua N Feinman. 1993. Reserve requirements: history, current practice, and potential reform. Fed. Res. Bull. 79
(1993), 569.

[59] Sadayuki Furuhashi, Satoshi Tagomori, Yuichi Tanikawa, Stephen Colebourne, Stefan Friesel, René Kijewski, Michael
Cooper, Uenishi Kota, and Gabe Appleton. 2013. MessagePack Specification. MessagePack.

[60] Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig. 2024. An
empirical study of consensus protocols’ dos resilience. In Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security. 1345-1360.

[61] Aveek Goyal. 2025. What are ERC20 Approve and ERC20 Allowance Methods? https://metaschool.so/articles/what-
are-erc20-approve-erc20-allowance-methods/ Referenced July 2, 2025.

[62] Mr Simon Gray. 2011. Central bank balances and reserve requirements. International Monetary Fund.

[63] Abhishek Guru, Bhabendu Kumar Mohanta, Hitesh Mohapatra, Fadi Al-Turjman, Chadi Altrjman, and Arvind Yadav.
2023. A survey on consensus protocols and attacks on blockchain technology. Applied sciences 13, 4 (2023), 2604.

[64] Jean Carlo Hamerski, Anderson RP Domingues, Fernando G Moraes, and Alexandre Amory. 2018. Evaluating
serialization for a publish-subscribe based middleware for MPSoCs. In 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 773-776.

[65] Bowen He, Yuan Chen, Zhuo Chen, Xiaohui Hu, Yufeng Hu, Lei Wu, Rui Chang, Haoyu Wang, and Yajin Zhou. 2023.
TxPhishScope: Towards Detecting and Understanding Transaction-based Phishing on Ethereum. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security. 120-134.

[66] Younggee Hong, Hyunsoo Kwon, Jihwan Lee, and Junbeom Hur. 2018. A practical de-mixing algorithm for bitcoin
mixing services. In Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts. 15-20.

[67] Huiwen Hu, Qianlan Bai, and Yuedong Xu. 2022. Scsguard: Deep scam detection for ethereum smart contracts. In
IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1-6.

[68] Yining Hu, Suranga Seneviratne, Kanchana Thilakarathna, Kensuke Fukuda, and Aruna Seneviratne. 2019. Character-
izing and detecting money laundering activities on the bitcoin network. arXiv preprint arXiv:1912.12060 (2019).

[69] Yufeng Hu, Yingshi Sun, Yuan Chen, Zhuo Chen, Bowen He, Lei Wu, Yajin Zhou, and Rui Chang. 2024. MFGSCOPE:
A Lightweight Framework for Efficient Graph-based Analysis on Blockchain. IEEE Transactions on Dependable and
Secure Computing (2024).

[70] Mingyuan Huang, Jiachi Chen, Zigui Jiang, and Zibin Zheng. 2024. Revealing hidden threats: An empirical study of
library misuse in smart contracts. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1-12.

[71] Johannes Krupp and Christian Rossow. 2018. {teEther}: Gnawing at ethereum to automatically exploit smart contracts.
In 27th USENIX security symposium (USENIX Security 18). 1317-1333.

[72] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No Lee. 2022. Ethereum smart contract
analysis tools: A systematic review. leee Access 10 (2022), 57037-57062.

[73] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and Xueqi Cheng. 2020.
Flowscope: Spotting money laundering based on graphs. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 4731-4738.

[74] Xigao Li, Anurag Yepuri, and Nick Nikiforakis. 2023. Double and nothing: Understanding and detecting cryptocurrency
giveaway scams. In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[75] Dan Lin, Jiajing Wu, Yunmei Yu, Qishuang Fu, Zibin Zheng, and Changlin Yang. 2024. DenseFlow: Spotting Cryp-
tocurrency Money Laundering in Ethereum Transaction Graphs. In Proceedings of the ACM on Web Conference 2024.
4429-4438.

[76] Shenghua Liu, Bryan Hooi, and Christos Faloutsos. 2017. Holoscope: Topology-and-spike aware fraud detection. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 1539-1548.

[77] Joana Lorenz, Maria Inés Silva, David Aparicio, Jodo Tiago Ascensdo, and Pedro Bizarro. 2020. Machine learning
methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity. In Proceedings of the
first ACM international conference on Al in finance. 1-8.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://metaschool.so/articles/what-are-erc20-approve-erc20-allowance-methods/
https://metaschool.so/articles/what-are-erc20-approve-erc20-allowance-methods/

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:27

[78] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M Voelker, and Stefan

[79

(80

(81

(82

(83
(84

(85

(86

(87

(88
(89
[90
[91
[92

[93
[94

[95
[96
[97
[98
[99
[100
[101

[102

]
]

]

]

[t

]
]

—

]

]
]
]
]
]

[lan e

]
]
]
]
]
]
]
]

Savage. 2013. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference. 127-140.

