Check for
Updates

Atlas: Automating Cross-Language Fuzzing on Android

Hao Xiong" "

College of Computer Science and
Technology, Zhejiang University
Hangzhou, China
martin@zju.edu.cn

Mingran Qiu’

College of Computer Science and
Technology, Zhejiang University
Hangzhou, China
qiumingran@zju.edu.cn

Closed-Source Libraries

Qinming Dai*"
College of Computer Science and
Technology, Zhejiang University

Hangzhou, China

qinm_dai@zju.edu.cn

Renxiang Wang
College of Computer Science and
Technology, Zhejiang University

Hangzhou, China
renxiang. wang@zju.edu.cn

Yajin Zhou
College of Computer Science and
Technology, Zhejiang University

Rui Chang* '

College of Computer Science and
Technology, Zhejiang University
Hangzhou, China
crix1021@zju.edu.cn

Wenbo Shen”

College of Computer Science and
Technology, Zhejiang University
Hangzhou, China
shenwenbo@zju.edu.cn

Hangzhou, China
yajin_zhou@zju.edu.cn

Abstract

Fuzzing is an effective method for detecting security bugs in soft-
ware, and there have been quite a few effective works on fuzzing
Android. Researchers have developed methods for fuzzing open-
source native APIs and Java interfaces on actual Android devices.
However, the realm of automatically fuzzing Android closed-source
native libraries, particularly on emulators, remains insufficiently
explored. There are two key challenges: firstly, the multi-language
programming model inherent to Android; and secondly, the absence
of a Java runtime environment within the emulator.

To address these challenges, we propose Atlas, a practical auto-
mated fuzz framework for Android closed-source native libraries.
Atlas consists of an automatic harness generator and a fuzzer con-
taining the necessary runtime environment. The generator uses
static analysis techniques to deduce the correct calling sequences
and parameters of the native API according to the information from
the "native world" and the "Java world". To maximize the practi-
cality of the generated harness, Atlas heuristically optimizes the
generated harness. The Fuzzer provides the essential Java runtime

“Both authors contributed equally to this research.

f Also with ZJU-Hangzhou Global Scientific and Technologicallnnovation Center,
Hangzhou, China.

#Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3652133

350

environment in the emulator, making it possible to fuzz the An-
droid closed-source native libraries on a multi-core server. We have
tested Atlas on 17 pre-installed apps from four Android vendors.
Atlas generates 820 harnesses containing 767 native APIs, of which
78% is practical. Meanwhile, Atlas has discovered 74 new security
bugs with 16 CVEs assigned. The experiments show that Atlas can
efficiently generate high-quality harnesses and find security bugs.

CCS Concepts

« Security and privacy — Software and application security.

Keywords

Android; fuzzing; static analysis; vulnerability

ACM Reference Format:

Hao Xiong, Qinming Dai, Rui Chang, Mingran Qiu, Renxiang Wang, Wenbo
Shen, and Yajin Zhou. 2024. Atlas: Automating Cross-Language Fuzzing on
Android Closed-Source Libraries. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA °24), Sep-
tember 16—20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3650212.3652133

1 Introduction

Android OS is currently the most popular mobile operating system,
accounting for more than 70% mobile market share. A significant
portion of Android applications, including both pre-installed apps
from vendors and popular applications from app markets, utilize
abundant closed-source native libraries. Programmed in C/C++,
these libraries are prone to memory corruption vulnerabilities. Such
vulnerabilities can be exploited for malicious activities, including
privilege escalation. Recently, there has been a notable increase in
the frequency of attacks targeting these closed-source repositories.
For example, a researcher from Google, Mateusz, has discovered

https://doi.org/10.1145/3650212.3652133
https://doi.org/10.1145/3650212.3652133
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3652133&domain=pdf&date_stamp=2024-09-11

ISSTA °24, September 16-20, 2024, Vienna, Austria

multiple memory corruption vulnerabilities in Samsung’s closed-
source image parsing library and implemented a 0-click RCE attack
on Samsung MMS [7]. Therefore, it becomes imperative to detecting
vulnerabilities in Android closed-source native libraries.

Fuzzing has been proven an efficient method for detecting se-
curity issues in complex programs [16, 20, 21, 26, 28, 44, 48, 50, 52,
54, 57]. For fuzzing libraries, creating a fuzzing harness is a crucial
component of the fuzzing process and typically requires substan-
tial manual effort, particularly when dealing with complex and
numerous libraries. Thus, researchers have proposed various works
focusing on automated harness generation [14, 32-34, 60], which
have shown effective results on platforms like MacOS, Windows,
and others. Similarly, the Android platform encounters this problem
as well. However, the methodologies that have proven effective on
other platforms are not directly applicable to Android closed-source
native libraries. The cross-language programming model and the
complex runtime environment cause existing fuzzing solutions to
fail.

The first challenge arises from cross-language programming
model. State-of-the-art works[34, 60] on automatic fuzzing single-
language programs collect information through dynamic tracing.
However, this process demands extensive manual effort and is not
suitable for testing large-scale Android native libraries. Researches
[42, 43] on automated fuzzing for multi-language programs focuses
on extracting type and dependency information from source code.
However, this approach is impractical for closed-source programs.
Therefore it is essential to propose a solution for automatically
generating fuzz harness for Android libraries. @ These libraries
present a key challenge as they are multi-language programs
and often lack accessible source code.

The second challenge stems from by the complex runtime en-
vironment. Fuzzing on real devices or emulators has represented
two opposing camps in the field over the years[29, 43, 48, 49, 52].
Researches on fuzzing Android [19, 35, 37, 45, 51, 53, 55, 59] are pri-
marily conducted using real devices, which provide an integrated
runtime environment. However, these approaches present several
disadvantages: (I) The CPU in mobile devices, prone to overheating,
is unsuitable for fuzzing, which demands high-load operation and
a long-term process. (II) Mobile phones are expensive and can not
be expanded like multi-core workstations. A practical solution is
to conduct fuzz testing within an emulator. However, the existing
fuzzing emulators do not provide a runtime environment with JVM
(Java Virtual Machine). Thus, researchers [7, 10] must reverse and
re-write the target APIs to avoid calling JNI (Java Native Interface)
functions, which is time-consuming and error-prone. ® Thus, a
further substantial challenge is to establish a fuzzing envi-
ronment that excels not only in terms of compatibility and
performance, but also facilitates the harnesses construction.

To address the above challenges, we propose Atlas, a comprehen-
sive framework to fuzz Android closed-source native libraries. Atlas
contains two main techniques: cross-language harness genera-
tion and enhanced emulation. @ To address the first challenge
effectively, the crucial task lies in accurately extracting API se-
quences and determining the appropriate parameters, integrating
insights from both the Java and native domains. In harness gen-
eration, Atlas employs a cross-language static analysis approach
to gather information on the dependency relationships of APIs, as

351

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

well as the constraints and attributes of their parameters. ® To
overcome the second challenge, the critical factor is managing
the JVM dependency within the runtime environment. To achieve
enhanced emulation, Atlas offers a practical fuzzing environment
implemented in a user-land emulator, complete with all necessary
dependent components. Consequently, Atlas not only enables more
extensive fuzzing of Android closed-source native libraries but also
streamlines the process of harness construction.
In summary, we make the following contributions:

e Our work represents the first systematic study that identifies
and addresses the major challenges associated with fuzzing
closed-source Android native libraries via emulation.

e We have proposed and developed Atlas, the pioneering fuzzi-
ng framework designed for Android’s closed-source native li-
braries. Atlas is capable of automatically generating practical
harnesses and providing an effective fuzzing environment
for Android native libraries.

e We have evaluated Atlas on top Android vendors, including
Samsung, Xiaomi, Vivo, and OPPO, and found many security
bugs. Till now, we have found 74 unique security bugs and
got 16 CVEs. We have responsibly disclosed them and helped
the vendor fix them.

2 Background

This section introduces the technical background of automatic fuzz
harness generation and the Android JNI mechanism.

2.1 Automated Fuzz Harness Generation

Fuzzing is a software testing technique by invoking APIs with ran-
dom input. The fuzzing harness highly affects the fuzzing results. A
high-quality fuzz harness includes the correct calling sequences and
parameters of the target API, which requires much manual work.
Thus, the automatic harness generation technology has been pro-
posed and significantly improves the efficiency of testing abundant
APIs. State-of-the-art automated harness generation technologies
such as Winnie[34] and APICraft[60] have demonstrated the ef-
fectiveness of their solutions on Windows and MacOS. The basic
idea of their solution is to collect information about API through
dynamic execution and generate harnesses based on it. There are
some automated harness generation works on the Android platform.
For example, FANS[43] generates an effective fuzz harness through
information from the source code of the Android native service.
However, there are still no effective solutions for closed-source
libraries on the Android platform.

2.2 Java Native Interface(JNI) in Android

Android JNI (Java Native Interface) is a mechanism for interact-
ing between Java and native code (typically C or C++) in An-
droid applications. It provides JNI functions for native code to
access variables or invoke functions of Java. As shown in Figure
3a and 3b, we use the JNI function setLongField to set the value
of the Java variable member handle in class P. As you can see,
Java_com_example_P_nativeInitHandle is the native imple-
mentation of the nativeInitHandle, but how can the program
find the implementation of the native methods declared in Java. As

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

package com.a.b.Test; static const char *className =

public class TestClass { Dynamic |"com/a/b/Test/TestClass";
_public static native void y |static void printHelloInNative(JNIEnvV *env,
PrintHello(); 7ljobject) {3
static JNINativeMethod getMethods[] = {
Static {"printHello", "(V",
(void*)printHelloInNative},};
extern "C" { jint INI_OnLoad(JavaVM* vm, void*

reserved){
JNIEXPORT void JNICALL
Java_com_a_b_Test

_TestClass_PrintHello
(INIEnv *, jclass);
L3

“<.:Iazz = (env)->FindClass(className);
(env)->RegisterNatives(clazz,

getMethods, 1);

L)

Figure 1: An example presenting static and dynamic methods
of native function registration.

shown in Figure 1, Android JNI provides two different methods to
register JNI methods.

e Static Registration In static registration, a programmer
declares the native methods in the application layer. Then
he/she uses javac/javap to generate the corresponding C/C++
header files. An obvious feature of static registration is that
the names of native functions generated follow a certain rule.
These function names are the package path and the class
name, separated by the "_" symbol.

e Dynamic Registration In dynamic registration, a program-
mer needs to override the JNI_Onload function, which is
called when the library is loaded and is responsible for bind-
ing native function pointers to the JVM. He/She can use the
registerNatives function to set the mapping relations
between native methods in the application layer and native
functions in the native layer. There are no specific naming
rules to obey in this progress.

