
LightZone: Lightweight Hardware-Assisted In-Process Isolation
for ARM64

Ziqi Yuan
Zhejiang University
Hangzhou, China

yuanzqss@zju.edu.cn

Siyu Hong
Zhejiang University
Hangzhou, China
hongsy@zju.edu.cn

Ruorong Guo
Zhejiang University
Hangzhou, China
rrguo@zju.edu.cn

Rui Chang∗
Zhejiang University
Hangzhou, China

crix1021@zju.edu.cn

Mingyu Gao
Tsinghua University

Beijing, China
gaomy@tsinghua.edu.cn

Wenbo Shen
Zhejiang University
Hangzhou, China

shenwenbo@zju.edu.cn

Yajin Zhou
Zhejiang University
Hangzhou, China

yajin_zhou@zju.edu.cn

ABSTRACT
In-process isolation enforces the principle of least privilege for
processes. With such isolation, even if one part of the process is
compromised, other parts within the same address space will not
be tampered with. However, existing in-process isolation solutions
for ARM64 fail to harmonize efficiency, security, and an adequate
number of isolation domains without hardware modification.

In this paper, we present LightZone, a secure and efficient frame-
work that offers an adequate number of isolation domains to ARM64
processes. We encapsulate individual ARM processes (both host
and guest) in separate virtual machines, while they still can use ser-
vices provided by the kernel outside. By executing processes in the
kernel mode of their own virtual machines, LightZone can securely
and efficiently leverage privileged memory isolation features for
in-process isolation. Specifically, LightZone offers two mechanisms
with an efficiency and maximum isolation domain number trade-
off. When there are multiple mutually distrusting parts within a
process, LightZone maps distinct parts in separate page tables, and
efficiently switches page tables without trapping to the OS kernel
during domain switching. Alternatively, it can use privileged access
never instructions to isolate two domains mapped as kernel and
user pages, respectively, with even more negligible performance
overhead. Our evaluation shows that LightZone harmonizes secu-
rity, scalability, and efficiency for in-process isolation in ARM64
applications.

CCS CONCEPTS
• Security and privacy → Software and application security;
Virtualization and security; • Software and its engineering
→ Virtual machines.

KEYWORDS
In-Process Isolation, Virtualization, Software Compartmentaliza-
tion, ARM64

ACM Reference Format:
Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo
Shen, and Yajin Zhou. 2024. LightZone: Lightweight Hardware-Assisted
In-Process Isolation for ARM64. In 24th International Middleware Conference
(MIDDLEWARE ’24), December 2–6, 2024, Hong Kong, Hong Kong. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3652892.3700786

∗Rui Chang is the corresponding author.

1 INTRODUCTION
In-process isolation enhances the security and robustness of ap-
plications by compartmentalizing parts in the same address space,
being used for sensitive data protection [21, 42, 44] and kernel com-
partmentalization [20, 28, 32, 33, 39]. Applications containing many
unrelated parts may need tens and hundreds of isolation domains
[19, 50, 52, 66]. Thus, secure, efficient, and scalable in-process isola-
tion is highly desirable (§3). As such, Intel and ARMv7 processors
provide VMFUNC, Memory Protection Keys (MPK), and Memory
Domain. However, no similar in-process isolation feature exists on
general commodity ARM64 processors at present.

Despite the absence of official architectural support, researchers
have introduced solutions for ARM64 in-process isolation to en-
hance in-process privilege separation. They fall into three cate-
gories, (1) the hardware customization approach, such as Apple
APRR [46] and CHERI [57], which modifies CPUs by adding ded-
icated circuits, (2) the hardware-assisted approach [1, 15, 23, 61],
using existing hardware features for in-process isolation, and (3)
ARM-specific software-based fault isolation (SFI) [64], using com-
pilers and sanitizers to restrict memory access.

Unfortunately, hardware customization will only be available
on Apple and Morello ARM64 processors in the near future, while
previous hardware-assisted and software-based approaches fail to
harmonize scalability (i.e., the ability to offer an adequate number of
isolation domains), security, and efficiency. Concretely, hardware-
assisted approaches leverage tagged memory [1, 15], Watchpoint
[23], or unprivileged load-store instructions [61] for in-process
isolation. However, tagged memory only supports up to 16 iso-
lation domains, incurs additional performance overheads due to
data pointer integrity protection to defeat arbitrary pointer tag
forgery, and cannot prevent pre-compiled binaries from illegally
accessing other parts of a process. Due to hardware limitations,
Watchpoint only supports up to 16 domains with strict memory lay-
out constraints. Worse still, it is not efficient because every isolation
domain switching triggers a context switch from the user space to
the OS kernel. As for unprivileged load-store, PANIC [61] replaces
normal load and store instructions with unprivileged alternatives to
isolate memory access between only one trusted and one untrusted
domain. Classic software-based fault isolation [34, 45, 55, 65, 67] has
a security-performance tradeoff, because some solutions choose not
to sandbox load instructions to reduce runtime overheads from 20%
to approximately 5% to 15%. Even though recent software-based

467

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
MIDDLEWARE '24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0623-3/24/12…
https://doi.org/10.1145/3652892.3700786

https://doi.org/10.1145/3652892.3700786
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3652892.3700786
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652892.3700786&domain=pdf&date_stamp=2024-12-02


MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

fault isolation frameworks, LFI and TDI [36, 64], achieve way better
efficiency and scalability while sandboxing both load and store
instructions, they can only isolate programs with available source
code but not pre-compiled binaries. But pre-compiled binaries are
commonplace in today’s applications, as discussed in prior works
[44, 70]. On the other hand, LFI and TDI incur more than 7% run-
time overheads, which can be further reduced. Thus, the question
remains: how to offer secure, scalable, and efficient in-process isolation
to ARM64 processes without hardware modification?

Our answer is LightZone, a framework capable of offering secure,
scalable, and efficient in-process isolation to 64-bit ARM processes.
Our insight is that the kernel has memory isolation features despite
the absence of hardware support for in-process isolation. Concretely,
LightZone supports two in-process isolation mechanisms: (1) up-
dating the translation table base register (TTBR) to switch page
tables, which map mutually distrusting domains in separate page
tables and deny access to unmapped addresses; (2) using privileged
access never (PAN) to isolate a process into two domains, marked
as kernel and user pages. Updating PAN or TTBR [2] takes only
tens of cycles, thereby ensuring efficiency. While PAN only allows
two domains, TTBR supports scalable memory domains. However,
switching between user and kernel spaces would consume hun-
dreds to thousands of cycles and indirectly incurs cache pollution.
Therefore the process must directly execute in the kernel mode to
avoid such high cost.

More concretely, LightZone poses two design challenges. First,
to enable secure and efficient kernel-mode process execution (§5), we
put an kernel-mode process in a separate virtual machine (VM).
By CPU and memory virtualization, each kernel-mode process
is confined within its separate VM, ensuring inter-process and
process-kernel isolation. To reduce trap overheads from kernel-
mode processes to their kernels, we propose optimizations to reduce
the trap numbers and cycles consumed by each trap. Second, to
realize in-process isolation via privileged features, LightZone adopts
techniques for page mapping, permission management, and secure
domain switching (§6). For the scalable TTBR-based mechanism,
programmers can insert a jump instruction to a secure call gate in
the code to switch TTBR securely without worrying about control-
flow hijacking attacks. For the more efficient method using PAN,
page table entries (PTE) of protected and normal parts are marked
as user and kernel pages, respectively. To allow access to protected
data in user pages, programmers insert an instruction zeroing PAN
in the application before starting trusted code execution, and vice
versa.

We implemented a prototype of LightZone based on Linux and
KVM. Evaluation on real platforms shows that LightZone is the
sole solution to secure, scalable, and efficient in-process isolation
for ARM64 without hardware customization.

Our work claims the following contributions.

• Secure, scalable, and efficient in-process isolation. We place
ARM processes in kernel mode and leverage privileged memory
isolation features, such as TTBR and PAN, for efficient in-process
isolation. We allow developers to choose TTBR for scalable isola-
tion and PAN for more efficient isolation within the same process.
To prevent bypassing in-process isolation, we propose an instruc-
tion sanitizer and a novel TTBR1-mapped secure call gate.

• Efficiently running host and guest process in kernel mode.
To run ARM processes in kernel mode and avoid corrupting
the kernel from a user-space process, we place these processes
in separate VMs. Moreover, we leverage ARM’s architectural
features to optimize the virtualization and nested virtualization
overheads for these kernel-mode processes.

• Implementation and evaluation. We implement, analyze, and
evaluate LightZone on Cortex A55 andNVIDIACarmel platforms,
demonstrating its security, scalability, and efficiency. We have
open-sourced at https://github.com/hsyhhh/lightzone.git.

2 BACKGROUND
2.1 ARM Virtualization
ARM virtualization involves three modes, referred to as exception
levels in ARM64. User mode (EL0) is the least privileged mode for
both host and guest processes, while kernel mode (EL1) is more
privileged and utilized by guest OS kernels. Hypervisor mode (EL2)
is reserved for hypervisors and host OS kernels [13]. The system
registers used by kernels are physically duplicated in both kernel
and hypervisor modes, which avoids context-switching system
registers when a guest kernel exits to the host kernel.

CPU virtualization restricts a virtual machine’s access to specific
CPU features and manages register switching when switching be-
tween the host and the virtual machine. Specifically, hypervisor
configuration registers (e.g., HCR_EL2) not only configure the guest
VM’s paging mode and set access permissions for system registers,
but also indicate whether the user-space process is in guest or host
mode. When entering or exiting a VM, ARM and x86 architectures
handle CPU switching differently. x86 atomically loads and stores
all the registers used by the VM in hypervisor memory, while ARM
can switch each register individually, offering greater flexibility.

In terms of memory virtualization, ARM introduces an additional
layer of address translation alongside stage-1 paging. Specifically,
stage-1 page tables translate guest virtual addresses to intermediate
physical addresses (IPAs), while stage-2 page tables further translate
IPAs to physical addresses. Additionally, each VM is assigned a
unique virtual machine identifier, which is stored in the hypervisor-
mode register known as VTTBR_EL2, pointing to the root of the
stage-2 page tables.