Patrick Monamo, Vukosi Marivate, and Bheki Twala. 2016. Unsupervised learning for robust Bitcoin fraud detection.
In 2016 Information Security for South Africa (ISSA). IEEE, 129-134.

Patrick M Monamo, Vukosi Marivate, and Bhesipho Twala. 2016. A multifaceted approach to bitcoin fraud detection:
Global and local outliers. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).
IEEE, 188-194.

S Monish, Mridul Mohta, and Shanta Rangaswamy. 2022. Ethereum Price Prediction Using Machine Learning
Techniques—A Comparative Study. International Journal of Engineering Applied Sciences and Technology 7 (2022),
137-142.

Malte Moser, Rainer Bohme, and Dominic Breuker. 2014. Towards risk scoring of Bitcoin transactions. In Financial
Cryptography and Data Security: FC 2014 Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados, March 7,
2014, Revised Selected Papers 18. Springer, 16-32.

Philip Nadler and Yike Guo. 2020. The fair value of a token: How do markets price cryptocurrencies? Research in
International Business and Finance 52 (2020), 101108.

Patrick O’'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The log-structured merge-tree (LSM-tree).
Acta Informatica 33 (1996), 351-385.

Bo Petersen, Henrik Bindner, Shi You, and Bjarne Poulsen. 2017. Smart grid serialization comparison: Comparision
of serialization for distributed control in the context of the internet of things. In 2017 Computing Conference. IEEE,
1339-1346.

Silivanxay Phetsouvanh, Frédérique Oggier, and Anwitaman Datta. 2018. Egret: Extortion graph exploration tech-
niques in the bitcoin network. In 2018 IEEE International conference on data mining workshops (ICDMW). IEEE,
244-251.

Mohammadreza Rasolroveicy and Marios Fokaefs. 2022. Impact of ddos attacks on the performance of blockchain
consensus as an lot data registry: An empirical study. In Proceedings of the 32nd Annual International Conference on
Computer Science and Software Engineering. 71-80.

Alexander Schrijver. 2002. On the history of the transportation and maximum flow problems. Mathematical
programming 91 (2002), 437-445.

Preeti Sharma and RM Pramila. 2022. Price prediction of Ethereum using time series and deep learning techniques.
In Proceedings of Emerging Trends and Technologies on Intelligent Systems: ETTIS 2022. Springer, 401-413.

Mike Shin. 2025. What are EVM Compatible Blockchains? A Guide to the Ethereum Virtual Machine. https://blog.
thirdweb.com/evm-compatible-blockchains-and-ethereum-virtual-machine/ Referenced July 2, 2025.

Qunhong Sun, Chang Wang, Yifan Hu, Shen Su, and Ting Cui. 2025. LGTDA: Bandwidth exhaustion attack on Ethereum
via dust transactions. Future Generation Computer Systems 163 (2025), 107549. doi:10.1016/j.future.2024.107549
Yujia Tang, Chang Xu, Can Zhang, Yan Wu, and Liehuang Zhu. 2021. Analysis of address linkability in tornado cash
on ethereum. In China Cyber Security Annual Conference. Springer, 39-50.

tayvano. 2025. Atomic Wallet Hack Report. https://dune.com/tayvano/atomic-wallet-hack Referenced July 2, 2025.
MetaSleuth Team. 2024. 54m phishing fund movements. https://x.com/MetaSleuth/status/1826205736617279823
Referenced July 2, 2025.

Moralis Team. 2025. Check Wallet Activity and Get Crypto Address Labels. https://developers.moralis.com/check-
wallet-activity-and-get-crypto-address-labels/ Referenced July 2, 2025.

Neo4j Team. 2025. Causal Clustering in Neodj. https://neo4j.com/graphacademy/training-admin-35/04-neo4jadmin-
3-5-causal-clustering-neo4j/ Referenced July 2, 2025.

The Investopedia Team. 2025. UTXO Model: Definition, How It Works, and Goals. https://www.investopedia.com/
terms/u/utxo.asp Referenced July 2, 2025.

Christof Ferreira Torres, Mathis Steichen, et al. 2019. The art of the scam: Demystifying honeypots in ethereum smart
contracts. In 28th USENIX Security Symposium (USENIX Security 19). 1591-1607.