3 Atlas Design

Figure 2 shows the high-level design of Atlas, our automatic fuzzing
framework for closed-source Android libraries. To solve the chal-
lenges brought by limited information from closed-source libraries
and the complex runtime environment of Android libraries, Atlas
contains two main parts: (I) generating fuzzing harnesses for closed-
source native libraries via cross-language analysis; (described in
Section 3.1 and Section 3.2) (IT) constructing an enhanced runtime
environment for fuzzing. (described in Section 3.3)

System Overview. As shown in Figure 2, Atlas takes vendor
libraries and Apks as its input. The whole pipeline can be divided
into three main parts. Before entering the analysis, Atlas collects
the mapping relationships between native functions (also as library
APIs) and native methods in the Java layer according to the two
registration modes of JNI functions. Then it will enter (I) the cross-
language analysis phase. Native Code analyzer @ obtains variable
dependency meta-information through taint analysis. Based on it,
Java Bytecode Analyzer © performs bottom-up static analysis to
get the call sequences of target APIs and parameters and then out-
puts intermediate harness. After that, Atlas enters (II) the harness
optimization phase to improve the qualities of the intermediate
harness, and this phase contains three stages. In the deduplication
stage, Atlas @ filters out harnesses with high similarity to avoid
repeated testing of the same target APIs. In the completion stage,

352

ISSTA °24, September 16-20, 2024, Vienna, Austria

Atlas @ checks whether the parameters in the harness are all pre-
pared. If not, it will heuristically complete the harness based on
variable dependency meta information. In the injection stage, Atlas
@ locates fuzzable parameters according to their attributes and
generates the final harness. In the end, the output harness enters
(IIT) the fuzzing phase. Atlas @ first sets the runtime environ-
ment with the essential Java environment and executes the harness
within it to fuzz.

Pre-Process. Before harness generating, Atlas needs to find the
corresponding relationships between the native functions and their
declarations in the Java layer. Atlas finds the relationships through
the parameters of JNI registration(e.g. registerNatives) and the
static naming rules (mentioned in Section 2.2).

3.1 Cross-language Analysis

In this section, we discuss how to correctly infer API sequences as
well as attributes and constraints of the API parameters, which are
crucial to synthesizing high-quality fuzzing drivers. Since there is
a multi-language programming model in Android native libraries,
we comprehensively analyze the information from the native layer
and the Java layer.

(1) Native Code Analyzer. Context switching results in the
loss of API dependency information, which challenges harness gen-
eration. More specifically, when performing a bottom-up analysis
on a target native API, the Java analyzer cannot deduce which
native APIs on the execution path need to be retained for lack of
information from the native world. Figure 3 shows explicit and
implicit API dependencies derived from the real case encountered.
Figure 3a is the Java implementation of P Class, which has a variable
member named handle. This variable member can be initialized
through the constructor P(String str) (line 2 of Figure 3c) or
the javaInitHandle method (line 3 of Figure 3d). Figure 3c and
Figure 3d are the consumer programs of javaDecode, showing
explicit and implicit API dependencies, respectively. When the Java
analyzer analyzes the API dependencies for javaDecode in the
case of Figure 3c, it will keep lines 2-3 because an object must be
initialized before calling the non-static method javaDecode. But
in the case of Figure 3d, the Java Analyzer will not keep line 3
because of the lack of information from the native world. Therefore,
it is necessary to analyze the native functions to obtain relevant
information before Java Analyzer starts.

The Native Code Analyzer is designed to perform taint analy-
sis on cross-layer variables, which are the basis for deducing im-
plicit API dependencies. More specifically, it tracks the reading
and writing operations performed on API parameters. To achieve
this goal, we first divide the JNI functions into two groups. One is
the reading functions(e.g., GetStringUTFChars), and the other is
the writing functions(e.g., SetLongField). Then we symbolically
execute the target native APIs and use a fake JNIEnv struct to
redirect the JNI methods call to our analyzing functions. In par-
allel with symbolic execution, we trace the propagation of API
parameters to improve the accuracy of the analysis. We achieve
this goal by modeling the JNI methods. For example, in c_str
(*env) ->GetStringUTFChars(env, j_str, &isCopy), there
is a taint propagation from j_str to c_str. We use the following

ISSTA °24, September 16-20, 2024, Vienna, Austria

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

gr—— - \
Input /ICross-Ianguage 1 Harness Fuzzing
! Analysis : Optimization
1
1 1 - .
% E/ii:::i);s Pre-Process 1 Native Code | Intermediate Deduplication Syntactic . 'RuntlmteS
X Analyzer R Stage — nvironment Setup
»
> ' 0]
1
c ! e Variable I e e
API Mapping 1 Dependency Meta Completion Finallnarness
X 1 Infomation 1
Relations 7 . Stage
Vendor 1 1 ¢
@ Apks 1 Java Bytecode 1 e kel
1 Analyzer 1 Injection ® @@
I 1 Stage
€ ' -
I -

Figure 2: The Overview of Atlas.

package com.example; 1

public class P{ 2

protected long handle; 3

native int nativeDecode(long j, Bitmap bitmap); 4

native void nativelnitHandle(P obj, String str); 5

public P(String str) { 6
this.mHandle = OL; 7
if (str = null) nativelnitHandle(this, str); 8

9 3 94

10 public int javaDecode(Bitmap bitmap) {

11 if (bitmap == null) return 0;

12 return nativeDecode(this, bitmap);

13 }

14 public void javalnitHandle(String str) {

15 if (str == null) return 0;

16 return nativelnitHandle(this, bitmap);

17 }

[I e N N T

JNIEXPORT jint INICALL Java_com_example_P_nativeDecode
(JNIEnv *env , jobject x, jlong cur_obj, jobject bm){

jclass jclazz = env->FindClass("com/example/P");

if(jelazz == NULL) return -1;

jfieldID jfid = env->GetFieldID(jclazz, "handle", "J");

if (jfid == NULL) return -1;

void * initial_ptr = env->GetLongField(cur_obj, jfid);

return nativeDecode(initial_ptr, bm);

10 INIEXPORT void JNICALL Java_com_example_P_nativelnitHandle
11 (JNIEnv * env, jobject X, jobject obj, jstring s) {

jelass jelazz = env->FindClass("com/example/P");

if(jclazz == NULL) return ;

const char *filePath = env->GetStringUTFChars(s, nullptr);

void * initial_ptr = nativelnitial(filePath);

jfieldID jfid = env->GetFieldID(jclazz, "handle", "J");

if (jfid == NULL) return ;

env->SetLongField(obj, jfid, (jlong)initial ptr);

return ;

(a) Java implementations of class P.

(b) Native Methods implementations of class P.

1 public static long wrapperFunc(File file){

2 P Decoder = new P(file.getPath()); 2

3 Bitmap createBitmap = BitmapUTtils.createBitmap(...); 3

4 Decoder.javaDecode(createBitmap); 4

5 .. 5

6} 6 ..
7}

1 public static long wrapperFunc(File file){

P Decoder = new P();
Decoder.javalnitHandle(file.getPath());

Bitmap createBitmap = BitmapUtils.createBitmap(...);
Decoder.javaDecode(createBitmap);

(c) The consumer program of class P containing
explicit API dependency.

(d) The consumer program of class P containing
implicit API dependency.

Figure 3: Explicit and Implicit API Dependency Examples.

format to record the read/write operations and the data source
(from which parameter and its type signature).

(op, tarObj, nos, sigi, siga, ..., Signos)
op = R/W
tarObj — readSrc if op == R else writeDes
nos — num of signature layers
sigy — the x;p, layer of signature

The op indicates the operation type(read or write). The tarObj
represents the source of reading operations if op is reading(R) and

refers to the destination of the writing operation if op is writing(W).

The nos indicates the signature level of the operated object (because
it may be a variable member within a nested structure). The last
nos signatures(sigy) recursively reveal the structure in which the

353

operated object resides. Let’s take the JNI methods in Figure3b for
example. The R/W information of Java_com_example_P_native
InitHandle is

(W, p2,1, {“com/example/P”, “handle”, “]"})

which means Java_example_P_nativeInitHandle writes the
2"d parameter and the signature of the writing destination is {*‘com/
example/P’’, ‘‘handle’’, ‘‘J’’}.

(2) Java Bytecode Analyzer With the help of native informa-
tion, we can infer correct API calling sequences and parameters
from the Java world. This part introduces how Java Bytecode An-
alyzer generates IH (Intermediate Harness) based on the R/W in-

formation of JNI methods from Native Analyzer. Java Bytecode

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

Analyzer uses a bottom-up multi-path search algorithm to analyze
Java methods. In the beginning, we locate the Java methods that
invoke the native method. Then we find the multiple execution
paths containing the target Java methods. After that, Java Byte-
code Analyzer performs dependency analysis. For each path, the
analyzer performs an intra-method backward taint propagation
analysis on the bytecodes. Specifically, it reserves the bytecodes
related to the taint and filters out the rest. Meanwhile, the analyzer
collects the constraints and attributes of variables from bytecodes.
When the analyzer finishes the intra-method analysis, it recursively
continues to analyze the callers. The detailed algorithm is shown
in Algorithm 1 and Algorithm 2.