2.1.1 Nested Virtualization. ARM nested virtualization enables
running a VM inside another VM by emulating a guest hypervi-
sor at EL1 with the host hypervisor’s assistance. When the guest
hypervisor configures registers for the nested VM, it traps to the
host hypervisor, which then saves the configuration values for the
nested VMs. Upon entering the nested VM, the host hypervisor
facilitates register switching and sanitization by loading the legal
configurations for the nested VM and then executes it, allowing it
to operate in both kernel and user modes. Memory virtualization
collapses multiple page table stages into one or two stages and
allocates the nested VM its unique virtual machine identifier.

2.2 TTBR and PAN
Unlike Intel, which has a single CR3 register pointing to the physical
address of the page table root, ARM64 has two translation table base
registers: TTBR0 and TTBR1. These per-core registers store the

468

https://github.com/hsyhhh/lightzone.git


LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

base physical addresses of stage-1 page tables. TTBR0 points to the
root of the page table that translates lower virtual addresses (those
with the most significant bit set to zero), whereas TTBR1 points to
the page table that manages upper virtual address translations.

Privileged Access Never (PAN) is a register accessible to the OS
kernel, whether it is a host kernel running in hypervisor mode, or a
guest kernel running in kernel mode. In conventional systems, PAN
is used to prevent OS kernels from accessing user-space data con-
trolled by an attacker. Specifically, if a processor is running in kernel
or hypervisor mode, enabling PAN prevents the processor from
accessing data in pages marked as user pages in the corresponding
PTEs.

3 MOTIVATION
3.1 Applications Need Secure, Efficient, and

Scalable In-Process Isolation
In-process isolation enhances security by preventing memory ac-
cess between mutually distrusting parts within the same address
space of a process. To this end, both memory read and write opera-
tions should be protected, and potentially vulnerable pre-compiled
binaries within a monolithic application should be isolated so that
an attacker cannot leverage them to attack other protected parts.
Moreover, fast domain switching is essential due to the frequent
interaction between different isolated parts of a process [51].

In addition to security and efficiency, modern applications may
need to isolate tens and hundreds of mutually distrusting parts to
enforce the least privilege principle. The first motivating example
is libraries. Applications depend on many libraries that include
vulnerable code and in-library secrets. Prior work [72] shows an
average npm package implicitly depends on around 80 other pack-
ages, and VDom [66] further demonstrates that popular desktop,
server, and utility applications can often depend on tens and hun-
dreds of libraries, of which some are vulnerable. Many compart-
mentalization works [35, 52] selectively isolate the libraries for the
security-performance tradeoff. The second example is multi-user
server applications. Since one such application can concurrently
serve tens and hundreds of connections, according to the least
privilege principle, we should isolate the secret data of each user
[6, 19, 42, 49, 66]. One of the benefits is that even if the code that can
access the critical data is still vulnerable or malicious, an attacker
cannot access the data of other users. The third example is mem-
ory objects. Databases often use multiple memory objects to store
unrelated data, requiring scalable in-process isolation to prevent
data corruption across different memory objects. Specifically, we
put each unrelated persistent memory object in a separate domain.

3.2 Inadequate ARM64 In-Process Isolation
As Table 1 shows, none of the prior works simultaneously achieves
all desirable features of in-process isolation.

In terms of efficiency, Watchpoint [23], Capacity [15], and LwC
[31] suffer trapping to the OS kernel during domain switching. As
for scalability, even though two isolation domains can enhance
security of processes, 16 isolation domains are not adequate to
enforce least privilege principle to some modern applications [19,
42, 44, 66]. Note that TDI [36] cannot place different objects of the
same type into separate isolation domains.

Table 1: Comparison of dedicated and portable in-process iso-
lation frameworks for ARM64. PCB stands for the capability
of isolating pre-compiled binaries. For scalability, ✝ means
the number depends on the concrete sandbox design. For
efficiency, ✝ means the overheads are mediocre but not negli-
gible. When the solution is used to isolate different parts in
modern applications, the performance overheads can be as
small as 5% to 10%, but can also be larger than 10%. For PCB, ✝
indicates the capability depends on whether the work lever-
ages effective binary rewriting or existing hardware features
such as x86 segments.

ARM64 Scalability Efficiency Security PCB
Watchpoint [23] ✗ (16) ✝ ✓ ✓

PANIC [61] ✗ (2) ✓ ✗ ✓

Capacity [15] ✗ (16) ✗ ✓ ✗

LFI [64] ✓ (216) ✝ ✓ ✗

LightZone (this) ✓ (216) ✓ ✓ ✓

Portable
SFI [34, 65] ✝ ✗ ✓ ✝

SFI without
sandboxing load ✝ ✝ ✗ ✝

TDI [36] # of data types ✝ ✓ ✗

LwC [31] ✓ (infinite) ✗ ✓ ✓

Now we assess the security and the capability to isolate pre-
compiled binaries (PCB). tagged-memory-based isolation [15]
and software-based fault isolation (SFI) without existing hardware
features support [36, 64] do not have the capability to isolate ar-
bitrary binaries. Similarly, since such protection needs compiler
instrumentation, they cannot be used to isolate unsafe blocks [25]
of Rust code. In terms of security, software-based fault isolation
that only sandboxes store instructions [45] is insecure because an
attacker can still read sensitive data. PANIC [61] is insecure because
an attacker can compile and run a malicious process that maps a
physical frame to two virtual addresses, one with executable permis-
sion and the other with writable permission. Since PANIC elevates a
process directly in the host kernel mode without virtualization, the
malicious process can stealthily write privileged instructions to the
writable page while executing the same physical page. Executing a
privileged instruction can corrupt the OS, which is insecure.

4 LIGHTZONE OVERVIEW
4.1 Design Goals and Overview
LightZone aims for in-process isolation on ARM processors, with
the following design goals:
• Security. Threads in a process are assigned specific access per-
missions to protected memory domains. Access to a domain is
granted only when the program explicitly switches the thread to
that domain.

• Scalability. To protect applications with numerous threads and
mutually distrusting parts, LightZone supports up to 216 domains.

• Efficiency. In LightZone, domain switching is efficient and does
not require trapping to the kernel. To efficiently leverage privi-
leged features, we optimize the performance of executing a pro-
cess in a separate VM.

469



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

Guest
Process

User Mode
(EL0)

Kernel Mode
(EL1)

Host
Process

Host Kernel and
KVM

Guest
Kernel

LightZone Kernel Module
EL1 Processes              (§4.1)
Trap Optimization          (§4.2)
Memory Map and Perm (§5.1)
Instruction Sanitizer       (§5.3)

LightZone
Kernel
Module

(Host) LightZone Process

Processes in a Guest VM

Guest LightZone Process

LightZone
API LibraryLightZone API Library

Secure Call Gate (§5.2)

Translation Table Base RegistersARM Virtualization

Processes on the Host

LightZone Lowvisor
Nested Virtualization
Trap Optimization (§4.2)

Hypervisor
Mode (EL2)

ARM64
CPU

VE1

VE2

VE3

Privileged Access Never

Call
Kernel
Service

Call
Kernel
Service

Page Table 0

1

domain0
domain1

unmapped

Page Table 1

1

domain0
unmapped
domain2

PTEs PTEs

Page Table

1

domain0 kern
domain1 user
domain0 kern

PTEs | Permission

Figure 1: LightZone overview. Each VE represents either a virtual machine or a LightZone process. In VE1, the host LightZone
process employs TTBR0 for scalable in-process isolation, while in VE3, the guest LightZone process uses PAN for more efficient
in-proccess isolation.

Figure 1 is an overview of LightZone. Typical processes run in
user mode (EL0). However, LightZone processes operate in kernel
mode (EL1). Leveraging ARM virtualization hardware to exclu-
sively, securely, and efficiently run in kernel mode of separate VMs,
they can directly use privileged features to achieve in-process isola-
tion without trapping to kernels for domain switching. LightZone
processes always have access to unprotected memory like regular
processes, while a protected page is accessible only if access is ex-
plicitly granted. Specifically, depending on the in-process isolation
mechanism used, access can be granted by disabling PAN, or up-
dating TTBR0 with a specific page table base through a secure call
gate (§6.2).

4.1.1 Executing a Process in Kernel Mode. LightZone supports
kernel-mode processes (§5) via a kernel module, a user-space API,
and a special hypervisor patch named LightZone Lowvisor. In this
paper, LightZone Lowvisor is irrelevant to KVM-ARM’s Lowvisor
and collaborative with the guest kernel module to support guest
kernel-mode processes.

Kernel-mode processes can rely on a host kernel or a guest
kernel. Since ARM Virtualization Host Extensions are prevalent,
we mainly focus on hosts. Regardless of the kernel used, the kernel-
mode process operates exclusively in kernel mode of a separate VM.
A host kernel runs directly in hypervisor mode and manages the
VM for the kernel-mode process. However, a guest kernel operates
in kernel mode, requiring the collaboration of our hypervisor patch
to manage system registers and page tables for the kernel-mode
process.

We first consider the scenario of placing a host process into
LightZone (Figure 1 left). After a host process enters LightZone
through an API call, the LightZone kernel module of the host kernel
manages kernel-mode system registers for kernel-mode processes,
a.k.a., LightZone processes, using existing hardware virtualization
mechanisms. LightZone uses hypervisor configuration registers

and context switching to protect kernel CPU states from kernel-
mode processes. When LightZone processes require kernel services,
the API library forwards syscalls, exceptions, and interrupts to the
kernel module, which invokes kernel functions to handle these
traps. Specifically, if page faults happen, it manages page tables and
PTE attributes to enforce inter-process and process-kernel isolation,
as well as in-process isolation across domains.

