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Abstract—As the complexity of Blockchain-based Smart Con-
tracts grows, users rely on remote pre-execution services to
simulate the behavior of transactions before emitting them on-
chain. However, users may be concerned that a dishonest service
provider (SP) may leak their execution trace to frontrun them or
respond with fake results to mislead them. Benign SPs tried to
run their services in trusted execution environments (TEEs) to
prove their honesty. However, existing service software and TEEs
have attack surfaces for side channel or control flow attacks.
Meanwhile, the problem of users’ intention leakage through
world state access patterns remains unsolved.

This paper proposes HarDTAPE, a hardware-dedicated
trusted transaction pre-executor, to protect the confidentiality
and integrity of pre-executed transactions against dishonest SPs.
Here, “dedicated” has two meanings: the pre-execution service is
implemented as dedicated hardware to guarantee a valid control
flow, and each set of hardware is isolated and dedicated to at most
one user within each session to eliminate side-channel attacks
on shared hardware (e.g., cache evict-and-reload). For access
pattern confidentiality, we use Path ORAM to store the world
state reassembled into fixed-size pages. We also use pagewise code
prefetching to prevent the query type from being recognized. We
implemented HarDTAPE on a CPU + FPGA SoC as a proof-of-
concept. Using transactions from real-world Ethereum Mainnet
blocks as test cases, we show that HarDTAPE has an acceptable
run time overhead and throughput.

Index Terms—Blockchains, Trusted computing, Accelerator
architectures

I. INTRODUCTION

A significant feature of Blockchain 2.0 is allowing arbitrary
user-deployed Smart Contracts to run on the network. To take
Ethereum as an example, developers can write their decentral-
ized applications (DAPPs) as contracts in high-level languages
such as Solidity, compile them to Ethereum virtual machine
(EVM) bytecodes, and deploy them on-chain. Users can then
easily perform various operations by emitting transactions to
interact with these contracts [4]. However, the growing com-
plexity of Smart Contracts causes users difficulties in quan-
tifying the risks in the transaction process. Scam contracts,
including Phishing [19], Ponzi scheme [14], and Honeypot
[41], may defraud users for profit. The financial losses would
be more severe for high-frequency trading (HFT) strategy
users if they fail to recognize these malicious behaviors. This
leads to the need for transaction pre-execution: to simulate and
verify the results of transaction sequences (hereafter referred
to as bundles) before emitting them on-chain [11].
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Although users may wish to pre-execute their transac-
tion bundles locally, it is technically challenging for non-
professional users to deploy an EVM or to maintain the
world state (of over 1.1 TB [5]) by themselves. Thus, users
currently rely on third-party pre-execution services, such as
the Transaction Simulator of Tenderly and BloXroute [3],
[11]. However, as with all third-party services, users may
be concerned that a malicious pre-execution service provider
(SP) can frontrun (i.e., perform the profitable transaction on-
chain earlier) or mislead (i.e., conceal malicious behaviors
from the simulation report) them, because the entire simulation
process is under the SP’s control. Thus, to attract users with
higher security demands, benign SPs hope to build trusted pre-
execution services to prove that they (or any other malicious
entities that attempt to attack their services) cannot perform
the above actions.

A. Motivation

A trusted pre-execution service must guarantee the confiden-
tiality and integrity of all data and control flows, even against a
powerful adversary, such as a malicious service provider (SP)
who controls the entire pre-execution system except for the
on-chip circuitry within chip packages. The primary approach
is to execute transaction processors, such as Ethereum Vir-
tual Machines (EVMs), inside trusted execution environments
(TEEs). These TEEs provide bidirectional isolation, protecting
the EVMs from the hosting system and vice versa. However,
we argue that this solution is merely a foundation and falls
short in security-sensitive financial scenarios.



Although conventional TEEs protect the confidentiality of
on-chip states, they often fail to address the privacy of inter-
action traces with the untrusted external environment, in our
case the query and access patterns of contract bytecode and
storage, which could inadvertently expose users’ intentions
for future transactions. Furthermore, both existing TEEs and
their associated applications remain vulnerable to exploitable
weaknesses, introducing additional risks to this strategy. These
concerns are examined in more details below.
Access pattern leakage. Pre-executed transactions may ran-
domly access any Ethereum account and its storage records.
These access patterns can reveal the control flow of the
transactions, which represents the user’s intentions. The ad-
versary may thus gain a Maximal Extractable Value (MEV)
opportunity to frontrun the user and get profits [21], [40].
For example, when a user calls the contract of an ERC-20
token during pre-execution, the adversary can learn the target
token (and the amount or price) they wish to trade, and submit
transactions earlier than the user at a better price. With this
exploitation, all other protections become meaningless.