Algorithm 1 shows the workflow for generating IH from the
beginning. The input is JM(all Java bytecodes of input APKs) and
RW (native R/W information). To begin with, we find jm contain-
ing native method call for each jm in JM.(lines 2-3) For each jm,
we record all calling locations in nativeMethodLocs. (line 4) For
each nmLoc, we initialize a new object ih which records bytecodes,
dependencies, constraints, and attributes of variables. For the byte-
codes calling native methods, we have five steps to analyze each
of them. (lines 8-12) (I) We store the bytecode. (line 8) (II) We
analyze instructions such as assign and call to infer the depen-
dency from the Java layer and update the dependencies of ih. (line
9) (III) We analyze the dependency from the native layer and
again update it. If we find a variable that is read in the native
layer, we add it to the unresolved dependency. If we find a vari-
able is written, we remove the corresponding one as it is resolved.
(line 10) (IV) For constraint analysis, we focus on the compare
instructions and extract the constant values. (line 11) (V) For at-
tribute analysis, we concentrate on the variable types and infer
the possible usage of the variable. (line 12) We pay attention to
some specific Java methods, e.g., java/io/File->getPath() and
android/text/TextUtils->isEmpty(java/lang/CharSeque
nce), of which arguments or the return value can provide more
precise attribute information. After these steps, we move on to a
bottom-up recursive analysis, which is detailed in Algorithm 2.

Algorithm 2 describes the workflow for generating IH for a native
method call. We find all the intra-method paths (Java bytecodes)
that can reach the sloc. (line 2) For each path in paths, we firstly
copy the previous ih as the entry point for the analysis. After that,
we analyze the whole path from the end to the start. (lines 6-23)
For each location, we update the dependency state of ih from the
Java layer and the native layer. If the state changes, we store the
be and update the constraints and attributes of the variables. (lines
7-10) If the dependencies are still not satisfied after we have visited
all locs, we continue to analyze the callers if they exist. (line 22) In
other words, the analysis terminates when all the dependencies are
resolved or there are no callers. Finally, we add the ihCopy into TH
and complete it in the next stage. (lines 13, 19)

Figure 5 shows an example used to illustrate how Algorithm 1
and 2 work. Figure 4 shows the corresponding source code. Assume
that before analyzing the bytecode, the Java analyzer has known
that the constructor function of pDecoder writes variable mHandle
and nativeDecodeFrame reads mHandle in the native layer (ob-
tained by Native Analyzer). The workflow of generating intermedi-
ate harness for nativeDecodeFrame is as follows: (I) The analyzer
first locates decodeFrame, which invokes nativeDecodeFrame.

354

ISSTA °24, September 16-20, 2024, Vienna, Austria

Then it performs bottom-to-up tiant analysis. Specifically, it records
instructions related to the parameters (the red and blue code). After
that, the analyzer adds variable mHandle, arr, and idx to the de-
pendency items since the initialization of them is not found within
nativeDecodeFrame. (IT) The analyzer then locates start to re-
solve the dependency items. It performs a similar analysis within
start. The analyzer skips the green code as it doesn’t associated
with the taint data flow. The initialization of arr and idx is found
directly within start (offset 24-28, 2c-2e, 38-3c). Based on the
information from the native world, the analyzer also finds the ini-
tialization of mHandle (offset 0-4). After that, we will continue to
analyze until we find that the attribute of filePath is the file path.
Finally, the red and blue code is used to generate an intermediate
harness of nativeDecodeFrame ().

Algorithm 1 Intermediate Harness Generation Workflow.

Input : All Java method bytecodes of APK/Jar JM, All native R/W Infomation RW
Output : A set of Intermediate Harnesses(Java bytecode sequence) IH

1: IH « 0;

2: for jmin JM do

3: if jm.containNativeMethodCall() then

4: nativeMethodLocs < jm.getNativeMethodLocs();

5 for nmLoc in nativeMethodLocs do

6: ih « new_intermediate_harness();

7 bc « jm.getBytecode(nmLoc);

8: ih.add_bytecode(bc);
9: ih.update_java_dep(bc);

10: ih.update_native_dep(getNativeReads(RW,bc));

11: ih.update_constraint (bc);

12: ih.update_attribute(bc);

13: IH « IH U AnalyzeJavaMethod (RW, jm,nmLoc, ih);
14: end for

15: end if

16: end for

17: return IH

Algorithm 2 Java Method Analyzing Workflow.

Input : All native R/W information RW, Java method byteCodes jm, start point of
analysis sloc, intermediate harness(Java bytecode sequence) ih
Output : Set of Intermediate Harnesses(Java bytecode sequence) IH
1: IH « 0;
2: paths « jm.getAllPathToLoc(sloc);
3: for path in paths do
4 ihCopy « copy(ih);
5: for locin path.reverse() do
6:
7

bc «— jm.getByteCode(loc);
if ihCopy.update_java dep(bc)
or ihCopy.update_native_dep(getNativeRW (RW,bc)) then

8: ihCopy.add_bytecode(bc);
9: ihCopy.update_constraint(bc);
10: ihCopy.update_attribute(bc);
11: end if
12: if ihCopy.all_dep_satisfied() then
13: IH.add(ihCopy);
14: break;
15: end if
16: end for
17: if !ihCopy.all_dep_satisfied() then
18: if isEmptySet(jm.getCallers()) then
19: IH .add(ihCopy);
20: else
21: for jmCaller, loc in jm.getCallers() do
22: IH « IHU AnalyzeJavaMethod(RW, jmCaller, loc, ihCopy);
23: end for
24: end if
25: end if
26: end for

27: return IH

ISSTA °24, September 16-20, 2024, Vienna, Austria

. public class pDecoder {
protected long mHandle;
protected native void nativelInitHandle(pDecoder pD, String str);
protected native int nativeDecodeFrame(long j, byte[] arr, int i);
protected native int nativeGetFrameNum(long j);
public pDecoder(String str) {

nativelnitHandle(this, str);

¥
public int getFrameNum() {
return nativeGetFrameNum(this.mHandle);

¥
public int decodeFrame(byte[] arr, int idx) {
if (arr == null) { return 0; }
return nativeDecodeFrame(this.mHandle, arr, idx);

¥

-3

. public class GifCodec {

public static boolean start(String filePath) {
pDecoder pD = new pDecoder(filePath);
int frameNum = pD.getFrameNum();

N e e e
OQWVWONOIOTUVTAWNFHOOVONOOUDLWNE

21. pEncoder pE = new pEncoder();

22. pE.setDispose(2);

23. byte buf = new byte[0x10000];

24. for (inti=0; i< frameNum; i++) {
25. pD.decodeFrame(buf, i);

26.

27. return true;

28. 3}

29.}

Figure 4: The source code of the example used for explaining
Algorithm 1 and Algorithm 2.

decodeFrame
—

v3,0

[08] iget-wide VO, v2, LpDecoder;->mHandle J
[Oc] invoke-virtual v2, vO, v1, v3, v4 LpDecoder;-
>nativeDecodeFrame(J [B)!

[12] move-result v3

[14] return v3

[04] const/4
[06] return

[00] new-instance vO, LpDecoder; [02¢e] if-ge v2, V3, +8
[04] invoke-direct VO, v3, LpDecoder;-><init>
(Ljava/lang/String;)V

[0a] invoke-virtual vO, LpDecoder;->getFrameNum()!
[10] move-result v3

1
1
1
1
1
1
1
1
1
: [12] new-instance v1, LpEncoder;
1
1
1
1
1
1
1
1
1

[032] invoke-virtual
v1,v2, LpDecoder;-
>decodeFrame([B)!
[038] add-int/lit8 v2, v2, 1

vO0,

[16] invoke-direct v1, LpEncoder;-><init>()V

[1c] const/4 v2,2 [03c] goto -7
[1e] invoke-virtual v1, v2, LpEncoder;->setDispose(l)!

[24] const/high16 v1, 1 #[9.183549615799121e-41] +

[28] new-array vi, v1, [B [03e] const/4 v3, 1
[2c] const/4 ~ v2,0 [040] return v3

Figure 5: The bytecode and CFG of the example used for
explaining Algorithm 1 and Algorithm 2.

3.2 Harness Optimization

We found that there are still 3 main problems within the intermedi-
ate harness: (I) duplicate harness with high similarity due to similar
paths; (IT) incompleteness in harness sequences due to the lack of
path or the limits of static analysis techonology; (III) uncertainty of
input data injection due to unclear semantics of the harness param-
eters. To improve the quality of the harnesses, we designed three
stages to solve the corresponding problems: the deduplication
stage, the completion stage, and the injection stage.

The deduplication stage is used to reduce duplicate harnesses.
According to our observations, independent harnesses have the
following two characteristics: (I) They have different native API
call sequences; (II) Even if the calling sequences are the same, their
parameters are different (The execution paths are sometimes deter-
mined by specific constant values.). Based on these observations, we

355

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

propose a workflow to complete the deduplication task, as shown
in Figure 6. The workflow of the deduplication stage contains three
steps: (I) We cluster the input IH according to the native API calling
sequence into IH; to IHy. (II) For each IHy, we perform another
clustering within it according to the set of the constant parame-
ters (3) For each subclass IH,,c,, we choose one harness as the
representative and output it.

The completion stage judges whether the parameters of IHs
are complete and complete them if necessary. There are two main
reasons for the incomplete IH. One is that the limitation of the
static analysis of the Java layer makes it hard to find the callers(line
21 in Algorithm 2). The second is that the variable dependency
information can not be found due to the limitations of the symbolic
execution on the native layer. To address the issue of insufficient
context information, we utilize a heuristic insertion approach to
maximize the completion of IH based on the available data. We first
judge whether all variables and parameters have been initialized. If
some variables are missing, we add them into the harness according
to the type of the required parameter. If the missing parameter is
a common class, such as jstring, we use a common template to
complete its initialization. If it is some specific class, we will find
the initialization process in existing IHs. Specifically, if the class X
lacks its initialization in IH4 and we find it is initialized in IHg, we
will adapt the initialization code from IHp to IHy4.