Next, to enable applications within the guest VM (Figure 1 right)
to leverage LightZone in a separate VM (not the original guest VM
containing the guest kernel and guest kernel module), LightZone
Lowvisor, which runs in hypervisor mode, establishes nested vir-
tual environments for kernel-mode processes. In the guest kernel,
the LightZone kernel module remains mostly unchanged. However,
some operations can only be executed in hypervisor mode, requir-
ing collaboration between the guest kernel module and Lowvisor.
These operations include accessing kernel-mode registers of Light-
Zone processes, accessing hypervisor-mode registers, and updating
stage-2 paging. Moreover, Lowvisor forwards syscalls and excep-
tions from the guest LightZone process to the guest kernel module,
and optimizes communication and switching between them.

4.1.2 In-Process Isolation Mechanisms. LightZone offers two in-
process isolation mechanisms: scalable isolation that switches stage-
1 page tables, and more efficient but unscalable isolation that lever-
ages PAN (§6). Both mechanisms are available concurrently in the
same kernel. Even the same process has the option to use both
mechanisms simultaneously for isolating different memory ranges.

When LightZone switches page tables for scalable isolation,
pages protected by different domains are mapped by different stage-
1 page tables. Since the process can only access pages mapped by
the current page table, other pages are isolated and thereby pro-
tected. Switching to another memory domain requires modifying
TTBR0 of a thread. To eschew TLB invalidation instructions after
switching TTBR, we utilize per-page-table address space identifiers.

470



LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Listing 1: A demo using LightZone for in-process isolation.

1 lz_enter(true , 1);

2 pgt0 = lz_alloc (), pgt1 = lz_alloc ();

3 lz_map_gate_pgt(pgt0 , 0); // call_gate0 to pgt0

4 lz_map_gate_pgt(pgt1 , 1); // call_gate1 to pgt1

5 lz_prot(data0 , len , pgt0 , READ | WRITE);

6 lz_prot(data1 , len , pgt1 , READ | WRITE);

7 lz_prot(key , len , PGT_ALL , READ | USER);

8 lz_switch_to_ttbr_gate (0); // pass gate0

9 data0 = 100; // part 0 mapped by pgt0

10 set_pan (0); data0 = enc(data0 , key); set_pan (1);

11 lz_switch_to_ttbr_gate (1); // pass gate1

12 data1 = 200; // part 1 mapped by pgt1

13 set_pan (0); data1 = enc(data1 , key); set_pan (1);

When LightZone leverages PAN, protected and unprotected
memory regions are marked as user and kernel pages in their PTEs,
respectively. Thus, a thread in kernel mode can access protected
memory only if PAN is disabled. Switching domains only requires
enabling and disabling PAN.

4.1.3 Programmatic Usage. Table 2 describes LightZone API. As-
sume that a program has two mutually distrusting parts, and they
both access the same cryptographic key in a small part of their code.
Listing 1 demonstrates how LightZone is leveraged. The process
enters the execution environment that allows scalable isolation
(line 1). Then, it attaches the data of the two parts to different page
tables to achieve mutual isolation (lines 5,6). It also utilizes PAN to
protect the key, which is attached to all page tables with global and
user bits set in PTEs for better efficiency (line 7). Finally, to switch
to legal stage-1 page tables mapping protected data, it associates
each call gate with a designated page table to switch to (lines 3,4),
and inserts domain switching instructions for TTBR-based and
PAN-based isolation (lines 8,10,11,13).

4.2 Threat Model
The user-space API library, the kernel module, and LightZone
Lowvisor are trusted. The loader, linker, OS kernel, hypervisor,
and hardware are assumed to be trusted.

We aim to run a process in kernel mode without compromising
the OS kernel or other processes, even if the kernel-mode process
itself is malicious. Additionally, LightZone ensures that a thread of
a process can only access a protected page if it has been explicitly
granted access to the corresponding memory domain. Concretely,
we detect unauthorized access to protected memory domains and
terminate the compromised process to prevent attacks within the
same address space. Other pitfalls of in-process isolation, like kernel
confused deputy attack [11, 27] and signal context corruption [22],
can be mitigated by MPK sandboxes [54] and developers compart-
mentalizing the monolithic software, which are compatible with
our work. Side-channel, micro-architectural, and physical attacks
are out of scope.

5 RUNNING ARM64 PROCESSES IN KERNEL
MODE

To place a process in kernel mode securely, we exclusively run the
process in a separate virtual environment managed by its OS kernel,

ensuring isolation from the kernel and other processes (§5.1). Since
conventional hypercalls and VM switching are notoriously slow, for
efficiency, we alleviate the overheads of trapping from the kernel-
mode process to its OS running as an hypervisor-mode host kernel
or a typical kernel-mode kernel (§5.2).

5.1 Virtualization-Based Kernel-Mode Processes
A kernel-mode process needs its own CPU contexts, memory, and
OS support. Hence, we leverage CPU and memory virtualization to
achieve inter-process and process-kernel isolation. To obtain OS
support, all traps of LightZone processes, also called kernel-mode
processes, are forwarded to the kernel.

5.1.1 CPU Virtualization. To initialize an environment similar to
where a kernel-mode process originally runs, the kernel-mode sys-
tem registers of the virtual environment are set to the values of the
hypervisor-mode system registers of the host if the kernel-mode
process depends on a host kernel, or set to the kernel-mode sys-
tem registers of the guest VM when it relies on a guest kernel. We
monitor the CPU’s behavior during execution to confine kernel-
mode processes, which are granted access to a limited set of CPU
features, in the virtual environment. Concretely, we use hypervisor
configuration registers, which are only accessible in hypervisor
mode by the host kernel module or LightZone Lowvisor, to disable
unused features like virtual interrupts, counters, timers, and cer-
tain privileged CPU features (e.g., TLB maintenance and system
register access). In addition, there are some registers, such as the
general purpose registers, that cannot be monitored by the config-
uration registers and are multiplexed with the kernel. Therefore,
we context-switch these registers when entering and exiting the
virtual environment of kernel-mode processes.

5.1.2 Memory Virtualization. Memory virtualization controlsmem-
ory access and translates addresses. To simplify user-space pointer
usage in kernel functions like get_user, given a legal user vir-
tual address, we aim to ensure that a kernel-mode process obtains
the same physical address as its kernel’s address translation re-
sult. Recall that we support two mechanisms: the more efficient
but unscalable isolation using PAN, and the TTBR-based scalable
isolation.

When using PAN, kernel-mode processes cannot bypass stage-1
paging because we set the TVM and TRVM bits in the hypervi-
sor configuration register to disallow any kernel-mode processes’
operations related to stage-1 paging. Therefore, we duplicate the
original stage-1 page table for the kernel-mode process to constrain
the memory access. Note that the kernel module does not simply
copy PTE permissions. Instead, permissions for user mode execu-
tion now apply to kernel mode. For instance, if the original PTE
does not permit user execution with the UXN bit set, the PTE for the
kernel-mode process will set PXN to prohibit privileged execution.
Besides, when a page is isolated by LightZone, an extra permission
overlay is added based on the in-process isolation mechanism (§6.1).

When LightZone processes directly update TTBR to switch do-
mains, they control stage-1 translation, requiring stage-2 page ta-
bles to restrict memory access. Even though our TTBR1-based call
gate (§6.2) and the instruction sanitizer (§6.3) ensure legal TTBR
updates, we insist on maintaining stage-2 paging for LightZone

471



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

Function & Macro Description

int lz_enter(bool allow_scalable,
int insn_san)

Give the calling thread and its forked new threads one-way tickets to the per-process virtual
environment. allow_scalable indicates whether the scalable TTBR-based mechanism can be
used, and insn_san indicates the type of instruction sanitization introduced in §6.3.

int lz_alloc(void) Allocate available stage-1 page tables and return the page table identifier.
int lz_free(int pgt) Destroy and free a page table. pgt is the identifier of the page table.

int lz_prot(void *addr, u64 len,
int pgt, int perm)

Attach a memory region to a page table with permission overlays. addr and len define the
page-aligned memory region, and pgt indicates the target stage-1 page table. Available
permission bits are as follows: readable, writable, executable, and user.

int lz_map_gate_pgt(int pgt, int gate) Associate each call gate identifier, introduced in §6.2, with the stage-1 page table that the
gate switches to. pgt is the page table identifier, and gate is the call gate identifier.

#define lz_switch_to_ttbr_gate(gate) Switch to the call gate and hence a page table. The argument gate in the inline macro serves
as a constant identifier of the call gate. Adequate call gates are available in the API library.

Table 2: LightZone API description.

processes using TTBR0. This ensures process-kernel isolation even
if unsanitized instructions bypass stage-1 paging. Note that if a
malicious LightZone application maps a physical frame to two vir-
tual addresses with writable and executable permissions, it may
control stage-1 paging by writing privileged instructions to the
physical page before executing that same page. Thus, stage-2 pag-
ing is necessary for LightZone with TTBR to keep inter-process
and process-kernel memory isolation.

Before discussing a more secure paging method for LightZone
using TTBR, let us consider an intuitive one. stage-1 page tables of
LightZone processes copy address translation from the kernel. If a
kernel-mode process depends on a host kernel, stage-2 translation
is an identical mapping. Otherwise, the stage-2 translation copies
the mapping set up by the hypervisor, which requires collaboration
between the kernel module and Lowvisor. Unfortunately, even if
stage-2 paging limits memory access, after bypassing stage-1 trans-
lation, a malicious kernel-mode process may be able to compromise
process-kernel isolation. It can read the physical addresses in stage-
1 PTEs, and use Rowhammer [24] to toggle a bit in the target DRAM
row containing kernel data. To avoid this issue, Linux disallows non-
root processes to access address translation via pagemap [12]. While
Rowhammer falls outside our threat model and can be launched
through alternative ways, it is crucial not to make any attack that
compromises inter-process isolation easier. To offer a more secure
translation, on top of the intuitive translation approach, a random-
ization layer is added to hide the real physical addresses in the
stage-1 PTEs. Briefly, using a hierarchical table, we create one-to-
one mappings between physical pages (or intermediate physical
pages for guest kernel-mode processes) and fake physical pages.
The fake addresses are sequentially allocated. E.g., if the kernel
maps the 4KB pages that trigger the first and second page faults to
physical addresses 0x470ec000 and 0x48800000, the correspond-
ing fake physical addresses would be 0x1000 and 0x2000. Thus, in
the page fault handler, for LightZone processes using TTBR, stage-1
page tables map virtual addresses to fake addresses, while stage-2
paging maps the fake addresses to real physical addresses.