Natkamon Tovanich and Rémy Cazabet. 2022. Pattern analysis of money flows in the Bitcoin blockchain. In
International Conference on Complex Networks and Their Applications. Springer, 443-455.

Friedhelm Victor and Andrea Marie Weintraud. 2021. Detecting and quantifying wash trading on decentralized
cryptocurrency exchanges. In Proceedings of the Web Conference 2021. 23-32.

Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. 2023. SoK: DAG-based blockchain systems. Comput. Surveys
55, 12 (2023), 1-38.

Dinitha Wijewardhana, Sugandima Vidanagamachchi, and Nalin Arachchilage. 2024. Examining Attacks on Consensus
and Incentive Systems in Proof-of-Work Blockchains: A Systematic Literature Review. arXiv preprint arXiv:2411.00349
(2024).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://blog.thirdweb.com/evm-compatible-blockchains-and-ethereum-virtual-machine/
https://blog.thirdweb.com/evm-compatible-blockchains-and-ethereum-virtual-machine/
https://doi.org/10.1016/j.future.2024.107549
https://dune.com/tayvano/atomic-wallet-hack
https://x.com/MetaSleuth/status/1826205736617279823
https://developers.moralis.com/check-wallet-activity-and-get-crypto-address-labels/
https://developers.moralis.com/check-wallet-activity-and-get-crypto-address-labels/
https://neo4j.com/graphacademy/training-admin-35/04-neo4jadmin-3-5-causal-clustering-neo4j/
https://neo4j.com/graphacademy/training-admin-35/04-neo4jadmin-3-5-causal-clustering-neo4j/
https://www.investopedia.com/terms/u/utxo.asp
https://www.investopedia.com/terms/u/utxo.asp

63:28 Yicheng Huo et al.

[103] Jiajing Wu, Dan Lin, Qishuang Fu, Shuo Yang, Ting Chen, Zibin Zheng, and Bowen Song. 2023. Towards Understanding
Asset Flows in Crypto Money Laundering Through the Lenses of Ethereum Heists. IEEE Transactions on Information
Forensics and Security (2023).

[104] Mike Wu, Will McTighe, Kaili Wang, Istvan A Seres, Nick Bax, Manuel Puebla, Mariano Mendez, Federico Carrone,

Tomas De Mattey, Herman O Demaestri, et al. 2022. Tutela: An open-source tool for assessing user-privacy on

ethereum and tornado cash. arXiv preprint arXiv:2201.06811 (2022).

Shuohan Wu, Zihao Li, Luyi Yan, Weimin Chen, Muhui Jiang, Chenxu Wang, Xiapu Luo, and Hao Zhou. 2024. Are

we there yet? unraveling the state-of-the-art smart contract fuzzers. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering. 1-13.

Pengcheng Xia, Haoyu Wang, Bingyu Gao, Weihang Su, Zhou Yu, Xiapu Luo, Chao Zhang, Xusheng Xiao, and Guoai

Xu. 2021. Trade or trick? detecting and characterizing scam tokens on uniswap decentralized exchange. Proceedings

of the ACM on Measurement and Analysis of Computing Systems 5, 3 (2021), 1-26.

[107] Kailun Yan, Xiaokuan Zhang, and Wenrui Diao. 2024. Stealing Trust: Unraveling Blind Message Attacks in Web3

Authentication. arXiv preprint arXiv:2406.00523 (2024).

zachxbt. 2022. Discord & Twitter Scamming. https://x.com/zachxbt/status/1562473638992850947 Referenced July 2,

2025.

zachxbt. 2022. Harmony Bridge hack address report. https://www.chainabuse.com/report/0a2e8e00-00e2-4749-9b00-

ceb1c6202d33 Referenced July 2, 2025.

zachxbt. 2022. loyalist scamming. https://x.com/zachxbt/status/1626200628308443139 Referenced July 2, 2025.

zachxbt. 2022. Tracking down Discord & Twitter phishing scammers. https://zachxbt.mirror.xyz/

svL1N4xPLX5nXHr6Cw4KLsjRtaYHxm4MAqmFy6zx3cw Referenced July 2, 2025.

[112] Chen Zhao and Yong Guan. 2015. A graph-based investigation of bitcoin transactions. In Advances in Digital Forensics

XI: 11th IFIP WG 11.9 International Conference, Orlando, FL, USA, January 26-28, 2015, Revised Selected Papers 11.

Springer, 79-95.

Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer,

Dawn Song, and Arthur Gervais. 2023. Sok: Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security

and Privacy (SP). IEEE, 2444-2461.

[114] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey. 2018. Erays: reverse
engineering ethereum’s opaque smart contracts. In 27th USENIX security symposium (USENIX Security 18). 1371-1385.

[105

—

[106

=

[108

=

[109

—

[110
[111

=

[113

=

A Details of the Example of Figure 1
A.1 Example Overview

In this example, the criminal invokes multiple functions in a DEX aggregator contract within a single
Multi-call transaction, triggering fund movements across multiple addresses. The execution of this
transaction can be divided into seven sub-processes. Readers may find it helpful to consult Figure 5
while reading this part. ® The criminal-controlled EOA 0 sends 10 ETH (Ethereum’s native token) to
the DEX aggregator. @ The aggregator wraps the received 10 ETH into the ERC-20 standard token
wETH using the wETH contract. ® The aggregator transfers 2.5 wETH to the criminal-controlled
EOA 1. @ The aggregator calls the Swap protocol to exchange 5 wETH for 0.12 wBTC at Liquidity Pool
1. ® The aggregator calls the Swap protocol to exchange 0.07 wBTC for 5,600 USDT at Liquidity Pool
0 and the remaining 0.05 wBTC for 4,000 USDT at Pool 2, totaling 9,600 USDT, where 4800 ones are
transferred back to EOA 0. ® The aggregator calls the AddLiquidity protocol to deposit 2.5 wETH
and 4,800 USDT into Pool 2 and the received 10 LP Tokens are transferred to a criminal-controlled
smart contract. @ Since the smart contract had previously obtained an allowance from EOA 1, it
executes predefined code to swap 2.5 wETH from EOA 1 for 0.048 wBTC at Pool 1, and transfer 5 LP
Tokens to EOA 1.

A.2 Apply Algorithm 1 to this Example

As shown in Figure 6, MFTRACER constructs the local money transfer graph Gy, and the balance
change table B for this transaction to decipher its intricate execution sub-processes. Upon ex-
amining B, MFTRACER determines that the transaction does not result in any USD-denominated
balance changes for the aggregator or liquidity pools. This is because the semantics of Swap and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://x.com/zachxbt/status/1562473638992850947
https://www.chainabuse.com/report/0a2e8e00-00e2-4749-9b00-ceb1c6202d33
https://www.chainabuse.com/report/0a2e8e00-00e2-4749-9b00-ceb1c6202d33
https://x.com/zachxbt/status/1626200628308443139
https://zachxbt.mirror.xyz/svL1N4xPLX5nXHr6Cw4KLsjRtaYHxm4MAqmFy6zx3cw
https://zachxbt.mirror.xyz/svL1N4xPLX5nXHr6Cw4KLsjRtaYHxm4MAqmFy6zx3cw

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:29

€O - EOLe,
Liquidity Pool g{o& Liquidity Pool% ﬁ

0.07 wBTC o
5600 USDT a
> ® 2.5wETH Criminal-Controlled
ﬁ @ 10 ETH X EOA 1
‘@ @
—
4800 USDT 4000 USDT @|5 LP Token
s

Criminal- Liquidity Pool 2

ol
Controlled DEX Aggregator ® 10 LP Token E‘L
EOAO @ 10ETH l TIO wETH \4800 USDT + 2.5wETH =

Criminal-Controlled
@ @V Smart Contract

wETH Contract Liquidity Pool 3

Fig. 5. An real-world example illustrates how a criminal executed a Multi-call transaction on a DEX aggregator
to obscure illicit fund flows as part of their laundering strategy. The execution of this transaction can be
divided into seven sub-processes, including DeFi semantics of a Wrap (@), an AddLiquidity (®) and four
Swaps (@, ® and @).

AddLiquidity do not inherently transfer USD value but change the composition of tokens associ-
ated with each address [6, 36]. However, EOA 0 experiences a decrease in balance, whereas EOA 1
and the criminal-controlled contract see an increase. Using this information, MFTRACER concludes
that the actual fund provider is the criminal-controlled EOA 0, and that the fund recipients are
EOA 1 and the criminal-controlled smart contract. Then it applies subsequent computational steps
of Algorithm 1 on Gy, to determine the fund flows from EOA 0 to EOA 1 and the smart contract
and fully uncovers the underlying fund movements of this complex transaction.

‘X3840
B[Pool 0] = $0 B[Pool 1] = $0
L | N L ! 83
$5600 o 0
$5600 S

)

ﬁ $19200
—_—
-—

$4800 $4000

B[EOA 0] = —$14400 BlAggr.