The injection stage locates the input point of fuzz data in IH.
There are two types of JNI methods input, one is buffer type, and
the other is file type. We first analyze the buffer or string that needs
to be set manually in IH, i.e., non-constant. We set the buffer type
input as the injection point and obtain its length, type, and other
information to guide the fuzz input generation. If it is a string, we
will decide whether it is fuzzable according to whether it is called
by a file type API (e.g., File API in Java, fopen in C/C++).

After these three stages, Atlas generates the final harness ac-
cording to syntax mapping rules, which will be handed over to the
next stage for fuzzing. Figure 7 shows the harness generated for
getFrameNum in Figure 4.

Figure 6: Depuplication stage workflow.

3.3 Enhanced Runtime Environment

We propose an enhanced runtime environment, which streamlines
harness generation and execution. We discuss the existing solutions
and introduce our novel enhanced fuzzing runtime environment.
One existing solution [7, 10] of fuzzing Android closed-source
native libraries is to execute harness on a user-land emulator. How-
ever, for lack of a Java runtime environment, the execution process
will crash when encountered with JNI function calls. To address
this issue, state-of-the-art works utilize patching native APIs on
a binary level or re-writing the harness to directly call pure na-
tive functions. However, these approaches require much manual
effort in reversing and are error-prone. Another solution is to

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

. int main()

JavaVMOption options[1];
JavaVM *jvm; INIEnv *env;
JavaVMInitArgs vm_args;
long status; jint ret = -1;

ONoOUhwNE
~

options[0].optionString = "-
Djava.class.path=/path/to/the/packagefile";

9. vm_args.options = options;

10. status = INI_CreateJavaVM(&jvm, (void **)&env, &vm_args);

11.

12.

13.

jclass class_D = env->FindClass("pDecoder");

jmethodID methodId_init = env->GetMethodID(class_D, "
<init>", "(Ljava/lang/String;)V");
14. jstring fuzz_targetO = charTojstring(env, argv[1]);
15. jobject ret_init = env->NewObject(class_D, methodId_init,
fuzz_target0);

jmethodID methodId_getNumOfFrame = env-
>GetMethodID(class_D, "getNumOfFrame()", "()I");

jboolean ret_getNumOfFrame = env->CallIntMethod(ret_init,
methodId_getNumOfFrame, 1);
18.
19. }

16.

17.

Figure 7: Harness code for example in Figure 4.

Test Data
EEE——
<«
Execution Feedback

Harness Process

JVM Thread Main Thread
— A S
Vendor Classes > 1 1
a.so 1
AOSP Classes JNI Functions !| harness 0
Standard Classes <« 0 code 1

1 X.S0

Other Classes \ 'l

Figure 8: Atlas Fuzz Framework.

execute the harness within an OS-level emulator, which runs a
whole Android OS and provides the essential Java runtime envi-
ronment. Nevertheless, to the best of our knowledge, there is no
existing open-source emulator that can run the Android OS from
vendors with high compatibility. Besides, the OS-level emulation
for fuzzing user-mode libraries results in low efficiency, let alone
adding coverage collection or sanitizers into it. lannillo et al.[31]
have confirmed that utilizing ptrace to trace the coverage results in
a performance slowdown of 11.97x on average. On the contrary, the
user-land emulator provides a lightweight runtime environment
with coverage feedback and address sanitizer. Thus, there is an
urgent demand for an enhanced runtime environment with Java
runtime environment in the user-mode emulator.

Our proposed fuzzing framework makes it easier to write and
execute harnesses. As shown in Figure 8, the harness process run-
ning inside of the emulator receives test data from the fuzz engine.
The fuzzing engine gets feedback from the emulator, such as code
coverage and crash reports, to guide the mutation of test data. The
harness process consists of two threads, Main Thread and JVM

356

ISSTA °24, September 16-20, 2024, Vienna, Austria

Algorithm 3 The Workflow of Fuzz Runtime Environment Setup
for a Harness.

Input : A Final Harness fh

: load_packages — 0;

2: load_lib < 0;

3: Jmethods « get_all_Java_mthods(fh);

4: Nmethods < get_all_native_mthods(fh);

5: for jmin Jmethods do

6: load_packages « load_packages U find_all_packages(jm);
7

8

—_

: end for
: for nm in Nmethods do
9: load_lib « load_lib U find_all_alibs(nm);
: end for
: if isError(EnovLoad (load_packages, load_lib)) then
manual_fix();
: end if

Thread. Main Thread loads the harness and native libraries and in-
teracts with VM Thread through JNI functions. JVM thread handles
JNI function calls from Main Thread. Apart from supporting the
general JNI functions like GetStringUTFChars, it should support
accessing or invoking classes or methods defined in vendor-specific
Java packages. Thus it needs to load essential Java packages in-
cluding vendor classes, AOSP classes, standard classes, and other
classes.

Our workflow of fuzz runtime environment setup is described in
Algorithm 3. To execute the harness, we need to find the essential
native libraries and Java packages. We use the Java methods and
native methods called in ih as the analysis entry. (lines 3-4) For
Jmethods, we find the import packages from the file header of
its class and recursively find all the dependent packages. (lines
5-7) For nativemethods, we locate the library where the method
is implemented and recursively find all the dependent libraries
of that. (lines 8-10) Then we load packages (load_packages) and
libraries (load_lib) into the harness process. (line 11) We modify
the initialization parameters of JVM to load Java packages. We load
native libraries by linking or dlopen. During the loading process,
there may be problems like Java package incompatibility, and the
lack of dependencies on the packages or libraries. We manually
investigate and fix the problems if we encounter any loading failure.
(line 12)

The fuzz engine we choose is AFL, and the emulator is gemu-
aarch64. We port OpenJDK][9] to the emulator to run JVM Thread for
handling JNI function calls. Since the supported bytecode formats
are different in OpenJDK and ART(Java used in), we use the tools
dex2jar[1] to transfer the bytecodes and load them into JVM Thread.

4 Implementation

Atlas is implemented as a system with four modules, the pre-
processing module (661 lines of Python), the cross-language analy-
sis module (4,588 lines of Python), the optimization module (1873
lines of Python), and the Fuzzing environment module.

In the pre-processing module, Atlas automatically unpacks all
the Apk files in the firmware to extract the dynamic link libraries.
Then Atlas applies jadx[2] tool to decompile the Apk/Jar files to
locate the native method declarations, and uses the IDAPython|[3]
script and the JN-SAF[56] tool to find the native functions in the
dynamic link libraries.

The cross-language analysis module can be divided into the
Native Code Analyzer submodule and the Java ByteCode analyzer

ISSTA °24, September 16-20, 2024, Vienna, Austria

submodule. The Native Code Analyzer leverages and improves the
tool JN-SAF[56] (we add support for 64-bit libraries and fix many
minor bugs) to analyze the libraries. The Java ByteCode Analyzer
uses the framework Androguard[5] to analyze the Apk and Jar
files to extract method-level information, including the control
flow graph and parameter information. The optimization module
performs a translation from intermediate harnesses (consisting of
Java bytecode) to final harnesses (C/C++ code) in the last, which
relies on the syntax mapping rules written manually.

For the fuzzing environment module, we use afl-qemu[25] as our
fuzz engine and use QASAN([24] as the sanitizer. We port OpenJDK
[9] to our environment as the JVM engine and use it to load all the
Java packages needed.

5 Evaluation

We evaluated Atlas on real-world Android applications to answer
the following questions:

e How scalable and accurate are the fuzzing harnesses created
by Atlas? (Section 5.1)

e How does each component contribute to the harness gener-
ation? (Section 5.2)

o How necessary is the complete fuzzing runtime environment
and how efficient is it? (Section 5.3)

e Can Atlas discover new bugs in real-world applications?
(Section 5.4)

Hardware Configuration We evaluate within Ubuntu 22.04
with an Intel Xeon Gold 6230R CPU (26 cores and 52 threads at
2.10GHz) and 128 GB RAM. In the throughput evaluation, we choose
M1 Pro as the ARM64 platform and Pixel 6 as the real device.

Dataset Configuration To demonstrate the ability of Atlas of
fuzz harnesses generation, we carefully select four/five complex
apps from each of the 4 Android vendors. We choose these apps from
the firmware with the March 22, 2023 security patch. Note that these
17 apps are all pre-installed applications by the manufacturer. These
17 apps perform different functionalities, covering image processing,
audio decoding, font parsing, etc. These functionalities heavily use
native libraries to complete complicated but error-prone functions,
which are suitable for fuzzing. To demonstrate the ability of Atlas
of finding new bugs, we extend our dataset to more pre-installed
applications in the four vendors. In the throughput evaluation, we
choose 8 programs from oss-fuzz[4] as our benchmark programs.

We believe our dataset of 17 apps, 767 native APIs, and 820 gen-
erated harnesses is reasonably large for our purposes. On the one
hand, the apps come from four different Android vendors and cover
different functionalities. On the other hand, the dataset is already
larger than existing datasets used by previous works for harness
generation. For example, Winnie [34] generates and evaluates 59
harnesses for Windows applications, Intelligen [61] selects 18 open-
source projects and evaluates around 100 harnesses, and FuzzGen
[32] selects 7 open-source libraries and covers 292 APIs.

Fuzz Configuration We assign 2 CPUs to each generated har-
ness and fuzz it for 24 hours. We select from some public corpus[6]
and the built-in files of mobile phones and use afl-cmin to remove
redundant seeds. We use QASAN(8] as address sanitizer. We choose
the default afl mutator.