To prevent LightZone processes from accessing excessive mem-
ory, their page tables are synchronized with the kernel-managed
page tables. When the kernel unmaps a page, related stage-1 and

two PTEs are zeroed. Besides, stage-1 page tables are read-only in
stage-2 mapping.

5.1.3 Trap Handling and Forwarding. Stage-2 page faults and inter-
rupts trap LightZone processes directly to hypervisor mode, while
system calls and stage-1 page faults trap them to their virtual en-
vironment’s kernel mode. Therefore further actions are needed to
forward the latter case to the kernel module.

When a LightZone process relies on a host kernel, the API library
forwards exceptions via hvc to the kernel module, which checks
the exception type. If a LightZone process relies on a guest kernel,
after traps are forwarded to hypervisor mode, Lowvisor context
switches a small part of kernel-mode system registers used by both
the guest kernel and the guest LightZone process, and then further
forwards traps to kernel mode where the kernel runs. If page faults
occur, the kernel module suffices to handle memory virtualization
for a host kernel-mode process, whereas a guest kernel-mode pro-
cess relies on collaboration between the guest kernel module and
Lowvisor to correctly translate its virtual addresses. For syscalls
or interrupts, the kernel module further forwards them to the OS
kernel by managing a syscall table similar to the kernel’s, thereby
allowing LightZone processes to invoke syscalls. Most syscalls are
identical to those of the kernel, but signal, tracing, and process
management syscalls require additional CPU state and virtual en-
vironment management. Pending interrupts trap the kernel again
once the CPU enables interrupts, so the kernel module barely adds
extra code to handle them.

5.2 Trap Optimization
Trapping from a LightZone process to a hypervisor-mode host
or kernel-mode guest kernel is similar to hypercalls or switching
between two VMs, respectively. According to empirical studies,
these operations are prohibitively slow without optimization due
to heavy register switching, especially when a kernel-mode process
calls kernel services more frequently than a VM requires hypervisor
services. To this end, we minimize the number of traps by eagerly
mapping the corresponding stage-2 page table during a stage-1
page fault, avoiding back-to-back page faults caused by the same
address. We also aim to reduce the number of registers needing to
be switched.

472



LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

5.2.1 Traps from a Host LightZone Process. To reduce register up-
dates, we handle three types of registers differently. The first type,
which includes kernel-mode system registers, is only switched dur-
ing host process scheduling as they are not used by the host. The
second type, such as general-purpose registers, is switched during
every trap.

The third type includes two conditionally updated registers,
VTTBR_EL2 and HCR_EL2. According to our experiment, retain-
ing their values saves cycles, especially on platforms like NVIDIA
Carmel where writing them takes thousands of cycles. When run-
ning a host LightZone process, VTTBR_EL2 holds a virtual machine
identifier, and HCR_EL2 indicates that the CPU is in guest mode.
In the host kernel, most instructions are unaffected by virtual ma-
chine identifier or the mode specified by HCR_EL2, allowing them
to retain their values during most traps. However, some operations
like TLB invalidation, address translation, and unprivileged load-
store instructions require the correct virtual machine identifier
value and HCR_EL2 to indicate host mode. LightZone does not
switch HCR_EL2 and VTTBR_EL2 by default when trapping into
the host kernel. They are updated only before executing the above
operations, which can be easily found in the kernel code.

5.2.2 Traps from a Guest LightZone Process. A guest VM and its
guest LightZone processes’ virtual environments share physical
CPU registers of the kernel mode, and the guest VM’s kernel con-
trols guest LightZone processes. Hence, to execute a guest Light-
Zone process, Lowvisor implements software nested virtualization.

To efficiently switch between the VMwhere a LightZone process
runs and the VM for the guest kernel, we inherit one optimization
from NEVE [30] and introduce two new optimizations. Convention-
ally, when the guest LightZone kernel module accesses hypervisor-
mode and LightZone processes’ system registers, it has to trap to
hypervisor mode and let LightZone Lowvisor bookkeep the values
of these registers. Later, when switching between the guest VM
and guest LightZone processes, Lowvisor context switches these
kernel-mode and hypervisor-mode system registers. To reduce the
number of such traps, we follow the optimization that redirects
the access to these system registers to a per-core page shared by
Lowvisor and the guest kernel module [30].

Building upon this base design, we add two new optimizations.
First, we share pages containing the general-purpose registers
(pt_regs) of LightZone processes between the guest kernel and
Lowvisor. Conventionally, when trapping from a guest kernel-mode
process, the processor first switches to Lowvisor which saves the
context of the LightZone process in memory owned by the hyper-
visor. It then restores the context of the LightZone process before
switching to the guest kernel. The guest kernel now can follow
the usual way to save the LightZone process context in pt_regs.
We combine the two times of LightZone process context savings,
and let Lowvisor directly write to the shared page, thus saving
one context switch cost in the guest kernel. Second, compared to
two conventional VMs, LightZone processes and their guest kernel
share the same values of many system resources, including floating-
point and a large portion of system registers, timers, counters, and
interrupt controllers. If access to these shared resources is legal for
typical processes or can be disabled by hypervisor configuration

Dom0

BAD
Dom

gate 0

gate j

pgtid[0]

pgtid[j]

entry[0]

entry[j]
GateTab TTBRTab

pgtid 0

pgtid k

ttbr0[0]
TTBR0

ttbr0[k]

PGTIDGATE_ID PGTIDENTRY

  x0 <- gate_id
  compare x0 range
  x9 <- TTBRTab.ttbr0[GateTab.pgtid[x0]]
  msr ttbr0_el1, x9
  ---------------------------------------
  compare x0 range again
  x12 <- TTBRTab.ttbr0[GateTab.pgtid[x0]]
  cmp x9, x12
  bne .Lillegal
  x11 <- GateTab.entry[x0]
  cmp lr, x11
  bne .Lillegal
  ret

LightZone
API Library

Dom1

Access Dom1

Access Dom1

1

2

LightZone Process

Figure 2: The call gate ensures legal TTBRs and entries.

registers, Lowvisor does not switch them. Since updating configu-
ration registers is faster than switching all system resources, guest
LightZone processes trap more efficiently than conventional nested
VMs.

6 ENABLING IN-PROCESS ISOLATION
Next, we shift our focus to how to enable hardware-assisted in-
process isolation. §6.1 shows the creation of page tables and at-
tributes in PTEs for supporting in-process isolation. §6.2 describes
how we securely switch between domains. §6.3 deals with sensitive
instructions that may escape in-process isolation and require spe-
cial handling. Moreover, utilized by LightZone processes, PAN and
TTBR0 are added in the signal contexts of the kernel for correct
signal handling.

6.1 Memory Mapping and Permission
LightZone offers two isolation methods: TTBR0-based isolation
and PAN-based isolation.

When switching TTBR0, LightZone maps distinct memory do-
mains in different stage-1 page tables. Each page table of a Light-
Zone process can map all unprotected memory and pages protected
by one or more domains, enabling simultaneous access to multiple
domains. Moreover, pages belonging to the same domain can be
mapped by multiple page tables, allowing different permission over-
lays. For example, JIT code pages can switch between writable and
executable permissions via two page tables. During a page fault,
protected pages are assigned the least permissions by intersecting
the access permissions from the corresponding domains with those
defined in the kernel-managed virtual memory areas. To switch
to another page table, LightZone merely updates TTBR0_EL1 and
executes an instruction barrier.

When using PAN, only one stage-1 page table is managed. We
mark protected memory as user pages and normal memory as
kernel pages in their corresponding PTEs. Setting PAN to zero
allows access to both protected and normal memory. Setting PAN
to one restricts access to protected memory, enforcing in-process
isolation.

473



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

6.2 TTBR1-Mapped Secure Call Gate
We consider the secure way of switching domains: access to a mem-
ory domain D is permitted when the program counter is transferred
to one of the pre-designated entries (virtual addresses to start ex-
ecution) of D; access to D is revoked when the program counter
transfers to an entry of another domain that is not mapped by
the current page table. However, if instructions updating TTBR0
are intermingled with application code, an attacker may launch
control-flow hijacking, switching to a page table mapping protected
memory before jumping to untrusted code that should not access
the data.

Hence, we introduce a secure call gate to prevent illegal TTBR0
values when executing the beginning code that accesses correspond-
ing protected data. Each legitimate entry, allocated manually and
statically before compilation, is associated with a unique call gate
ensuring correct TTBR0 values. In the current version of Light-
Zone, we regard the address after lz_switch_to_ttbr_gate or
the address after the instruction that disables PAN as the legitimate
entry, and update the link register with this address before jumping
to the call gate. Even if several entries switch to the same page
table (perhaps because multiple functions access the same domain),
we assign a unique call gate to each entry. The main difficulty of
designing such a call gate is that the attacker can control the new
values of the page table base, TTBR0, so the integrity of any code
mapped by TTBR0 may be compromised. Luckily, unlike x86 that
only has one CR3, on ARM processors, there are two page table
base registers, TTBR0 and TTBR1, pointing to two page tables that
correspondingly map different address ranges of the same address
space. Thus, we use TTBR1 to map the call gate for code integrity,
as an instruction sanitizer (§6.3) ensures that there is no instruction
modifying TTBR1 during process execution. Since the addresses
mapped by TTBR0 and TTBR1 are distant, an indirect jump (ret in
Figure 2) back to the application follows the call gate, distinguish-
ing it from the inline call gate [51] used in Intel MPK that securely
grants access to protected memory. To guarantee that the thread
starts from a legitimate entry after switching TTBR0, the call gate
compares the return address with the pre-designated legal value
before the indirect jump.