B[EOA 1] = +$9600

$19200 $19200

B[wETH conntract| = $0 B[Pool 3| = $0

Fig. 6. The local money transfer graph Gy, and balance change table B constructed by Algorithm 1 for the
Multi-call transaction in Figure 5. We use B[a] to refer to the local balance change of address a.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:30 Yicheng Huo et al.

B Proof for the Pruning Inequality of 11I-C

For a valid money flow path a; — a; — ... — a,, let t; represent the timestamp of the flow
between address a; and address a;,;. We have t; > t;_; holds for all 1 < i < n. It follows that
forall 0 < j < i < n, we have t; > t;. Continuing with the notation of the paper, it follows
straightforwardly that a valid path from g to a, exists in G only if

Vo< j<i<mn, At €14.4,, 3t; € Tajazs i 2 .
That is,
VO<j<i<n, It €140, ti mintg; q;,,-
Equivalent to
VO0<j<i<n maxiy,g, > min Tajaps-
This is equivalent to the following inequality.
V1<i<n, maxtgg,, = g?fi miN 7g;.a;,, -

Therefore, a valid path from a; to g, exists in G only if the inequality above holds, and the proof is
complete.

C Graph Search Parallelization Strategy

Algorithm 3 Pseudocode of Parallel Search on MFAs

Input: MFA slices {Gr(nr?a), ey Gr(n'grk)} and victim address set Ayic.

Output: Suspicious topologies {Gs(m), ces Gs(m+k) }

I: Gs<m), Gs(m+l), . Gs(m+k) < new k + 1 empty topologies

2: forisuchthat0 <i<kdo
3: Ag — Gs(mﬂ_l).AddressSet if i > 0 else Ay;ic
4: parallel for j such thati < j < k do
5

iG{m*) search on Gggj) using As as the source
R e
7: end for
8: end for

The details of graph search operations on a single MFA have been discussed in the Suspicious
Topology Construction part of Section 3.3. Here, we present the parallelization method for the
search mentioned in Section 3.4. The parallelization strategy can be depicted using the above
algorithm. Let the relevant MFA slices be temporally ordered as {G]g;?a), Gggk) } The search
begins with using Ayi. as the source to perform parallel searches across all MFA slices, yielding
the suspicious sub-topologies {°G§’">, .y 0G§m+k) }, where the °G§m+i) denotes the search result on

G(m+i)

mfa

Uo<j<i J Gs(m+k) as the source and runs parallel searches on MFAs {Gr(nrgrm), - Gr(nrgrk)} to obtain

. Then, for 0 < i < k, the system repeats the process: it takes all addresses from the union

. Finally, for 0 < i < k, MFTRACER merges

suspicious sub-topologies {i“GgmHH), - i+1G§m+i+k)}

suspicious sub-topologies {OGS('"H), . iGs(m+i)} to obtain the suspicious topology G\ as the

search result on the MFA G

mfa

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:31

We now demonstrate that the parallel strategy yields identical results to the serial execution,
proving its correctness. For ease of explanation, we use the notation S(Gyf,; Gs) to refer to the
suspicious sub-topology derived from searches on the MFA G using the addresses in the topology
Gmfa as the source. Then for all 0 < i < k, we have

Gs(m+i): U jG§m+i)

0<j<i

_ U jG§m+i)U0Gs(m+i)
0<j<i

= |J S@om.6mIm) U S(GI: Ave)
0<j<i

=8|6U s ageu |) 6™).
0<j<i

The first equality is based on line 6 of Algorithm 3. The third equality follows from line 3 and line 5.
(m+i)
Gs

This equation demonstrates that is obtained by searching on Gr(n'g“) using addresses from

Ayic and all the suspicious topologies with earlier timestamps as the source, which completes the
proof. We discuss the performance of this parallelization based on an empirical assumption: the
subtasks in line 5 of Algorithm 3 have similar time costs of O(C). Then we derive that the total
time cost for a serial algorithm is O(C) - (k + 1) (k + 2)/2 = O(Ck?), while the parallel time cost is
O(Ck) from the loop in line 2.

D Reserve Ratio € Theoretical Analysis

The reserve requirement, also known as the cash reserve ratio (CRR) [58, 62], is a regulation set
by central banks that mandates commercial banks to hold a certain percentage of their deposit
liabilities in reserves. By adjusting the reserve requirement, central banks can influence the liquidity
in the economy system. Drawing inspiration from this, we apply a cap on the amount of funds
that can flow out from each address to control liquidity distribution in the downstream network.
Here, we discuss how the reserve ratio € € [0, 1) affects the breadth and depth of the downstream
topology. For this, we estimate the depth and breadth that a specific amount of money can travel
through under a small threshold T by assuming that each outflow for each address reaches its
upper limit controlled by e.