357

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

5.1 Fuzz Harness Generation

Scalability of Atlas. We apply Atlas to 17 vendors’ pre-installed
apps to test the scalability of harness generation. Table 1 lists
the apps we choose and the FHG column shows the harness gener-
ated by Atlas. We manually investigate 820 generated harnesses
involving 767 native APIs. Specifically, we compile the harnesses
and execute them in our fuzz environment. This phrase often in-
volves time-consuming issues like linking the harness with essential
dynamic libraries and loading indispensable Java packages. These
require much manual effort since we have to find the missing li-
braries and fix incompatibility problems on loading Java packages
into the environment, which complicates our experiment and that’s
why we choose only 17 apps. To validate the accuracy of the gen-
erated harness, we counted the harnesses that can be run without
any modification (CH column), the harnesses that need manual
modification (FM column), and the failed harnesses(F column).

The result shows that 51% of the harnesses can be used directly
after being generated, while 27% require minor manual fixes, and
22% fail to work. Furthermore, we calculate the average ratio of
the number of lines of code that need to be modified to complete
the harness within the 27% fixed harnesses. It shows that only 5.6%
of the code is required to be modified or added, indicating that it
costs little manual effort. In total, 78% of the harnesses generated by
Atlas are practical w/o a few manual modifications, illustrating the
accuracy of Atlas. We count two reasons for the remaining 22% of
harnesses’ failure. Firstly, 29% of the harness failures are due to the
incompleteness of the harness itself since the analyzer cannot find
the caller. Secondly, 71% of harnesses are due to the dependency of
the tested libraries on system-level or hardware resources, which
cannot be provided in our user-level emulator. Besides, the time
cost of CLA ranges from 2 minutes to 212 minutes, which heavily
depends on the API amount and the size of input APks. We also
record the time costs of the OP-stage, which are all less than 2
minutes.

Accuracy of Atlas. To evaluate the accuracy of Atlas, we com-
pare Atlas against human experts. To conduct this experiment, we
recruited 4 participants in total. All the participants are professional
researchers with over 3 years of Android security and fuzzing. We
choose 2 APKs from each vendor and compare the code cover-
age between the auto-generated and manually-written harnesses.
Table 2 shows the basic blocks of each harness within 24 hours.
Overall, Atlas outperforms all the programs and discovered 1.37x
more basic blocks than human experts on average. We calculate
the p-values[46] and all of them are less than 0.05, meaning that
the accuracy of Atlas is statistically significant(p < 0.05).

Results. In this section, the statistics confirm that Atlas achieves
both accuracy and scalability in harness generation.

5.2 Contributions of Each Component

We evaluate the contribution of the native analyzer and each stage
of the optimization phase in generating the fuzz harness in this
part.

Contribution of the native analyzer. In the cross-language
analysis part, Atlas uses the native analyzer to collect variable
dependency meta information in the native layer. To evaluate its
impact, we keep track of the instances when the Java analyzer

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 1: An overview of the harness generation of Atlas and effectiveness of each component.

Vendor APK FHG CLA OP-Stage
FH CH M F F.Pct F-1 F-2 API H NN T(min) Dup Comp NoComp Inj

SamsungGallery2018 60 33(55%) 20(33%) 7(12%) 71% 2 78 233 51(22%) 9.7 125(4%) 21(17%) _ 79(63%) 60(48%)

Samsung framework 59 28(47%) 1017%) 21(36%) 9.6% 8 13 50 295 63(21%) 1445 88(30%) 37(42%) 28(32%) 59(67%)
SamsungCamera 49 27(55%) 6(12%) 16(33%) 4.9% 5 11 55 416 131(31%) 83 154(37%) 40(26%) 39(25%) 49(32%)

Notes40 89 53(60%) 14(16%) 22(24%) 5.0% 4 18 74 | 2841 e12(22%) 2118 | 1867(66%) 125(7%) 132(7%) 89(5%)

Gallery T CN 98 53(54%) 17(17%) 28(29%) 6.0% 16 12 82 1390 301(22%) 16.6 242(17%) 39(16%) 109(45%) 98(40%)

isomi MIMediaEditor 65 34(52%) 10(15%) 21(33%) 5.6% 13 51 1541 273(18%) 249 144(9%) 78(54%) 26(18%) 65(45%)
SmartHome 59 38(64%) 7(12%) 14(24%) 5.7% 2 12 55 826 122(15%) 196 192(23%) 42(22%) 43(22%) 59(31%)

MIUIMusicT 44 22(50%) 9(20%) 13(30%) 50% 2 11 39 846 206(24%) 248 103(12%) 40(39%) 37(36%) 44(43%)
OplusEngineerCamera | 44 16(36%) 22(50%) 6(14%) 3.6% 1 47 511 39(17%) 38 352(69%) 3(1%) 62(18%) 44(13%)
WallpaperChooser 15 9(60%) 4(27%) 2(13%) 3.9% 1 17 163 41(25%) 2.6 39(24%) 3(8%) 22(56%) 15(38%)

OPPO OplusEngineerMode 6 2(33%) 2(33%) 2(33%) 48% 0 10 204 18(9%) 46 82(40%) 18(22%) 28(34%) 6(7%)
OplusLauncher 3 0 3(100%) 0 4.0% 0 3 27 3(11%) 53 13(48%) 0 13(100%) 3(23%)
OplusLocationService 20 10(50%) 4(20%) 6(30%) 8.5% 1 14 76 21(28%) 2.0 21(28%) 16(76%) 5(24%) 20(95%)
VivoBrowser 7 26(55%) 9(19%) 12(26%) 51% 2 10 %5 720 172(24%) 473 152(21%) 34(22%) 35(23%) 47(31%)

Vivo VideoPlayer 27 16(59%) 8(29%) 3(12%) 4.9% 1 25 331 47(14%) 135.7 75(23%) 15(20%) 26(35%) 27(36%)
VivoCamera 80 52(65%) 14(18) 14(17%) 56% 2 12 72 1163 95(8%) 17.8 24321%) 3113%) 80(33%) 80(33%)

VivoGallery 55 27(49%) 16(29%) 12(22%) 63% 6 50 500 64(13%) 4338 126(25%) 19(15%) 63(50%) 55(44%)
Total 820 446(31%) 175(27%) 199(22%) 5.60% 29% 71% 767 | 12083 2309(19%) 125 1018(32%) 561(23%) 827(21%) 820(37%)

* FHG: Final harness generation. FH: Final harness. CH: Correct harness. FM: Fixed manually. F: Failed harness. AFLocs.Pct: Percentage of average manually fixed lines of code.
F-1: Failed harness for incompleteness. F-2: Failed harness for lack of a runtime environment. API: Total APIs invoked in final harnesses. CLA: Cross-language Analysis stage. IH:
Total intermediate harnesses. NN: Native analyzer needed harnesses. T: Time cost of cross-layer analysis.

Table 2: Comparison of basic block coverage.

APK Library BBs p-value

BH MH
SamsungGallery2018.apk libagifencoder.quram.so 2303 2010 2.78E-03
ARDrawing.apk libimagecodec.quram.so 2995 2350 3.12E-03
OplusEngineerCamera.apk lib_rectify.so 794 540 3.45E-03
OplusLauncher.apk liboplus_image_process.so 1131 735 1.52E-03
VideoPlayer.apk libvad_check.so 350 241 5.63E-03
iReader.apk libZYAccDecoder.so 3983 2720 1.43E-03
MIUIMusicT.apk libmp4encode.so 6304 5700 4.32E-03
Gallery_T_CN.apk libMiuiGalleryNSGIF.so 387 237 1.64E-03

* BBs: the amount of babic blocks. BH: the harnesses generated by Atlas. MH: the
manually-written harnesses.

* Each harness is executed for 10 loops and each loop is 24 hours. The p-value is
calculated according to Mann-Whitney U test[46].

utilizes the meta information on variable dependencies provided
by the native analyzer. The results depicted in Table 1 indicate that
out of the 12083 intermediate harnesses produced by Atlas, 2309
harnesses utilized data from the native analyzer for generating,
representing 19%. This highlights the crucial role that the native
analyzer plays in the generation process of harnesses.
Contribution of each stage of the optimization phase. As
shown in Table 1, after completing the cross-language analysis,
Atlas generates 12083 harnesses in total, which is a huge number
for manual verification. We record the number of harnesses affected
after the three optimization stages. In the deduplication stage, Atlas
clusters harness with high similarity into groups. After this stage,
the total harness is reduced to 4018 groups, and the average dedu-
plication ratio is 68%. Atlas then randomly selects one from each
group as the output of the current group and optimizes it in the next
stage. In the completion stage, Atlas will complete the harness for
missing variables and dependencies. In this stage, Atlas completes
561 harnesses, and the average completion ratio was 23%. In the in-
jection stage, Atlas judges whether the current harness has proper
input parameters suitable for fuzzing. After the injection phase,
Atlas injects 820 harnesses within 4018 harnesses. On average, 37%

358

of the harnesses are injectable, meaning that only a small part of
the harnesses are fuzzable. After going through three optimization
stages, Atlas reduces 12083 harnesses to 820 high-quality harnesses,
which means it observably increases the usability of the generated
harness without much manual effort.

Results. This section demonstrates the effectiveness and ne-
cessity of the native analyzer and the optimization stage, which
verifies the rationality of our design.

Table 3: Executable Harnesses.

Vendor Samsung Xiaomi OPPO Vivo
M1 8/20 14/20 13/20 10/20
M2 14/20 19/20 16/20 18/20

* M1: Executable harnesses without Java runtime environment; M2: Executable
harnesses with Atlas(equipped with Java runtime environment).