As demonstrated in Figure 2, the call gate relies on two kernel-
managed read-only tables: the TTBR0 validation table (TTBRTab)
and the gate metadata table (GateTab). They help the call gate
validate the new link register and TTBR0 values. Indexed by the
compile-time-defined call gate identifier (GATE_ID), GateTab stores
legal entries (ENTRY) and target page table indices (PGTID). During
process initialization, when the target stage-1 page table is created
and associatedwith the gate identifier through the lz_map_gate_pgt
API, PGTID in GateTab is updated, and TTBRTab is updated with
physical addresses of newly created page tables. During later TTBR
switching, the call gate queries TTBRTab to obtain the TTBR value.
Specifically, each page table switching has a switch phase (➀) and
a check phase (➁). In ➀, the call gate looks up tables using the
call gate identifier to find the next legal TTBR0 and entry. Moving
on to ➁, it first verifies the call gate identifier range, and then re-
queries TTBRTab and GateTab. By comparing the in-register values
of TTBR0 and the entry with the re-queried ones, the call gate
captures illegal page tables and entries, defeating arbitrary updates.

Table 3: Listed instructions cannot be monitored by config-
uration registers, and are treated differently when we use
TTBR (➀) and PAN (➁). ✝ means the instructions are allowed
only in the call gate. In a system instruction, bits(31,22) are
0b1101010100, (20,19) are op0, (18,16) are op1, (15,12) are CRn,
and (7,5) are op2.

Type Sensitive Instructions Allowed?
➀ ➁

Exception ERET ✗ ✗

Unpriv LDTR[B/SB/H/SH/SW], STTR[B/H] ✓ ✗

System

op0=0b00 && CRn=0b0100 &&
op2!=NZCV && op2!=PAN ✗ ✗

op0=0b00 && CRn=0b0100 &&
op2=PAN ✓ ✓

op0=0b01 && CRn=7 ✗ ✗

op0=0b11 && CRn=4 && Target
register is not NZCV, FPCR, or FPSR ✗ ✗

op0=0b11 && CRn!=4 && op1!=3
&& Target register is not TTBR0_EL1 ✗ ✗

op0=0b11 && CRn!=4 && Target
register is TTBR0_EL1 ✝ ✗

Without an indirect jump between msr and ret, ➁ is guaranteed
to proceed once TTBR0 is changed.

6.3 Sensitive Instruction Sanitizer
Certain sensitive instructions can bypass in-process isolation, de-
spite being unable to escape the virtual environment. These instruc-
tions behave differently in user mode and kernel mode, and not all
of them can be monitored by hypervisor configuration registers.
For example, TTBR0 updates should not be trapped by HCR_EL2 as
such updates are allowed in the call gate. Thus, undesired instruc-
tions in executable pages are sanitized. As listed in Table 3, based
on the instruction format, sensitive instructions (ARMv8) fall into
three types: exception generation and return, unprivileged load-
store, and system instructions. Since finding sensitive instructions
are engineering efforts, we omit further details here.

An instruction sanitizer ensures the absence of sensitive instruc-
tions within a page before executing its code. However, it is possible
for an attacker to inject sensitive instructions into a writable in-
struction page after it has passed the sanitizer check. If the page
is both executable and writable at the same time, these injected
sensitive instructions could be executed, leading to inconsistencies
between the sanitizer’s check and the actual execution. To counter
this type of Time-of-Check-to-Time-of-Use (TOCTTOU) attack, we
enforce W⊕X and break-before-make [73]. Concretely, if an in-
struction page fault occurs, the page, if writable, is first unmapped.
The sanitizer then examines the page to ensure all instructions are
insensitive before making the page executable but not writable.

7 SECURITY EVALUATION
7.1 Security Analysis
We analyze the security of LightZone from three attack vectors:
side-channel and micro-architectural attacks, breaking kernel-user
or inter-process isolation, and breaking in-process isolation.

474



LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Table 4: Cycles spent on empty trap-and-return roundtrips.

Carmel Cortex A55
host user mode to host hypervisor mode 3,848 299
guest user mode to guest kernel mode 1,423 288
LightZone kernel mode to host hypervisor mode 3,316 536
LightZone kernel mode to guest kernel mode 29,020∼32,881 1,798∼2,179
KVM Virtualization Host Extensions hypercall 28,580 1,287
update HCR_EL2 1,550∼1,655 88
update VTTBR_EL2 1,115 37

7.1.1 Side-Channel and Micro-Architectural Attacks. While side-
channel and micro-architectural attacks are outside the scope of
our threat model, we assert that LightZone does not introduce any
new side-channel vulnerabilities. To ensure that LightZone remains
as robust against these attacks as standard Linux systems, we main-
tain existing mitigation of Linux. Furthermore, if existing defense
mechanisms proposed in academia [29, 43, 48, 68] are adopted in
real systems in the future, LightZone will be compatible with them.

7.1.2 Kernel-Process and Inter-Process Isolation. To enforce kernel-
process and inter-process isolation, LightZone utilizes hypervisor
configuration registers and context switching for CPU virtualiza-
tion, while using page tables for memory virtualization. All opti-
mizations, including partial register switching, disallow LightZone
processes to access privileged software illegally. Furthermore, Light-
Zone processes can only communicate with the operating system
through syscalls, whose security mechanisms are still in effect.

Additionally, LightZone does not interfere with internal defense
mechanisms of Linux, such as PAN. While LightZone utilizes PAN
for in-process isolation, we context-switch the PAN register when
entering and exiting the OS kernel. And the kernel accesses user
addresses through the original, Linux-managed page tables, where
all LightZone processes’ memory is designated as user pages.

7.1.3 In-Process Isolation. As for in-process isolation, there are
three ways to bypass in-process isolation: incorrect isolation policy,
user-space attacks, and kernel-based attacks. Programmers should
correctly use the isolation framework to protect their applications.

In LightZone, user-space attacks involve either executing sen-
sitive instructions or manipulating control flow by jumping to
the middle of the call gate using attacker-controlled registers. To
counter such attacks, LightZone instruction sanitizer identifies sen-
sitive instructions from potentially malicious binaries. Moreover,
W⊕X and break-before-make are enforced to prevent the special
type of TOCTTOU pitfall that could allow sensitive instructions to
be injected into a sanitized instruction page. LightZone also pre-
vents unauthorized updates to translation table base registers by
utilizing the secure call gate, which verifies TTBR0 and the link
register during domain switching.

To defend against kernel-based (and confused-deputy) attacks
[11], LightZone can leverage MPK sandboxes [22, 54] because these
sandboxes are compatible.

7.2 Penetration Tests
We run a random illegal memory access programwith 128 protected
memory domains. The first test evaluates LightZone using PAN by
setting the PTEs of all 128 domains as user pages. In the second

test, the security of TTBR is evaluated by assigning each domain
to a unique stage-1 page table. The results show that LightZone
prevents illegal domain access through direct access, control-flow
hijacking, or injecting sensitive instructions. Illegal memory access
or CVEs are also attempted in the real-world application bench-
marks (§9). LightZone effectively terminates the applications upon
encountering illegal memory access.

8 MICROBENCHMARK
This section demonstrates the efficiency and scalability goals out-
lined in §4.1 through extensive benchmarking. The evaluation envi-
ronment for microbenchmarks and applications is presented, along
with a comparison to related work. Performance evaluation in-
cludes traps to host or guest kernels (§8.1) and memory domain
switching (§8.2).
Evaluation Environment. We developed LightZone prototypes
using Linux versions 5.10 and 6.1. The kernel module (including
Lowvisor) and the user-space library have around 5,400 and 350
lines of code, respectively. We also applied a minimal kernel patch
with 150 lines.

The first SoC is the high-performance NVIDIA Jetson AGX
Xavier, featuring a 2.2GHz 8-core Carmel ARMv8.2 64-bit CPU
and 32GB memory. It runs NVIDIA Tegra Linux, a customized ker-
nel based on Linux version 5.10. We also assess LightZone on the
embedded Banana Pi BPI-M5 with Linux 6.1, equipped with a 2GHz
4-core 64-bit Amlogic Cortex A55 CPU and 4GB memory. The CPU
frequency is fixed and the swap is disabled. Our experiments utilize
four-level stage-1 page tables and three-level stage-2 page tables,
with a minimum page size of 4KB. QEMU and KVM support our
guest VMs, each with 2GB memory and 4 virtual CPUs. The vir-
tual GIC is version 2. Nginx (§9.1) and NVM benchmark (§9.3) are
CPU-bound, and MySQL (§9.2) is I/O-bound.
Performance Comparison. An ioctl-based Watchpoint [23]
prototype supporting up to 16 domains is implemented to compare
LightZone with the watchpoint-based approach. The prototype
updates four pairs of watchpoint registers based on the access
control algorithmmentioned in the paper before accessing a domain.
When exiting from a domain, the watchpoints are reconfigured to
disable access to all protected domains. We also compare LightZone
with a simulated version of lwC [31], originally implemented on
x86 but designed as a general-purpose approach.

8.1 Trap Performance
With kernel page table isolation disabled, we measure the cycles
spent on an empty syscall roundtrip in four scenarios: host user
mode to host hypervisor mode, guest user mode to guest kernel
mode, LightZone kernel mode to host hypervisor mode, and Light-
Zone kernel mode to guest kernel mode. In Table 4, the performance
of traps on Cortex A55 aligns with prior studies [13, 14, 30]. How-
ever, traps and system register updates on Carmel take significantly
more cycles, contradicting prior profiling. To ensure the accuracy
of our evaluation results on Carmel, we compare the performance
difference of updating HCR_EL2 and VTTBR_EL2 for both plat-
forms, finding that slow updates on system registers contribute to
slower traps on Carmel. The optimization described in §5.2 brings
benefits, making empty syscalls from a LightZone process (3,316

475



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

Table 5: Average cycles of switches (with secure call gate)
between distinct number of protected domains.

1 (PAN) 2 3 32 64 128
Carmel
Host

Watchpoint 6,759 6,787 6,944 - - -
LightZone 22 477 483 469 485 490

Carmel
Guest

Watchpoint 2,710 2,733 2,721 - - -
LightZone 22 495 494 484 498 507

Cortex Watchpoint 915 930 927 - - -
LightZone 11 59 57 64 74 82

cycles) faster than those from host user-mode processes (3,848 cy-
cles). While switching between a LightZone process and its guest
kernel still requires extra cycles, fortunately, our application bench-
marks (§9.1, §9.2) are syscall-intensive [47], yet they exhibit low
overheads.