First, let’s assume an upstream flow of M > T reaches a downstream address, which is the flow
we’re to analyze. We call this address as the starting address and mark its depth as 1. Then M(1—¢)"
indicates the maximum outflow from an address at depth n. The following can be determined,
where d indicates the maximum depth.

M(1-e)? >T,M(1-e)¥ <T.

We can then derive that
log(T/M)
d=|——=]|.
log(1—¢)
The equation above demonstrates that d decreases as € increases.

Since the starting address is randomly selected from the downstream set, the number of addresses
at depth 2 indicates the breadth b, which satisfies the inequality below.

Meb 1 (1—€) > T,Me?(1-¢) < T.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:32 Yicheng Huo et al.

Then we obtain that

b Fog(T/M) —log(1 - e)}
loge '
Given that M > T, then log(T /M) is a negative number with a significantly large absolute value.
Since that € is usually chosen to be less than 0.5, then we have |log(1 — €)| < |log(T/M)|. Thus,
we can arrive at the following approximation.

b~ log(T/M)
) { loge } '
This demonstrates that the breadth increases as € increases.

Altogether, a lower reserve ratio leads to more liquidity among farther* addresses, increasing
the downstream topology’s depth, while a higher distributes liquidity to closer addresses and thus
increasing the downstream topology’s breadth. This affects the final coverage rates and precision.
For criminals using extremely deep laundering paths, a lower € increasing both the coverage rates
and precision. For criminals using wider laundering paths, a higher € is a better choice. In real-world
use, multiple values can be selected to ensure a better coverage of illicit flows.

E Evaluation Results on ¢

The reserve ratio € is a configuration parameter for the money flow simulation algorithm described
in Section 3.4. Setting an appropriate € value allows MFTRACER to perform better in tracing tasks.
Apart from theoretical analysis above, we also conduct experiments to examine the effect of different
values of € on the results. Figure 7 illustrates the curves of precision and two types of coverage rates
as € is set from 0% to 55%. For multi-perspective presentation, evaluation results are disaggregated
by metrics and top-level incidents.

In all incidents, especially for Atomic and XScam, too large values of € result in low coverage
rates. Conversely, setting € to 0% yields satisfactory coverage in all cases. Sometimes, such as the
laundering cases of incidents TxPhish and XScam, reach their highest coverage rates when € is set
to a small positive value. Except for LIF], the precision shows relatively small fluctuation. Overall,
based on the empirical analysis, setting € between 0% and 10% allows MFTRACER to achieve the
optimal effectiveness, balancing both two types of coverage rates and precision. For real-world
tracing applications, multiple close values of € can be selected to compare the differences in the
respective resulting topologies.

F Dataset Construction Methodology

To rigorously evaluate the performance of illicit fund tracing systems, we constructed a ground-
truth dataset LaunderNetEvm41 that reflects a diverse and realistic set of money laundering
techniques. The dataset was collaboratively curated by a team of seven experts, including two
members from our author group, three professionals from BlockSec!, and two domain specialists
from the broader security community. Each expert has at least one year of hands-on experience in
tracking crypto-related cybercrime.

In total, LaunderNetEvm41 contains 1,939 accounts involved in money laundering activities and
6,701 detailed illicit fund flow records—an order of magnitude larger than any previously disclosed
(Bitcoin) illicit flow dataset we are aware of, collectively covering over US $125 million in stolen
assets. In curating cases from cybercrime incidents for our dataset, we applied three selection
criteria to ensure soundness, persuasiveness, and cross-verifiability: @ Verified sources. The selected
incidents must include verifiable evidence, such as official statements from the victim entity or

4These terms, closer and farther, are defined by the distance between addresses in the flow topology, i.e. the length of
reachable path in the graph.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://blocksec.com/

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:33

incident reports published by reputable security community experts, ensuring the authenticity and
transparency. @ Diverse coverage. The cases must originate from multiple independent criminal

1.00
0.95 -
(0]
O 0.90 1
©
—
O 0.85
>
o
O 0.80 1
= TxPhish
o
= 0751 —=— LIFI
—&— Atomic
—— HB
0.70 —#— XScam
—-=—=- Average
0657 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Reserve Ratio €