5.3 Necessity and Performance of Enhanced
Fuzz Framework

The Necessity of Enhanced Fuzz Framework. We conduct a
harness programming experiment to prove the necessity of our
fuzzing framework. The experts are the same as those in Sec 5.1.
We assign each expert 20 random native APIs and ask them to
construct the harness within 4 days. Each expert is responsible for
one vendor to ease familiarity with the characteristics of different
vendors’ libraries. We record the amount of executable harnesses
in two different environments. As shown in Table 3, when experts
use Atlas to write test frameworks, they can successfully write
harnesses for 84% of the APIs with the help of the Java runtime
environment in Atlas. However, they can only finish 56% without
the environment. To summarize why experts can not finish some
harnesses, we investigate the APIs and interview the researchers.
In the end, we boil it down to two main reasons: (I) The native API
needs to be rewritten is too complicated, and the rewriting process
is prone to errors. (IT) It’s hard to provide some substitute functions
and variables for complex JNI functions and Java variables within
the native APIs. The results show that our fuzz framework provides
the necessary runtime environment and streamlines the process of
writing harnesses. Meanwhile, rewriting APIs or patching libraries

ISSTA °24, September 16-20, 2024, Vienna, Austria

at the binary level requires a lot of reversing work and domain
knowledge, which is error-prone and time-consuming. Compared
with manually writing harnesses without a JVM environment, Atlas
can provide a runtime environment for more APIs and streamlines
the process of harness generation.

Throughput of Enhanced Fuzz Framework. We compare our
fuzzing framework against those on Android emulators and real
devices. The data in Table 4 is calculated using formula 1.

speed
speedQu_RD_A

1

relative_speed =

Table 4: Comparison of performance.

Platform
QU-X86-L D-ARM64-AE QU-ARM64-AE D-RD-A QU-RD-A D-ARM64-L QU-ARM64-L
Program

Json 3.83

libjpeg-turbo 202
harfbuzz 7.03
c-ares
1z4
http-parser
libopus
zlib

* The platform consists of three parts, running mode, the architecture of the
host, and the system information. QU: running within gemu-aarché4; D: running
directly within the host; RD: Real Device(Pixel 6); L: Linux; AE: Android 12 on
Android Emulator; A: Android12.

* Each harness is executed on a single CPU core for 10000 loops. We record the
executing time of the target APIs, regardless of the initialization of the runtime
environment since it is a one-time effort. The data we used for calculating is the
executing time per second of each program on each platform.

According to Table 4, we can find the speed of our framework
on x86 devices (QU-X86-L) and on armé64 devices (QU-ARM64-L)
are on average 37% and 73% of the speed on real devices respec-
tively. It indicates that our enhanced fuzzing framework has a
relatively good performance overhead while providing an essential
running environment (JVM) and necessary fuzzing capabilities (e.g.
code coverage collection, and memory corruption detection), which
makes it possible to fuzz at scale.

Surprisingly, the speed on QU-ARM64-AE outperforms real de-
vices on 5 programs, which means it can provide both high perfor-
mance and a complete runtime environment. However, the memory
consumption of an Android Emulator is about 3GB, which is much
higher than Atlas(in the range of dozens to hundreds of MB) and
makes it impractical to fuzz at scale.

Results. This section indicates that our enhanced fuzz frame-
work is necessary for harness generation and performs well.

5.4 New Bug Findings

In this section, we verify whether Atlas can detect bugs on real
apps. In this part, we expand the scope of our samples to more
applications with complex native functions and high privileges. We
use Atlas to automatically generate fuzz harnesses and choose the
harness involving complicated native functions. For each harness,
we run the fuzz on 2 CPU cores for 24 hours.

New Bug Findings. As shown in Table 5 and Table 6, Atlas finds
74 unique bugs and gets 16 CVEs in 13 applications from 4 Android
vendors. Note that the bugs in Xiaomi, OPPO, and Vivo have not

359

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

Table 5: Unique bugs found by Atlas.

Vendor APK Library HR HW UAF NPD SO Sum
Sam***.apk libagi***.so 1 2 0 0 0 3
libBar***.so 1 3 0 1 1 6
frame*** jar libsmst.so 11 11 0 0 1 23
libves***.so 1 1 0 0 0 2
Sam*** apk libFac***.so 1 0 0 1 0 2
Samsung libsec***.s0 2 0 0 0 0 2
Notes40.apk 1ibSD***.s0 11 0 1 0 0 12
Apex***.apk libape***.so 2 1 0 1 0 4
ARD™.apk libViz***.s0 0 0 0 2 0 2
Phot™*.apk libten***.so 0 0 0 1 0 1
Vide™**.apk libsav***.s0 2 0 0 0 0 2
Xiaomi Galle™ apk - 2 2 0 0 0 4
MIUI"**.apk - 1 0 0 0 0 1
Oplus***.apk - 2 0 0 0 0 2
OPPO Heyt***.apk - 0 0 0 6 2 8
Vivo iReader.apk - 0 0 0 6 2 8
Total 37 20 1 12 4 74

* HR: Heap out of bounds read. HW: Heap out of bounds write. UAF: Use after
free. NPD: Null pointer deference. SO: Stack overflow. Since some bugs are still in
the process of being fixed, we do not disclose the information about the library
information here.

Table 6: The CVEs found by Atlas.

Vendor APK Library CVE Bug-Type
CVE-2022-26092 HOOB-W

SamsungGallery2018.apk libagifencoder.quram.so CVE-2022-27821 HOOB-R
CVE-2022-39852 HOOB-W

CVE-2022-36845 HOOB-R

CVE-2022-36841 HOOB-R

CVE-2022-36844 HOOB-R

CVE-2022-36843 HOOB-R

Samsung Notes40.apk libSDKRecognition CVE-2022-36860 ~ HOOB-R
h Text.spensdk.samsung.so CVE-2022-36863 ~ HOOB-R

CVE-2022-36862 HOOB-R

CVE-2022-36842 HOOB-R

CVE-2022-36846 HOOB-R

CVE-2022-36858 HOOB-R

framwork jar Tibsmat.so CVE-2022-39882 HOOB-W

ApexService.apk libapexjni.media.samsung.so | CVE-2022-36854 ~ HOOB-R
VideoEditorLite_Dream_N.apk libsavsaudio.so CVE-2022-39891 HOOB-R

been fixed yet. Thus we do not show the concrete libraries here.
These bugs cover five different types, including but not limited to
heap out-of-bound read, heap out-of-bound write, use after free,
and null pointer deference. At the time of writing, we reported all
these bugs to the vendors and collaborated with them on the fix.
We find that the amount of bugs is higher in Samsung. Here are
two reasons : (I) Our work starts from Samsung, and we spend
more time fuzzing Samsung’s native libraries. (II) The firmware
of Samsung contains more vendor-customized native libraries to
perform specific functions instead of using open-source libraries.

New Insights. In our fuzzing journey, we find some other in-
teresting insights. (I) The vulnerabilities are discovered recently
while the vulnerable components were introduced several years
ago. It shows the lack of sufficient security testing when these com-
ponents were introduced. We think continuous security testing
is required to keep APIs as secure as possible. (II) Our bug
reports conflict with the internal reports of the SRC(Security Re-
sponse Center) several times, which indicates that our research
raises the attention of the SRC and shows great posture that
they are conducting their internal security testing. (III) In
our fuzzing process, we find security bugs in the library developed
by other manufacturers (non-Android manufacturers), indicating
that vendors should pay more attention to testing all of the
imported APIs.

Results. In this section, We demonstrate that Atlas can find new
security bugs and discuss some insights about bug findings.

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

6 Related Work

Android Fuzzing. There have been a number of longitudinal stud-
ies on Android fuzzing [13, 19, 20, 35, 37, 45, 51, 53, 55, 59]. To
test vendors’ Java services, Chizpurfle [31] utilizes dynamic binary
instrumentation for coverage-feedback fuzzing. FANS [43] achieves
better results in Android native system services by generation-
based fuzzing. However, interface models require source-code-level
information and can not be extracted from vendor-implemented
Java services. Aafer et al. [11] propose a log-based fuzzing technique
aimed at Android SmartTVs, which successfully found both memory
corruption vulnerabilities and physical anomalies on IOT devices.
Nevertheless, these works [13, 19, 20, 31, 35, 37, 45, 51, 53, 55, 59]
focus on the Java code and ignore the information from native code.
Besides, all the harness execution environments of the works above
are within the physical devices instead of in the simulator, which
is unsuitable for conducting extensive security testing.

Fuzzing Harness Generation. As a key component in API
testing, fuzzing harnesses are programs that invoke library APIs
and greatly affect fuzz testing results. Quality harnesses require
domain-specific knowledge, requiring expert experience and much
manual effort. Many methods have been proposed for automatically
generating fuzzing harnesses with high quality [23, 27, 36, 47, 63,
64]. Works by source-level static analyzing [14, 32, 61] achieve good
results. However, these strategies will fail when producing fuzzing
harnesses for binary without source code or debugging information.
Apart from these works, WINNIE and APICraft are proposed to
generate fuzz harnesses for closed-source binary. WINNIE filters
out graphical functions and implements a fork mechanism to raise
the fuzzing efficiency. APICraft pays more attention to getting more
accurate semantic relations and mutating the invoking sequences
of closed-source Mac OS SDK APIs more reasonably. Unlike these
two works, Atlas mainly performs cross-layer static analysis to get
the minimal correct API sequences for harness generation instead
of accelerating the fuzzing process (like WINNIE) or recombining
API sequences for SDK testing (like APICraft).

Cross-language Analysis. While providing many benefits in
software development, using multi-language architecture intro-
duces quite a few severe security bugs. The cross-language analysis
is increasingly vital in bug detection as more and more real-world
software systems are constructed with multiple program languages.
Existing works aim at different program languages, e.g., Java X
C [12, 39, 40, 56, 58], Java X Javascript [15, 18, 38], and Javascript
X C/C++ [17, 22]. The aforementioned works have shown their
effectiveness in detecting bugs but lack universality. To solve the
trouble brought by language heterogeneity, PolyCruise [41] per-
forms a method called DIFA (dynamic information flow analysis)
on the pure application level. Recently, POLYfuzz [42] offers bet-
ter fuzzing harnesses by generating the inputs that are needed to
trigger vulnerabilities for general multi-language software. Atlas
draws inspiration from these creative works, but some differences
remain. Atlas performs cross-language analysis on closed-source
binaries, which means it does not need additional information ex-
cept bytecode and assembly code. Apart from that, the pre-built
runtime environment and harness are not required in the static
analysis process of Atlas. Besides, to get the valid API call sequences
from cross-layer variable-dependent inference, the static analysis

360

ISSTA °24, September 16-20, 2024, Vienna, Austria

adopted by Atlas is from the bottom (C/C++ layer) to up (Java
layer).