The cycles consumed by traps and returns from LightZone kernel
mode to guest kernel mode may fluctuate due to our optimization.
To share the per-thread context (i.e., pt_regs in Linux) between
the guest kernel and the hypervisor, the pointer to the structure is
stored in a per-CPU hypervisor memory region. After scheduling,
the pointer to the context of the current LightZone thread needs to
be located again. Once found, the new pointer for the guest thread’s
context replaces the old one until another scheduling event occurs.

8.2 Domain Switching Overhead
Table 5 compares LightZone and Watchpoint. The evaluation pro-
gram creates many 4KBmemory domains and attaches each domain
to a unique page table. It then randomly switches between the page
tables and accesses 8 bytes of the current page table’s memory
domain, which repeats 10,000 times.

The results show that switching between more stage-1 page
tables increases the average cycles due to TLB misses. However, the
global bit in the PTEs of regular memory areas significantly reduces
the domain switching cycles. According to this microbenchmark,
LightZone is more efficient and exhibits better scalability compared
to Watchpoint.

9 APPLICATION BENCHMARK
9.1 Cryptographic Keys Protection
To mitigate memory disclosure vulnerabilities that allow attack-
ers to gain unauthorized access to cryptographic keys in server
programs, such as CVE-2011-4576, CVE-2014-0160, and CVE-2016-
2176, we enhance the security of the OpenSSL library via LightZone.
When using PAN, all cryptographic keys are isolated in one pro-
tected domain. In the scalable version, each key is assigned a sepa-
rate page table for isolation. Functions requiring key access use a
call gate to grant access permissions to the relevant domains, which
are then revoked upon function completion. Through scalable iso-
lation, even if the code capable of accessing the key is vulnerable,
unrelated cryptographic keys remain inaccessible.

To assess the performance of LightZone, we apply the security
measure to Nginx v1.12.1 [40]. To isolate cryptographic keys, we
create a new domain for each AES_KEY structure instance and adopt
function-grained isolation [51]. We generate a workload using ab
[17], consisting of 10,000 HTTPS requests fetching a 1KB file from

1 2 4 8 16 20 32

1000

800

600

400

200

0R
eq

ue
st

s 
pe

r s
ec

on
d

Carmel Host

1 2 4 8 16 20 32

1000

800

600

400

200

0

Carmel Guest

Original
LightZone (PAN)
LightZone (TTBR)

Watchpoint (unscalable)
Simulated lwC

1 2 4 8 16 20 32
Number of concurrent clients

500

400

300

200

100

0R
eq

ue
st

s 
pe

r s
ec

on
d

Cortex Host

1 2 4 8 16 20 32
Number of concurrent clients

300
250
200
150
100

50
0

Cortex Guest

Figure 3: Average throughput of original, LightZone PAN,
LightZone TTBR, Watchpoint, and simulated lwC Nginx
(1 worker, 1KB file) on Carmel Host/Guest and Cortex
Host/Guest. Standard deviations are below 3.5%.

the server, with varying concurrent client counts. We conduct 10
such runs after a warm-up phase and calculate the average results.

In Figure 3, the throughput of the vanilla and the protected Nginx
is depicted. For Cortex, LightZone with PAN incurs throughput
losses of 0.91% and 1.98% on the host and guest, respectively. When
each key is isolated in its own domain, LightZone using TTBR
incurs throughput losses of 3.01% and 2.03% on the host and guest,
outperforming other solutions. Watchpoint results in throughput
losses of 6.14% and 6.04% respectively, but fails to protect more than
16 keys and incurs additional overhead due to traps to the kernel,
and lwC exhibits higher throughput losses of 13.71% and 21.24%,
respectively. However, for Carmel, which consumes more cycles for
traps and system register updates, a different performance trend
emerges. On the host, LightZone with PAN and LightZone using
TTBR introduce throughput losses of 1.35% and 5.65%, respectively.
On the guest, LightZone with PAN and TTBR result in higher
throughput losses of 25.24% and 26.91%, respectively, due to slow
switching between the LightZone process and its guest kernel on
Carmel. On the host, Watchpoint and lwC lead to high throughput
losses of 45.46% and 59.03%, respectively, because they require
trapping to the kernel during domain switching, which is expensive
on Carmel (3,848 cycles). On the guest, Watchpoint and lwC exhibit
smaller throughput losses of 23.58% and 26.65%, respectively, due
to fewer cycles consumed by a trap from guest user mode to the
guest kernel on Carmel (1,423 cycles).

We place each cryptographic key into a 4KB page, which leads
to memory fragmentation. Additionally, we create multiple page
tables for scalable in-process isolation, resulting in further mem-
ory overhead. Baseline Nginx consumes 21.7MB of memory. The
memory fragmentation overhead is 1.6%. For PAN-based protection,
the page table memory overhead is 1.2%, while scalable in-process
isolation incurs up to 22.2% page table memory overhead, reaching
several megabytes in our evaluation.

476



LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

1 2 4 8 16 20 32

 
 

14000
12000
10000
8000
6000
4000
2000

0Q
ue

rie
s

pe
rs

ec
on

d

 

Carmel Host

1 2 4 8 16 20 32
0

2500
2000
1500
1000
500

3000

 

Carmel Guest

 
 

Original
LightZone (PAN)
LightZone (TTBR)

 
 

Watchpoint (unscalable)
Simulated lwC

1 2 4 8 16 20 32
Number of concurrent clients

3500
3000
2500
2000
1500
1000
500

0Q
ue

rie
s 

pe
r s

ec
on

d

Cortex Host

1 2 4 8 16 20 32
Number of concurrent clients

1400
1200
1000
800
600
400
200

0

Cortex Guest

Figure 4: Average throughput of original, LightZone PAN,
LightZone TTBR, Watchpoint, and simulated lwC MySQL on
Carmel Host/Guest and Cortex Host/Guest. Standard devia-
tions are below 1.5%, except for Carmel Guest, whose stan-
dard deviation can reach 10.1%.

9.2 Multi-threaded Database Protection
MySQL (version 8.0) is a popular multi-threaded database server
that supports concurrent connections from multiple clients, with
each connection thread dedicated to serving an individual client.
For MySQL’s security enhancement, we isolate each connection
thread’s stack in a separate domain, ensuring privilege separa-
tion between different clients. Specifically, each connection thread
calls lz_alloc to create a new stage-1 page table and switches
to it through the call gate. lz_prot is then called to attach stack
memory to the current page table, preventing other compromised
threads from accessing the current stack. In addition to inter-thread
protection, we also provide in-memory data protection for MySQL,
ensuring that in-memory data can only be accessed by the MEM-
ORY storage engine code. The in-memory data is stored in a struc-
ture called HP_PTRS. To efficiently leverage PAN for data isolation,
we call lz_prot to attach newly allocated HP_PTRS objects to all
stage-1 page tables with the user bit set in PTEs. When the storage
engine code needs to access the data, we temporarily disable PAN
to grant access to the protected domain and enable PAN again after
completing the access. To evaluate MySQL’s performance, we use
sysbench to generate a remote client-side workload. We create 10
tables with 10,000 records each and specify various thread numbers.
Using the OLTP read-write script, we initiate requests to the server
and perform 10 runs for each client count.

Figure 4 shows the average throughput of vanilla MySQL and
MySQL protected by different mechanisms, measured after a warm-
up period. For Cortex, isolating the in-memory data with LightZone
PAN incurs less than 1% throughput loss on the host and guest.
When in-memory data and stacks are protected by LightZone TTBR,
the average throughput loss is 2.84% on the host and 2.35% in the
guest. lwC has the highest throughput loss (12.76% on the host,
5.47% in the guest), while Watchpoint has a small throughput loss

190 

170

Carmel Host
150
110
70

Carmel Guest

4 8 16 32 64 128

20
15
10
5
0Ti

m
e 

ov
er

he
ad

 (%
)

4 8 16 32 64 128

20
15
10
5
0

LightZone (PAN)
LightZone (TTBR)

Watchpoint (unscalable)
Simulated lwC

90 

60

Cortex Host
180 

130

Cortex Guest

4 8 16 32 64 128
Number of 2MB domains

25
20
15
10
5
0Ti

m
e 

ov
er

he
ad

 (%
)

4 8 16 32 64 128
Number of 2MB domains

25
20
15
10
5
0

Figure 5: Time overhead of LightZone PAN, LightZone TTBR,
Watchpoint, and simulated lwC for a data structure bench-
mark on Carmel Host/Guest and Cortex Host/Guest. Stan-
dard deviations are below 1.8%.

(2.34% on the host, 1.18% in the guest) but fails to isolate stacks. For
Carmel Host, PAN-based and TTBR-based LightZone protections
have near-zero and 3.79% throughput losses, respectively. Watch-
point and lwC lead to higher throughput losses of 8.35% and 11.80%,
respectively. Admittedly, when there are ≥16 concurrent threads,
the loss of TTBR-based LightZone stabilizes at 5.26% to 6.23% due
to considerable memory footprint and limited TLB coverage. For
Carmel Guest, LightZone, lwC, and Watchpoint incur about 10%
throughput losses. Though all protections increase CPU utilization,
LightZone’s extra utilization is the smallest.

Without protection, the memory consumption of MySQL is
512.9MB in our evaluation. To protect MySQL, we incur a 13.3%
memory overhead in the application itself. Additionally, the page
table memory overhead is 0.2% for PAN-based isolation and 9.8%
for scalable in-process isolation.