1.0 4 H—Q—O—O—O—Q—Qﬁz‘:‘:‘

o
©
|

o
©
A

TxPhish
—— LIFI
—A— Atomic
- HB
—— XScam
-==- Average

0.7 A

TerminusCoverage

0.6 1

0.0 0.1 ofz 013 0.4 0.5
Reserve Ratio €

10 ¢—0—0—0—6¢—0—0—0—0—0—0—
0.9 A
C o5l <A—*—‘_‘__+——k-—ﬁ——k—*—t\‘
E T B
2 .\’—_—‘\"\#-—-0\.__4_——0—.—.‘-—4
O 0.7 A
g
o TxPhish
0.6 —#— LIFI
—A— Atomic
—— HB
051 —+— XScam
-—- Average ®— % —pun . =
0.0 0.1 0.2 0.3 0.4 0.5

Reserve Ratio €

Fig. 7. FlowCoverage, TerminusCoverage and Precision as € is set from 0% to 55%.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

63:34 Yicheng Huo et al.

groups and span different types of cybercrimes, enabling us to test the generality, robustness, and
practical applicability of tracing systems. @ Cross-validation support. Each of the selected incidents
must have at least one fund-tracing report published by other security community experts, allowing
cross-checking of our dataset contents and enabling readers to validate the dataset themselves.
Finally, we constructed the dataset based on a set of cybercrime incidents from 2022 to 2024 that
meet the above criteria.

The construction process began with the collection of victim addresses and attack transaction
hashes sourced from publicly available incident reports published by affected parties and security
communities. These sources served as the origin points for tracing the downstream movement of
stolen assets. Experts utilized a combination of tools and platforms—such as Etherscan [19], Phalcon
[8], Otterscan [33], and self-hosted full nodes—to gather on-chain transactional data and token
transfer events. The tracing process covered all types of fungible tokens, including native tokens
and ERC-20 tokens, ensuring comprehensive coverage of the illicit asset flow. Experts analyzed
transactions on a per-transaction basis. For each address identified as holding illicit funds, all
subsequent outbound transactions were examined to determine how the assets were redistributed.
These transactions were categorized into three general patterns: @ Transactions to EOAs: If the to
address was an externally owned account (EOA), resulting in a native token transfer, the receiving
address was marked as a potential downstream recipient and added to the pending analysis queue.
@ Transactions to ERC-20 Token Contracts: In such cases, the expert team inspected the transaction’s
payload and analyzed the emitted token transfer events to determine fund movement: (i) If the
transaction invoked the transfer function, the recipient of the token was added to the queue. (ii)
If the transaction called permit, approve, or similar functions that delegated token spending rights
to another address, the spender was recorded for further analysis. @ Transactions to Other Smart
Contracts: For these, a multi-tiered semantic analysis was conducted: (i) If the address matched a
known public service address of a decentralized protocol, its function was analyzed using protocol
documentation and public interfaces. (ii) If the contract was not recognized but its source code was
available on platforms like Etherscan, experts manually audited the code using similarity detection
[53], library usage analysis [70], and protocol-specific knowledge to interpret the contract’s logic.
(iii) If only bytecode was available (e.g., attacker-deployed contracts), experts used function selector
databases [44] and dynamic analysis techniques such as reverse engineering [114], execution
tracing [72], testnet deployment and black-box fuzzing [105] to infer contract behavior. Based on
their domain-specific knowledge, experts used assistive tools to decipher smart contract semantics
and identify the underlying fund movements resulting from the contract execution. The actual
receivers of illicit money are marked as laundering addresses.

To ensure data accuracy and reduce bias, each tracing step was independently conducted by at
least two experts. When interpretations differed, the findings were debated in peer-review sessions
involving all seven members. Final decisions were made by majority vote. In cases of significant
disagreement or ambiguity, deeper analysis was conducted using additional on-chain evidence,
behavioral heuristics, and, where necessary, the recreation of suspicious transactions in controlled
environments.

Once the full trace paths were established, the resulting dataset underwent a final round of
verification. The two domain experts from the security community performed an extensive cross-
validation process against publicly disclosed intelligence—including independent reports by other
researchers, statements from victim entities, investigative reports from regulatory bodies, and
analyses by external security firms. We list some of the references here [4, 93, 94, 109, 111]. Any
contradictions or discrepancies between our dataset and these sources triggered a re-examination
of the relevant tracing paths. For especially complex or conflicting cases, we proactively reached
out to the authors of the referenced reports for clarification or technical discussion.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

Shedding Light on Shadows: Automatically Tracing lllicit Money Flows on EVM-Compatible Blockchains 63:35

This rigorous, expert-driven process ensures that the dataset reflects a realistic, high-fidelity
mapping of illicit fund flows across various money laundering strategies. It serves not only as a
benchmark for evaluating tracing systems, but also as a resource for further research in blockchain
forensics and threat intelligence. For more details about the dataset—such as visualizations of
illicit fund flows, analyses of the criminal incidents, and guidelines for verifying the dataset
contents—please refer to the dataset repository.