The pre-execution service must support access to arbitrary
part of the world state, which is too large to be kept inside
the secure world (as adopted by TSC-VEE [26], a TEE
designed for a single Confidential Smart Contract). Because
the addresses and keys to be accessed are determined only at
runtime, we cannot let the user prepare the data required by
their transactions as part of the input (as in traditional TEE use
cases [35]). Also, simply encrypting the queries is not enough,
because when new blocks are broadcasted to the entire network
in plaintext, the adversary can map the ciphertext keys to their
plaintext using their accumulated frequency of co-occurrence.

Oblivious random access machines (ORAMs), first pro-
posed by Goldreich et al., introduced a query strategy such
that the access patterns look random and equivalent from the
adversary’s perspective [23]. ORAM is a generic solution for
access pattern protection tasks. However, each ORAM access
brings an O(log n) bandwidth overhead, where n is the size of
the key space. This overhead has not yet been evaluated for the
Ethereum world state which, unlike traditional memory struc-
tures, has a sparse key distribution but consistently growing
size. Additionally, a transaction may access two types of world
state data: byte arrays (i.e., the contract bytecode) and 32-
byte integers (i.e., balance and storage records). Improper use
of ORAMs may cause the two response types distinguishable,
leaving a side channel that helps identify the executing contract
and breaks obliviousness.
TEE vulnerabilities. Some widely adopted TEE products are
vulnerable to attacks that exploit hardware sharing between
different security domains, including Spectre-like cache side
channel exploitations [18] and interrupt-based data injections
[36]. These attacks are carried out in the untrusted world,
but manipulate the state of the registers, caches, or branch
predictors shared with the enclave. Heterogeneous TEEs (e.g.,
[42]) are also affected since their CPU parts are vulnerable.
Software-inherent vulnerabilities. Newer TEEs are more
careful when designing isolation mechanisms. For example,

the Keystone enclave eliminates hardware sharing with full
state flushing and L2-cache partitioning [28]. However, attacks
against the protected software itself are still fatal regardless of
where it runs. Biondo et al. provided an example of exploiting
software vulnerabilities to reuse the TEE runtime libraries to
load fake environments into TEEs [15]. In fact, if the goal
is only to compromise the protected software itself, the TEE
runtime is not essential in these attacks because most software
has enough “gadgets” to construct arbitrary logic, as pointed
out by existing works [25], [37]. The adversary can apply these
attacks to construct fake execution traces with valid signatures.
Summary. As the goal of pre-execution is to mitigate users’
risk, we can expect the users to prioritize security over
performance. Therefore, we want to provide users with a more
security-focused option at an acceptable performance cost. We
aim to answer:

• How to protect the control flow (access pattern) confi-
dentiality, and how much is the performance overhead?

• How to build better isolation between security domains
(e.g., multiple enclaves, the TEE runtime, and the un-
trusted world) to reduce the attack surface of hardware
sharing vulnerabilities?

• How to eliminate the inherent vulnerabilities in the (soft-
ware) pre-execution service or its runtime dependencies?

Remark: Although fully homomorphic encryption (FHE)
is another commonly used technique to provide data confi-
dentiality, its performance overhead is too high (about 10000
times slower than plaintext [38]) to meet both the response
time and throughput requirements. Moreover, its threat model
assumes that the confidentiality of the control flow need not
be protected, which does not suit our purpose. Therefore, we
will not discuss FHE in this paper.

B. Our Solution

As our answer to these questions, we propose HarDTAPE,
a trusted transaction pre-executor with dedicated hardware. It
has the following features.
Path ORAM for paged world state. HarDTAPE integrates
Path ORAMs [39] to the TEE as the backbone of world state
access pattern protection. In the Path ORAM, the contract
bytecodes are partitioned and the storage records are grouped
into pages of the same size. Queries of both types are mixed
together with the same response format and consistent time
interval to mitigate query type or bytecode length leakage. In
our experiment settings, the average execution time overhead
of each real world transaction is about 80 ms, which is
acceptable for the user (see details in Section VI-C). Superior
to TSC-VEE, this approach can support Smart Contracts with
large storage or call other contracts.
Dedicated hardware. Unlike conventional TEEs that share
hardware between users for throughput, HarDTAPE exclu-
sively assigns an isolated set of hardware (EVM, tracer, and lo-
cal memory) for each transaction bundle. No context switches
are performed during the entire lifecycle of a bundle. Although
straightforward, this approach eliminates shared hardware side
channels or controlled side effects from the root cause.