9.3 NVM Data Isolation
To mitigate unauthorized access to non-volatile memory (NVM)
and reduce persistent corruption, Merr [63] is the first paper to
suggest isolating NVM data to reduce exposure time. In this experi-
ment, we emulate NVM using DRAM and employ a data structure
benchmark similar to previous studies [19, 63, 66]. The benchmark
comprises multiple 2MB-sized buffers filled with strings. Each op-
eration performs a substring search on a randomly selected string,
maintaining a fixed time complexity. To isolate these buffers, we ei-
ther place them in the only protected domain using LightZone with
PAN, or allocate a separate page table for each buffer to achieve
scalable protection. We switch to the corresponding memory do-
mains before and after each string search operation. Each search
is about 7,000-8,500 cycles on Carmel and Cortex processors. The
benchmark, which executes 5,000,000 searches, is repeated 10 times,
with the average results presented.

477



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

Figure 5 illustrates the time overhead incurred by different ap-
proaches with varying domain numbers. For Carmel, when isolating
all buffers in one protected domain, LightZone with PAN incurs an
average overhead of less than 4.4% (1.75% on the host and 4.39%
in the guest). When each 2MB-sized buffer is isolated in its own
domain, LightZone using TTBR incurs an average overhead of less
than 16.7% (12.92% on the host and 16.64% in the guest). For Cortex,
LightZone with PAN incurs an average overhead of almost zero
(0.26% on the host and 0.20% in the guest), while LightZone using
TTBR introduces a minimal overhead of less than 3.8% (1.81% on
the host and 3.76% in the guest), demonstrating superior scalability
with a low performance overhead.

The baseline memory consumption is 309MB. When protecting
this application, there is no memory fragmentation issue. When
we use huge pages to map the 2MB-sized buffers, the page table
overhead for PAN-based protection is negligible, while the page
table overhead for scalable protection is 12.1%.

10 LIMITATION
LightZone resorts to stage-2 page tables for scalable in-process
isolation, introducing stage-2 paging overheads. Therefore, when
the process originally runs directly on the host machine with only
stage-1 paging, stage-2 paging can contribute to additional perfor-
mance overheads. While our application benchmarks show that
stage-2 paging overheads are below 5%, we acknowledge that for
memory-intensive applications with poor locality, stage-2 page
tables can slow down programs significantly.

Exiting from LightZone’s virtualization environment to the OS
kernel incurs more CPU cycles than exiting from a standard process,
potentially introducing additional syscall overheads. However, the
applications under evaluation are syscall-intensive [47], yet the
overall overhead across these applications remains minimal. Con-
sequently, unless an application frequently invokes short-duration
syscalls, such as getpid, the trapping overheads imposed by Light-
Zone is negligible, except for Carmel guest (refer to Table 4).

11 RELATEDWORK
KernelMode Processes. Dune [3] and SEIMI [56] use Intel VT-x to
elevate a process into Ring 0 under the constraint of VMX non-root
mode, letting applications directly access privileged CPU features
[4, 26]. LightZone is more than just a Dune for ARM because it
not only provides new use cases but also introduces ARM-specific
optimizations to allow guest processes to run efficiently. Dune can
never achieve such optimization because it is based on x86, which
atomically saves and restores the whole VM’s state in VMCS. Con-
sequently, using Dune and similar x86 frameworks in a guest VM
incurs a 6.07X slowdown when running syscall-intensive applica-
tions [56]. SEIMI [56] leverages SMAP to offer in-process isolation
for x86. However, SEIMI is neither scalable nor efficient enough to
protect applications originally running in guest VMs.
Software-Based Fault Isolation. Software-based fault isolation
(SFI) [55] has a long history. BGI [9], XFI [16], TDI [36], RockSalt
[37], and Native Client [65] use compilers and sanitizers to restrict
memory access. Besides, Native Client leverages segment on 32-bit
x86 architecture for better efficiency. However, segments do not
exist on ARM processors or 64-bit x86 processors.

In general, compared to hardware-assisted in-process isolation,
there is a security-performance tradeoff for software-based fault
isolation not using any hardware features. TDI [36] directly ma-
nipulates pointers, which incurs usually 5%-10% overheads, LFI
[64] introduces a 7% overhead on SPEC. Though TDI is signifi-
cantly faster than conventional software-based fault isolation, it
fails to isolate different objects of the same type. Besides TDI and
LFI, software-based fault isolation that checks each memory access
instruction either incurs high overheads (larger than 20%) [34, 67],
or does not limit load instructions [45], which is insecure. As for
language-based sandboxes [7], they rely on sophisticated compiler
efforts to offer in-process isolation.
Hardware Customization for In-Process Isolation. Capability-
based addressing [8], CHERI [59], and CODOMs [53] augment
pointers and memory regions with capabilities for in-process iso-
lation. However, in addition to its absence on commodity ARM
hardware, CHERI relies on a capability that is larger than a typical
pointer, thereby slowing down programs [41, 58, 62]. Although
prior work [58] achieves a 10% average runtime reduction and 30%
reduction in DRAM traffic through fat pointer compression, in
certain cases where the higher address bits are insufficient to accu-
rately represent the complete bounds, the compression scheme can
either fail or excessively approximate the bounds, thereby reducing
CHERI’s security. Moreover, SecureCells [5] and HFI [38] lever-
age hardware customization to confine memory access of software
compartments. Moreover, Apple and embedded ARM processors
can utilize Page Protection Layer and Memory Protection Unit
to achieve in-application (or in-kernel) isolation by safeguarding
sensitive data and code within the address space [10, 69, 71].

Aside from the isolation-based techniques mentioned above,
data randomization is another approach to protecting sensitive data.
Unfortunately, register-grain randomization [60] is inefficient when
protecting large memory chunks, as each randomization instruction
can only process 64 bits at a time. And though Morpheus [18] relies
on a hardware churn unit to frequently re-randomize data with
minimal performance overhead, it requires intrusive customization
to the existing architecture.

12 CONCLUSION
The paper presents LightZone, a framework that places ARM pro-
cesses in separate VMs to allow secure process execution in kernel
mode. It focuses on secure, scalable, and efficient in-process isola-
tion. Our evaluation analyzes LightZone’s security, scalability, and
efficiency. We conclude that LightZone is suitable for in-process
isolation on commodity 64-bit ARM processors.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers and our shepherd,
João Paulo, for their insightful comments. We also want to thank the
artifact evaluation reviewers, and Xingjian Zhang for proofreading
our paper. This work was supported by the National Key R&D
Program of China (No. 2022YFE0113200) and the Key R&D Program
of Zhejiang Province (No.2022C01165). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
funding agencies.

478



LightZone: Lightweight Hardware-Assisted In-Process Isolation for ARM64 MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

REFERENCES
[1] ARM. 2023. Armv8.5-A Memory Tagging Extension. https://developer.arm.com/

documentation/102925/latest/.
[2] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen

Wang, and Peng Ning. 2016. SKEE: A lightweight Secure Kernel-level Execution
Environment for ARM.. In NDSS, Vol. 16. 21–24.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe user-level access to privileged CPU features.
In the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). 335–348.

[4] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: a protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). 49–65.

[5] Atri Bhattacharyya, Florian Hofhammer, Yuanlong Li, Siddharth Gupta, Andres
Sanchez, Babak Falsafi, and Mathias Payer. 2023. SecureCells: A Secure Compart-
mentalized Architecture. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2921–2939.

[6] William Blair, William Robertson, and Manuel Egele. 2023. ThreadLock: Native
Principal Isolation Through Memory Protection Keys. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security. 966–979.

[7] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. 2022. Provably-Safe multilingual
software sandboxing using WebAssembly. In 31st USENIX Security Symposium
(USENIX Security 22). 1975–1992.

[8] Nicholas P Carter, Stephen W Keckler, and William J Dally. 1994. Hardware
support for fast capability-based addressing. ACM SIGOPS Operating Systems
Review 28, 5 (1994), 319–327.

[9] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis
Akritidis, Austin Donnelly, Paul Barham, and Richard Black. 2009. Fast byte-
granularity software fault isolation. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. 45–58.

[10] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias
Payer. 2018. {ACES}: Automatic compartments for embedded systems. In 27th
USENIX Security Symposium (USENIX Security 18). 65–82.

[11] R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020.
{PKU} Pitfalls: Attacks on {PKU-based} Memory Isolation Systems. In 29th
USENIX Security Symposium (USENIX Security 20). 1409–1426.

[12] Jonathan Corbet. 2015. Pagemap: security fixes vs. ABI compatibility. https:
//lwn.net/Articles/642069/.

[13] Christoffer Dall, Shih-Wei Li, and Jason Nieh. 2017. Optimizing the Design and
Implementation of the Linux ARM Hypervisor.. In USENIX Annual Technical
Conference. 221–233.

[14] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: the design and implementation
of the linux ARM hypervisor. Acm Sigplan Notices 49, 4 (2014), 333–348.

[15] Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee. 2023. Capacity:
Cryptographically-Enforced In-Process Capabilities for Modern ARM Archi-
tectures. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. 874–888.

[16] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C
Necula. 2006. XFI: Software Guards for System Address Spaces. In Proceedings of
the 7th symposium on Operating systems design and implementation. 75–88.

[17] The Apache Software Foundation. 2023. ab. https://httpd.apache.org/docs/2.4/
programs/ab.html.

[18] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Sales-
sawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris, Zhixing Xu, Baris
Kasikci, Valeria Bertacco, et al. 2019. Morpheus: A vulnerability-tolerant secure
architecture based on ensembles of moving target defenses with churn. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 469–484.

[19] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK: Scalable and
Efficient Memory Protection Keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 609–624.

[20] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen.
2020. Harmonizing performance and isolation in microkernels with efficient
intra-kernel isolation and communication. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference. 401–417.

[21] Mohammad Hedayati and Spyridoula Gravani. 2019. Hodor: Intra-process isola-
tion for high-throughput data plane libraries. In Proceedings of the 2019 USENIX
Annual Technical Conference.

[22] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner, and Nathan Dautenhahn. 2021. The Endokernel: Fast, Secure,
and Programmable Subprocess Virtualization. https://doi.org/10.48550/ARXIV.
2108.03705

[23] Jinsoo Jang and Brent Byunghoon Kang. 2019. In-process memory isolation
using hardware watchpoint. In Proceedings of the 56th Annual Design Automation
Conference 2019. 1–6.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.