G Other Studies on AML in the Cryptocurrency Domain

Recent research on AML in the cryptocurrency domain focuses on both on-chain and off-chain
anomalous behavior detection.

On-chain Anomalous Behavior Detection. On-chain methods often leverage graph mining or
machine learning to uncover suspicious activities. Hu et al. [68] explore the structural differences in
Bitcoin transaction graphs and apply node embedding methods like node2vec to identify laundering
patterns with over 92% accuracy. Monamo et al. [79] investigate unsupervised fraud detection
using trimmed k-means clustering and demonstrate superior performance in identifying anomalous
Bitcoin transactions. Xia et al. [106] analyze scam tokens on the Uniswap DEX, identifying over
10,000 rug-pull tokens and exposing scammer collusion networks, highlighting the urgency for
scam token monitoring in DeFi ecosystems. DenseFlow [75] proposes a method to identify money
laundering activities by extracting dense subgraphs. Similarly, XBlockFlow [103] performs taint-
based analysis to study the evolution and tactics of laundering behavior, including novel schemes
like counterfeit token creation. Other graph-based approaches like the GCN-based method by
Alarab et al. [47] enhance node embeddings by combining graph convolution with linear layers,
improving illicit transaction classification on the Elliptic dataset. Lorenz et al. [77] address label
scarcity by employing active learning, demonstrating that even limited supervision (5% labeled
data) can achieve results comparable to fully supervised models.

Off-chain Anomalous Behavior Detection. On the off-chain side, Li et al. [74] introduce Cryp-
toScamTracker, which uses Certificate Transparency logs and crawling infrastructure to detect
large-scale cryptocurrency giveaway scams, discovering over 10,000 scam websites and tracing
stolen funds across blockchains. He et al. [65] propose TxPhishScope, a system for detecting
transaction-based phishing websites on Ethereum that trick users into signing malicious trans-
actions, successfully identifying over 26,000 phishing domains and analyzing their laundering
patterns. Yan et al. [107] explore vulnerabilities in Web3 authentication, revealing that a majority
of dApps allow signature-based unauthorized access, posing a risk of laundering via impersonation.
Victor and Weintraud [100] quantify wash trading on decentralized exchanges, detecting over
$159M of fraudulent volume through identifiable trading patterns.

H Artifacts

Dataset (LaunderNetEvm41):
https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
Source code:
https://github.com/blocksecteam/MFTracer/tree/main/codes

Lists of addresses & txs that we newly reported:
https://github.com/blocksecteam/MFTracer/tree/main/findings

Received July 2025; revised September 2025; accepted October 2025

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 63. Publication date: December 2025.

https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/LaunderNetEvm41
https://github.com/blocksecteam/MFTracer/tree/main/codes
https://github.com/blocksecteam/MFTracer/tree/main/findings

	Abstract
	1 Introduction
	2 Background
	2.1 EVM-Compatible Blockchain Basics
	2.2 ERC-20 Tokens and Price Oracle Services
	2.3 Illicit Money Flows on the Blockchain

	3 MFTracer Design
	3.1 Overview
	3.2 Tx-Granularity Money Flow Analysis
	3.3 Money Flow Abstract
	3.4 Encoding Scheme
	3.5 Money Flow Simulation

	4 Evaluation
	4.1 Efficiency
	4.2 Effectiveness

	5 Discussion
	5.1 Guidance: Setting Proper Parameters in Practice
	5.2 Evasion Techniques and Countermeasures
	5.3 Limitation: False Positives and Mitigation Strategies
	5.4 Efficiency: Applying MFTracer to Other EVM-Compatible Platforms
	5.5 Extending MFTracer Beyond EVM-Compatible Blockchains

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Details of the Example of Figure 1
	A.1 Example Overview
	A.2 Apply Algorithm 1 to this Example

	B Proof for the Pruning Inequality of III-C
	C Graph Search Parallelization Strategy
	D Reserve Ratio Theoretical Analysis
	E Evaluation Results on
	F Dataset Construction Methodology
	G Other Studies on AML in the Cryptocurrency Domain
	H Artifacts