Hardware EVM. HarDTAPE runs hardware transaction pre-
executors and tracers that directly implement the EVM in-
struction set architecture (ISA). Compared to software EVM
implementations (such as the commonly used Geth [7]), these
so-called Hardware EVMs (HEVMs) have fixed functionalities
and are immune to control flow attacks. The EVM ISA acts
as an abstraction layer that omits the details of the underlying
system structure and limits the actions the running transactions
(even if malicious) can take.
Contributions. The major contributions of this paper are:

• We pointed out the need for secure transaction pre-
execution service for Blockchain (Ethereum), and formal-
ized its essential security features.

• We adapted Path ORAM to the complex data structures
of Ethereum to achieve confidential access to the entire
world state. We assume the adversary knows the plaintext
of on-chain transactions and is active (i.e., may execute
transactions to learn or change the distribution of queries).

• We proposed HarDTAPE as a more secure transaction
pre-executor to resist side channels or control flow at-
tacks. We designed a proof-of-concept prototype and
evaluated its performance in a real-world scenario.

II. BACKGROUND

A. Ethereum

Ethereum is a distributed ledger widely used for decentral-
ized finance (DeFi). The Ethereum Blockchain maintains a
publicly visible world state stored by every node in the net-
work, providing immutability and verifiability but sacrificing
confidentiality. As a typical 2nd-gen blockchain, Ethereum
allows the deployment of customized smart contracts to be
invoked via transactions [4].
World state. Ethereum’s world state is a mapping between
accounts’ addresses and their current states. Currently, it has
a size of over 1.1 TB [5]. The account state consists of four
fields: balance, nonce, storage (hash), and code (hash). The
address is a 20-byte integer. The storage of an account is a
key-value-pair (K-V) database, in which both the key and the
value of a storage record are 32-byte integers. For contract
accounts, the code is a byte array that stores the contract’s
instructions. All these data are stored and authenticated by
Merkle Patricia Trees (MPTrees) [32]. Merkle proofs can be
generated for any chosen piece of data from any user-specified
block, and verified with the block hash.
Transactions. Transactions (Txs) are the atomic units of
world state updates. By performing a transaction, a sender
transfers balance to a receiver account, and may call a method
of the receiver contract. Reverting a transaction discards all
modifications to the world state except the gas fee consumed.

Recently, roll-up transactions have been proposed to re-
duce the congestion of the Ethereum network [12]. While
the computation workloads are moved off-chain to regular
applications, the results are submitted to the Blockchain by
roll-up transactions only for verifiability. These transactions
submits thousands of storage record updates with very few
other operations.
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Fig. 2: The EVM programming model within one execution
frame. The instructions marked on the arrows are for accessing
the pointed structures [8].

On-chain transactions are batched as blocks, which are
processed and chained serially. Currently, a block is generated
about every 12 seconds, containing about 200 transactions [6].
So, the throughput of the Ethereum Blockchain is about 17
Tx/s. New blocks are broadcasted to and executed by every
node in the network, including those run by the pre-execution
services, so they end up with the same world state version.

The pre-execution service simulates bundles of transactions.
Unlike blocks, world state updates made by simulation bundles
are temporary, so multiple bundles can run in parallel.
Programming model. Smart contracts are executed in EVMs.
EVM is a 256-bit stack architecture (see Figure 2). Instruction
operands are fetched from, and results are written back to a
runtime stack with 1024 slots. Also, EVM provides a set of
arbitrary length, byte-addressed, unaligned accesses allowed,
volatile memories, which we refer to as the memory-likes. This
includes Code for the contract bytecode, Input for call parame-
ters, Memory for runtime temporary variables, and ReturnData
for data returned to the caller. EVM defines ARITHMETIC and
JUMP instructions to build the basic control flow, together
with frame state query, STACK, and MEMORY instructions
to access the corresponding data structures. EVM also pro-
vides STORAGE instructions to access the K-V database, and
CALL-RETURN instructions to call, deploy, or return from
other contracts and transfer values. Details of these instructions
and data structures can be found at [8].