[25] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
Proceedings of the Seventeenth European Conference on Computer Systems. 132–
148.

[26] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Remote flash ≈
local flash. ACM SIGARCH Computer Architecture News 45, 1 (2017), 345–359.

[27] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Yi Chien, Felipe Huici, Nathan Dautenhahn,
and Pierre Olivier. 2022. Assessing the impact of interface vulnerabilities in
compartmentalized software. arXiv preprint arXiv:2212.12904 (2022).

[28] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian Teodorescu,
Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. 2022. Flexos:
Towards flexible os isolation. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
467–482.

[29] Xiang Li, Yunqian Luo, and Mingyu Gao. 2024. BULKOR: Enabling Bulk Loading
for Path ORAM. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 103–103.

[30] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier. 2017.
NEVE: Nested virtualization extensions for ARM. In Proceedings of the 26th
Symposium on Operating Systems Principles. 201–217.

[31] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 49–
64. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
litton

[32] Hongyi Lu, Shuai Wang, Yechang Wu, Wanning He, and Fengwei Zhang. 2023.
MOAT: Towards Safe BPF Kernel Extension. arXiv preprint arXiv:2301.13421
(2023).

[33] LukasMaar, Martin Schwarzl, Fabian Rauscher, Daniel Gruss, and StefanMangard.
2023. DOPE: DOmain protection enforcement with PKS. In Proceedings of the
39th Annual Computer Security Applications Conference. 662–676.

[34] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Archi-
tecture.. In USENIX Security Symposium, Vol. 10. 209–224.

[35] Marcela S Melara, Michael J Freedman, and Mic Bowman. 2019. EnclaveDom:
Privilege separation for large-TCB applications in trusted execution environ-
ments. arXiv preprint arXiv:1907.13245 (2019).

[36] Alyssa Milburn, Erik Van Der Kouwe, and Cristiano Giuffrida. 2022. Mitigating
information leakage vulnerabilities with type-based data isolation. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 1049–1065.

[37] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. 2012. RockSalt: better, faster, stronger SFI for the x86. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design and Implemen-
tation. 395–404.

[38] Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey Rudek, Daniel
Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-Oberwagner, Michael
LeMay, Ravi Sahita, et al. 2023. Going beyond the Limits of SFI: Flexible and
Secure Hardware-Assisted In-Process Isolation with HFI. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 266–281.

[39] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall,
Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen,
Moinak Bhattacharyya, et al. 2019. {LXDs}: Towards isolation of kernel subsys-
tems. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 269–284.

[40] Nginx. 2023. Nginx. https://www.nginx.com/.
[41] University of Cambridge. 2023. Early performance results from the prototype

Morello microarchitecture. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
986.pdf.

[42] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK).. In
USENIX Annual Technical Conference. 241–254.

[43] Ling Ren, ChristopherW Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
van Dijk, and Srinivas Devadas. 2014. Ring ORAM: Closing the Gap Between
Small and Large Client Storage Oblivious RAM. IACR Cryptol. ePrint Arch. 2014
(2014), 997.

[44] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain keys–efficient
in-process isolation for risc-v and x86. In Proceedings of the 29th USENIX Confer-
ence on Security Symposium. 1677–1694.

[45] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. 2010. Adapting Software Fault Isolation to Con-
temporary {CPU} Architectures. In 19th USENIX Security Symposium (USENIX
Security 10).

479

https://developer.arm.com/documentation/102925/latest/
https://developer.arm.com/documentation/102925/latest/
https://lwn.net/Articles/642069/
https://lwn.net/Articles/642069/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.48550/ARXIV.2108.03705
https://doi.org/10.48550/ARXIV.2108.03705
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.nginx.com/


MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Ziqi Yuan, Siyu Hong, Ruorong Guo, Rui Chang, Mingyu Gao, Wenbo Shen, and Yajin Zhou

[46] Siguza. 2023. Apple Silicon APRR. https://blog.siguza.net/APRR/.
[47] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Schedul-

ing with Exception-Less System Calls. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10).

[48] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM:
an extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[49] Zahra Tarkhani and Anil Madhavapeddy. 2020. 𝜇Tiles: Efficient Intra-Process
Privilege Enforcement of Memory Regions. arXiv preprint arXiv:2004.04846
(2020).

[50] Martin Unterguggenberger, Lukas Lamster, David Schrammel, Martin Schwarzl,
and Stefan Mangard. 2024. TME-Box: Scalable In-Process Isolation through Intel
TME-MK Memory Encryption. arXiv preprint arXiv:2407.10740 (2024).

[51] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). 1221–1238.

[52] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization.. In NDSS.

[53] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOMs: Protecting software with code-centric memory domains. ACM
SIGARCH Computer Architecture News 42, 3 (2014), 469–480.

[54] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You shall not (by) pass! practical, secure, and fast PKU-based sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems. 266–
282.

[55] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles. 203–216.

[56] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. Seimi: Efficient and
secure smap-enabled intra-process memory isolation. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 592–607.

[57] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. 2015. CHERI: A hybrid capability-system architecture for
scalable software compartmentalization. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 20–37.

[58] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert M.
Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo,
A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Wat-
son, and Simon W. Moore. 2019. CHERI Concentrate: Practical Compressed
Capabilities. IEEE Trans. Comput. 68, 10 (2019), 1455–1469. https://doi.org/10.
1109/TC.2019.2914037

[59] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. ACM SIGARCH Computer Architecture News 42, 3 (2014), 457–468.

[60] Jinyan Xu, Haoran Lin, Ziqi Yuan, Wenbo Shen, Yajin Zhou, Rui Chang, Lei Wu,
and Kui Ren. 2022. RegVault: hardware assisted selective data randomization for
operating system kernels. In Proceedings of the 59th ACM/IEEE Design Automation
Conference. 715–720.

[61] Jiali Xu, Mengyao Xie, Chenggang Wu, Yinqian Zhang, Qijing Li, Xuan Huang,
Yuanming Lai, Yan Kang, Wei Wang, Qiang Wei, et al. 2023. PANIC: PAN-assisted
Intra-process Memory Isolation on ARM. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 919–933.

[62] Shengjie Xu, Eric Liu, Wei Huang, and David Lie. 2023. MIFP: Selective Fat-
Pointer Bounds Compression for Accurate Bounds Checking. In Proceedings of
the 26th International Symposium on Research in Attacks, Intrusions and Defenses.
609–622.

[63] Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. MERR: Improving Security
of Persistent Memory Objects via Efficient Memory Exposure Reduction and
Randomization. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 987–1000. https://doi.org/10.1145/3373376.3378492

[64] Zachary Yedidia. 2024. Lightweight Fault Isolation: Practical, Efficient, and Secure
Software Sandboxing. (2024).

[65] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In 2009 30th IEEE Symposium
on Security and Privacy. 79–93. https://doi.org/10.1109/SP.2009.25

[66] Ziqi Yuan, Siyu Hong, Rui Chang, Yajin Zhou, Wenbo Shen, and Kui Ren. 2023.
VDom: Fast and Unlimited Virtual Domains on Multiple Architectures. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 905–919.

[67] Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining control-flow integrity
and static analysis for efficient and validated data sandboxing. In Proceedings of
the 18th ACM conference on Computer and Communications Security. 29–40.

[68] Xingjian Zhang, Ziqi Yuan, Rui Chang, and Yajin Zhou. 2021. Seeds of SEED: H
2 Cache: Building a Hybrid Randomized Cache Hierarchy for Mitigating Cache
Side-Channel Attacks. In 2021 International Symposium on Secure and Private
Execution Environment Design (SEED). IEEE, 29–36.

[69] Xia Zhou, Jiaqi Li, Wenlong Zhang, Yajin Zhou, Wenbo Shen, and Kui Ren. 2022.
OPEC: operation-based security isolation for bare-metal embedded systems. In
Proceedings of the Seventeenth European Conference on Computer Systems. 317–
333.

[70] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. Armlock:
Hardware-based fault isolation for arm. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security. 558–569.

[71] Jiaxun Zhu, Minghao Lin, Tingting Yin, Zechao Cai, Yu Wang, Rui Chang, and
Wenbo Shen. 2024. CrossFire: Fuzzing macOS Cross-XPU Memory on Apple
Silicon. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24). ACM, Salt Lake City, UT, USA, 14 pages.
https://doi.org/10.1145/3658644.3690376

[72] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

[73] Marc Zyngier. 2016. Enforce Break-Before-Make on Stage-2 page ta-
bles. https://patchwork.kernel.org/project/linux-arm-kernel/patch/1461856591-
5751-1-git-send-email-marc.zyngier@arm.com/.

480

https://blog.siguza.net/APRR/
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/3373376.3378492
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1145/3658644.3690376
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1461856591-5751-1-git-send-email-marc.zyngier@arm.com/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1461856591-5751-1-git-send-email-marc.zyngier@arm.com/

	Abstract
	1 Introduction
	2 Background
	2.1 ARM Virtualization
	2.2 TTBR and PAN

	3 Motivation
	3.1 Applications Need Secure, Efficient, and Scalable In-Process Isolation
	3.2 Inadequate ARM64 In-Process Isolation

	4 LightZone Overview
	4.1 Design Goals and Overview
	4.2 Threat Model

	5 Running ARM64 Processes in Kernel Mode
	5.1 Virtualization-Based Kernel-Mode Processes
	5.2 Trap Optimization

	6 Enabling In-Process Isolation
	6.1 Memory Mapping and Permission
	6.2 TTBR1-Mapped Secure Call Gate
	6.3 Sensitive Instruction Sanitizer

	7 Security Evaluation
	7.1 Security Analysis
	7.2 Penetration Tests

	8 Microbenchmark
	8.1 Trap Performance
	8.2 Domain Switching Overhead

	9 Application Benchmark
	9.1 Cryptographic Keys Protection
	9.2 Multi-threaded Database Protection
	9.3 NVM Data Isolation

	10 Limitation
	11 Related Work
	12 Conclusion
	Acknowledgments
	References