7 Discussion

Static Analysis. Java Bytecode Analyzer is a static analysis module,
so it also encounters difficulties in common static analysis tools.
The inheritance of classes in Java makes it hard to determine or find
some Java method callers, resulting in false negatives and positives.
At the same time, for the loop structure in the control flow graph,
Java Bytecode Analyzer can recognize some apparent patterns,
and for the unrecognized loop structure, the functionalities of the
generated harnesses may be broken. Besides, indirect jumps in
Android applications can lead to inaccuracies in static analysis.
This is because indirect jumps can have multiple targets, making
them difficult to predict. Atlas also suffers from indirect jumps. For
example, the inaccurate CFG resulting from indirect jumps may lead
to incomplete harnesses. Atlas concentrates on generating high-
quality harnesses with existing tools. The ability of Atlas will get
improved if these common challengs in static analysis are tackled
in the future.

Fuzzing Input. Existing researches [30, 65] show that providing
a high-quality corpus for fuzzing tests can achieve better results.
Atlas does not perform efficient selection or construction in this
regard. For convenience, Atlas provides a mixed corpus for all
harnesses, that is, put some well-known file types in this corpus,
including images, audio, videos, JSON, XML, and so on. In addition,
Atlas may find multiple injectable targets (parameters) within a
harness during the injection stage. To handle this case, inspired by
DAISY [62], Atlas uses a dispatcher to pass different types of input
files to a harness.

Binary Analysis. Atlas adopts binary analysis and there’re
some limititions. For lack of source code, it’s hard to obtain type in-
formation. In our scene, this problem is partly resolved by modeling
JNI functions, which contain type information in their parameters.
Besides, binary analysis may encounter path/state explosion prob-
lems as well as loss of semantic information in symbolic execution.
Thus we think it’s better to combine pure binary analysis and dy-
namic testing methods.

8 Conclusion

In this paper, we propose Atlas, a practical automated fuzz frame-
work for Android closed-source native libraries. Atlas utilizes infor-
mation from the "native world" and the "Java world" to automati-
cally generate harnesses for native APIs. Also, it provides a fuzzing
environment with the essential Java environment. We have tested
Atlas on 17 apps to show its capability to generate high-quality har-
nesses. We also apply it to many pre-installed apps from Android
vendors for new vulnerabilities. Till now, Atlas has discovered 74
new security bugs with 16 CVEs assigned.

Acknowledgments

We thank the reviewers for their insightful comments and sugges-
tions. This work is supported by the Key RD Program of Zhejiang
Province(No.2022C01165). The findings herein reflect the work and
are solely the responsibility of the authors.

ISSTA °24, September 16-20, 2024, Vienna, Austria

References

—
—_

[12]

[13]

[14]

[15]

[16

[17

=
&

[19]

[20]

2010. dex2jar. https://github.com/pxb1988/dex2jar.

2013. jadx. https://github.com/skylot/jadx.

2015. IDAPython. https://github.com/idapython/src.

2016. oss-fuzz. https://github.com/google/oss-fuzz.

2017. Androguard. https://github.com/androguard/androguard.

2019. fuzzing-corpus. https://github.com/strongcourage/fuzzing-corpus.

2020. MMS Exploit. https://googleprojectzero.blogspot.com/2020/07/mms-
exploit-part-1-introduction-to-qmage.html.

2020. qasan. https://github.com/andreafioraldi/qasan.

2021. OpenJDK. https://github.com/PojavLauncherTeam/android-openjdk-build-
multiarch.

2022. The Hidden RCE Surfaces That Control the Droids. https:
//www.blackhat.com/asia- 22/briefings/schedule/index.html#the- hidden-
rce-surfaces- that- control-the-droids-26083.

Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin. 2021.
Android SmartTVs Vulnerability Discovery via Log-Guided Fuzzing.. In USENIX
Security Symposium. 2759-2776. https://doi.org/10.1145/3579856.3582834

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
Paulo de Geus, Christopher Kruegel, Giovanni Vigna, et al. 2016. Going native:
Using a large-scale analysis of android apps to create a practical native-code
sandboxing policy. In The Network and Distributed System Security Symposium
2016. 1-15. https://doi.org/10.14722/ndss.2016.23384

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217-228. https://doi.org/
10.1145/2382196.2382222

Domagoj Babi¢, Stefan Bucur, Yaohui Chen, Franjo Ivanci¢, Tim King, Markus
Kusano, Caroline Lemieux, Laszlé Szekeres, and Wei Wang. 2019. Fudge: fuzz
driver generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 975-985. https://doi.org/10.1145/3338906.3340456

Sora Bae, Sungho Lee, and Sukyoung Ryu. 2019. Towards understanding and
reasoning about android interoperations. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 223-233. https://doi.org/10.
1109/ICSE.2019.00038

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1032-1043. https://doi.
org/10.1145/2976749.2978428

Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit Jhala,
and Deian Stefan. 2017. Finding and preventing bugs in javascript bindings.
In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 559-578. https:
//doi.org/10.1109/SP.2017.68

Achim D Brucker and Michael Herzberg. 2016. On the static analysis of hybrid
mobile apps: A report on the state of apache cordova nation. In Engineering
Secure Software and Systems: 8th International Symposium, ESSoS 2016, London,
UK, April 6-8, 2016. Proceedings 8. Springer, 72-88.

Marcel Busch, Aravind Machiry, Chad Spensky, Giovanni Vigna, Christopher
Kruegel, and Mathias Payer. 2022. TEEzz: Fuzzing Trusted Applications on COTS
Android Devices. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 220-235. https://doi.org/10.1109/SP46215.2023.10179302
Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhigiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing.. In NDSS. https://doi.org/10.14722/ndss.2018.23159

[21] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang

[22]

[23

[24

[25

Hao, Christopher Kruegel, and Giovanni Vigna. 2017. Difuze: Interface aware
fuzzing for kernel drivers. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 2123-2138. https://doi.org/10.1145/
3133956.3134069

Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros
Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, et al. 2021.
Favocado: Fuzzing the Binding Code of JavaScript Engines Using Semantically
Correct Test Cases.. In NDSS. https://doi.org/10.14722/ndss.2021.24224
Sebastian Elbaum, Hui Nee Chin, Matthew B Dwyer, and Jonathan Dokulil.
2006. Carving differential unit test cases from system test cases. In Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering. 253-264. https://doi.org/10.1145/1181775.1181806

Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. 2020. Fuzzing
Binaries for Memory Safety Errors with QASan. In 2020 IEEE Secure Development
Conference (SecDev). 23-30. https://doi.org/10.1109/SecDev45635.2020.00019
Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://doi.org/10.5555/
3488877.3488887

361

[26

[27

[28

[30

(31

[32

'S
S

[37

[38

[41

[42

[43

[44]

[45

[46

H. Xiong, Q. Dai, R. Chang, M. Qiu, R. Wang, W. Shen, Y. Zhou

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 679-696. https://doi.org/10.1109/SP.2018.00040
Patrice Godefroid. 2014. Micro execution. In Proceedings of the 36th International
Conference on Software Engineering. 539-549. https://doi.org/10.1145/2568225.
2568273

Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik
Shin. 2018. Enhancing memory error detection for large-scale applications and
fuzz testing. In Network and Distributed Systems Security (NDSS) Symposium 2018.
https://doi.org/10.14722/ndss.2018.23312

Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, and
Michael Grace. 2020. {PARTEMU}: Enabling Dynamic Analysis of {Real-
World} {TrustZone} Software Using Emulation. In 29th USENIX Security Sympo-
sium (USENIX Security 20). 789-806. https://doi.org/10.5555/3489212.3489257
Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2021). Association for Computing Machinery, New York, NY,
USA, 230-243. https://doi.org/10.1145/3460319.3464795

Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina Nita-
Rotaru. 2017. Chizpurfle: A gray-box android fuzzer for vendor service cus-
tomizations. In 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 1-11. https://doi.org/10.1109/ISSRE.2017.16
Kyriakos K Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
Fuzzgen: Automatic fuzzer generation. In Proceedings of the 29th USENIX Confer-
ence on Security Symposium. 2271-2287. https://doi.org/10.5555/3489212.3489340
Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. UTopia: Automatic
Generation of Fuzz Driver using Unit Tests. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2676-2692. https://doi.org/10.1109/SP46215.2023.10179394
Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. 2021. WINNIE: fuzzing Windows applications with harness synthesis and
fast cloning. In Proceedings of the 2021 Network and Distributed System Security
Symposium (NDSS 2021). https://doi.org/10.14722/ndss.2021.24334

Anatoli Kalysch, Mark Deutel, and Tilo Miiller. 2020. Template-based Android
inter process communication fuzzing. In Proceedings of the 15th International
Conference on Availability, Reliability and Security. 1-6. https://doi.org/10.1145/
3407023.3407052

Alexander Kampmann and Andreas Zeller. 2019. Carving parameterized unit
tests. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 248-249. https://doi.org/10.
1109/ICSE-Companion.2019.00098

Stephen Kyle, Hugh Leather, Bjérn Franke, Dave Butcher, and Stuart Monteith.
2015. Application of domain-aware binary fuzzing to aid Android virtual machine
testing. ACM SIGPLAN Notices 50, 7 (2015), 121-132. https://doi.org/10.1145/
2817817.2731198

Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: static analysis
framework for Android hybrid applications. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 250-261. https:
//doi.org/10.1145/2970276.2970368

Siliang Li and Gang Tan. 2009. Finding bugs in exceptional situations of JNI
programs. In Proceedings of the 16th ACM conference on Computer and communi-
cations security. 442-452. https://doi.org/10.1145/1653662.1653716

Wen Li, Haipeng Cai, Yulei Sui, and David Manz. 2020. PCA: memory leak
detection using partial call-path analysis. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1621-1625. https://doi.org/10.1145/3368089.
3417923

Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. {PolyCruise}: A {Cross-
Language } Dynamic Information Flow Analysis. In 31st USENIX Security Sympo-
sium (USENIX Security 22). 2513-2530.

Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai.
2023. POLYFUZZ: Holistic Greybox Fuzzing of Multi-Language Systems. (2023),
1379-1396. https://doi.org/10.5555/3620237.3620315

Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng, Haifeng Ruan, and Jian-
wei Zhuge. 2020. FANS: Fuzzing Android Native System Services via Automated
Interface Analysis.. In USENIX Security Symposium. 307-323.

Qiang Liu, Flavio Toffalini, Yajin Zhou, and Mathias Payer. 2023. VIDEZZO:
Dependency-aware Virtual Device Fuzzing. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 3228-3245. https://doi.org/10.1109/
SP46215.2023.10179354

Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,
and Angelos Stavrou. 2012. A whitebox approach for automated security testing
of Android applications on the cloud. In 2012 7th International Workshop on
Automation of Software Test (AST). IEEE, 22-28. https://doi.org/10.5555/2663608.
2663613

Nadim Nachar et al. 2008. The Mann-Whitney U: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative

https://github.com/pxb1988/dex2jar
https://github.com/skylot/jadx
https://github.com/idapython/src
https://github.com/google/oss-fuzz
https://github.com/androguard/androguard
https://github.com/strongcourage/fuzzing-corpus
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://github.com/andreafioraldi/qasan
https://github.com/PojavLauncherTeam/android-openjdk-build-multiarch
https://github.com/PojavLauncherTeam/android-openjdk-build-multiarch
https://www.blackhat.com/asia-22/briefings/schedule/index.html#the-hidden-rce-surfaces-that-control-the-droids-26083
https://www.blackhat.com/asia-22/briefings/schedule/index.html#the-hidden-rce-surfaces-that-control-the-droids-26083
https://www.blackhat.com/asia-22/briefings/schedule/index.html#the-hidden-rce-surfaces-that-control-the-droids-26083
https://doi.org/10.1145/3579856.3582834
https://doi.org/10.14722/ndss.2016.23384
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1109/ICSE.2019.00038
https://doi.org/10.1109/ICSE.2019.00038
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2017.68
https://doi.org/10.1109/SP.2017.68
https://doi.org/10.1109/SP46215.2023.10179302
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.14722/ndss.2021.24224
https://doi.org/10.1145/1181775.1181806
https://doi.org/10.1109/SecDev45635.2020.00019
https://doi.org/10.5555/3488877.3488887
https://doi.org/10.5555/3488877.3488887
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/2568225.2568273
https://doi.org/10.1145/2568225.2568273
https://doi.org/10.14722/ndss.2018.23312
https://doi.org/10.5555/3489212.3489257
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1109/ISSRE.2017.16
https://doi.org/10.5555/3489212.3489340
https://doi.org/10.1109/SP46215.2023.10179394
https://doi.org/10.14722/ndss.2021.24334
https://doi.org/10.1145/3407023.3407052
https://doi.org/10.1145/3407023.3407052
https://doi.org/10.1109/ICSE-Companion.2019.00098
https://doi.org/10.1109/ICSE-Companion.2019.00098
https://doi.org/10.1145/2817817.2731198
https://doi.org/10.1145/2817817.2731198
https://doi.org/10.1145/2970276.2970368
https://doi.org/10.1145/2970276.2970368
https://doi.org/10.1145/1653662.1653716
https://doi.org/10.1145/3368089.3417923
https://doi.org/10.1145/3368089.3417923
https://doi.org/10.5555/3620237.3620315
https://doi.org/10.1109/SP46215.2023.10179354
https://doi.org/10.1109/SP46215.2023.10179354
https://doi.org/10.5555/2663608.2663613
https://doi.org/10.5555/2663608.2663613

Atlas: Automating Cross-Language Fuzzing on Android Closed-Source Libraries

[47]

[48

[49

o
=

[51]

(52

[53

[54]

[55

[56]

Methods for Psychology 4, 1 (2008), 13-20.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 75-84. https://doi.org/10.1109/ICSE.2007.37
Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling Ji, Chunming
Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. 2021. V-shuttle: Scalable and
semantics-aware hypervisor virtual device fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 2197-2213.
https://doi.org/10.1145/3460120.3484811

Hui Peng and Mathias Payer. 2020. {USBFuzz}: A Framework for Fuzzing {USB}
Drivers by Device Emulation. In 29th USENIX Security Symposium (USENIX
Security 20). 2559-2575.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In
NDSS, Vol. 17. 1-14. https://doi.org/10.14722/ndss.2017.23404

Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents
of death. In Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, Debugging, and
Analytics (PERTEA). 1-5. https://doi.org/10.1145/2632168.2632169

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. {kAFL}:{Hardware-Assisted} feedback fuzzing for {OS}
kernels. In 26th USENIX security symposium (USENIX Security 17). 167-182.
Hossain Shahriar, Sarah North, and Edward Mawangi. 2014. Testing of memory
leak in android applications. In 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering. IEEE, 176-183. https://doi.org/10.1109/HASE.
2014.32

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. Periscope: An effective probing and fuzzing framework for the
hardware-os boundary. In 2019 Network and Distributed Systems Security Sympo-
sium (NDSS). Internet Society, 1-15. https://doi.org/10.14722/ndss.2019.23176
Xiaolei Wang, Yuexiang Yang, and Sencun Zhu. 2018. Automated hybrid analysis
of android malware through augmenting fuzzing with forced execution. IEEE
Transactions on Mobile Computing 18, 12 (2018), 2768-2782. https://doi.org/10.
1109/TMC.2018.2886881

Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018.
Jn-saf: Precise and efficient ndk/jni-aware inter-language static analysis frame-
work for security vetting of android applications with native code. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

362

[57

[58

[59

[60

[61

(62

(64

[65

ISSTA °24, September 16-20, 2024, Vienna, Austria

1137-1150. https://doi.org/10.1145/3243734.3243835

Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023.
MorFuzz: Fuzzing Processor via Runtime Instruction Morphing enhanced Syn-
chronizable Co-simulation. (2023), 1307-1324. https://doi.org/10.5555/3620237.
3620311

Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao, and
Alvin TS Chan. 2018. NDroid: Toward tracking information flows across multiple
Android contexts. IEEE Transactions on Information Forensics and Security 14, 3
(2018), 814-828. https://doi.org/10.1109/TIFS.2018.2866347

Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. 2014.
IntentFuzzer: detecting capability leaks of android applications. In Proceedings of
the 9th ACM symposium on Information, computer and communications security.
531-536. https://doi.org/10.1145/2590296.2590316

Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue, Jundong Xie, Hongxu Chen,
Xinlei Ying, Jiashui Wang, and Yang Liu. 2021. APICraft: Fuzz Driver Generation
for Closed-source SDK Libraries.. In USENIX Security Symposium. 2811-2828.
Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng Zhang, and Yu Jiang. 2021.
IntelliGen: Automatic driver synthesis for fuzz testing. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 318-327. https://doi.org/10.1109/ICSE-SEIP52600.2021.00041
Mingrui Zhang, Chijin Zhou, Jianzhong Liu, Mingzhe Wang, Jie Liang, Juan
Zhu, and Yu Jiang. 2023. Daisy: Effective Fuzz Driver Synthesis with Object
Usage Sequence Analysis. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 87-98.
https://doi.org/10.1109/ICSE-SEIP58684.2023.00013

Sai Zhang, David Saff, Yingyi Bu, and Michael D Ernst. 2011. Combined static
and dynamic automated test generation. In Proceedings of the 2011 international
symposium on software testing and analysis. 353-363. https://doi.org/10.1145/
2001420.2001463

Waujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. 2010. Random unit-test
generation with MUT-aware sequence recommendation. In Proceedings of the
IEEE/ACM international conference on Automated software engineering. 293-296.
https://doi.org/10.1145/1858996.1859054

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. ACM Comput. Surv. 54, 11s, Article 230 (sep 2022), 36 pages.
https://doi.org/10.1145/3512345

Received 16-DEC-2023; accepted 2024-03-02

https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3460120.3484811
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/2632168.2632169
https://doi.org/10.1109/HASE.2014.32
https://doi.org/10.1109/HASE.2014.32
https://doi.org/10.14722/ndss.2019.23176
https://doi.org/10.1109/TMC.2018.2886881
https://doi.org/10.1109/TMC.2018.2886881
https://doi.org/10.1145/3243734.3243835
https://doi.org/10.5555/3620237.3620311
https://doi.org/10.5555/3620237.3620311
https://doi.org/10.1109/TIFS.2018.2866347
https://doi.org/10.1145/2590296.2590316
https://doi.org/10.1109/ICSE-SEIP52600.2021.00041
https://doi.org/10.1109/ICSE-SEIP58684.2023.00013
https://doi.org/10.1145/2001420.2001463
https://doi.org/10.1145/2001420.2001463
https://doi.org/10.1145/1858996.1859054
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Background
	2.1 Automated Fuzz Harness Generation
	2.2 Java Native Interface(JNI) in Android

	3 Atlas Design
	3.1 Cross-language Analysis
	3.2 Harness Optimization
	3.3 Enhanced Runtime Environment

	4 Implementation
	5 Evaluation
	5.1 Fuzz Harness Generation
	5.2 Contributions of Each Component
	5.3 Necessity and Performance of Enhanced Fuzz Framework
	5.4 New Bug Findings

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