The procedure between a pair of CALL and RETURN is
called an execution frame, and we name the logical structure
of these execution frames as the call stack. Each execution
frame has a context including runtime stack, memory-likes,
frame state (e.g., contract address and remaining gas), and the
current version of the world state (e.g., balance, nonce, and
storage records). At the end of each execution frame, world
state modifications are discarded or committed (merged to its
caller) depending on whether the transaction is reverted. The
remaining parts are volatile, i.e., they are set (or reset to empty)
on entry, dumped on call, reloaded on return, and cleared on
exit of the execution frame.

Ethereum assigns a gas cost for each operation based on its
computing resource consumption, resulting in an almost stable



gas usage over time [13]. This does not only profit the miners
who can earn gas fees from validating transactions, but also
prevents potential DoS attacks against the network.

B. Trusted Execution Environments
Trusted execution environments (TEEs) are isolated regions

in a computing system for processing sensitive code and data.
They are designed against an adversary who wishes to break
the confidentiality or the integrity of protected applications.
Usually, the adversary is assumed to be powerful enough to
control all the software and hardware of the hosting system,
except the circuits inside the chip package where the TEE is
running (this implies that the chip manufacturer is trusted).
Thus, only the on-chip components can be used as the trusted
computing base (TCB), while the off-chip components should
be accessed with caution. There is usually a privileged module
called a Hypervisor or a Monitor that creates, destructs, and
handles the IO of TEE instances.

CPU manufacturers have integrated hardware support for
TEEs in their CPU products, such as ARM Trustzone, Intel
SGX, AMD SEV, or RISC-V Keystone. Although claimed to
be secure, published control flow attacks [15], [29] and side
channel attacks [27], [34], [43] against these TEEs can achieve
their goal without violating the TEEs’ threat model. Other
literature [17], [20] also summarized the attack surfaces of
common shared-hardware TEEs, indicating they are vulnerable
to attacks from the insecure world or adversary-controlled TEE
instances. In conclusion, commonly applied shared-hardware
TEEs are not secure enough for our use case.

C. ORAMs
The term “obliviousness” in ORAM refers to the feature

of “a client concealing its access pattern to the (untrusted)
remote storage” [39]. To achieve this, ORAMs hide each
real query in a sequence of carefully chosen dummies. By
shuffling the data blocks (i.e., the atomic piece of data) after
each access, each possible sequence appears with an equal
probability independent of the real query. Data blocks are
stored in the untrusted memory after randomized encryption
to look equivalent from the adversary’s perspective.

Obliviousness can be achieved in different ways, and Path
ORAM [39] is a simple one. In a Path ORAM (and other
tree-based ORAMs), data blocks are organized as a tree with
O(log n) depth, and both query and eviction cover a root-
to-leaf path on that tree. Path ORAM applies a client-server
model. The server stores the tree, and the client maintains a
stash of O(log n) temporary blocks and a O(n) position map
indicating the path of each block in the tree. The position map
can be stored in higher-level ORAMs recursively if it is too big.
Path ORAM incurs a O(log n) bandwidth overhead when the
block size is approximately O(log2 n). As a stateless design,
a Path ORAM server can serve multiple clients concurrently.

III. HARDTAPE USE CASE AND THREAT MODEL

A. Use Case
Before diving into the details of our design, we again take a

closer look at the pre-execution use case depicted in Figure 1.

We define the four involved parties in the secure transaction
pre-execution scenario.

• User. A user of the pre-execution service, e.g., an
HFT designer who wishes to test some transaction bun-
dles. Users request for confidential, correct, and quick-
responding pre-execution services. It takes about 600 ms
for a user to obtain the details of a transaction online (e.g.,
using the JSON RPC API provided by quicknode.com
[10]), so we hope that the pre-execute time for each
transaction does not exceed this level.

• Manufacturer. The trusted creator of the computing de-
vices used by the pre-execution service (i.e., HarDTAPE).
The Manufacturer assigns cryptographic features and a
secure source of randomness which we use to build the
chain of trust.

• Service Provider (SP). The computing power holder,
who purchases devices from the Manufacturer and pro-
cesses the users’ pre-execution requests. We assume an
untrusted SP (the adversary) who wishes to disclose the
user’s behaviors or provide them with misleading results.

• Node. An Ethereum full node that provides fresh on-chain
data, which is also under the SP’s control.

When a user calls the pre-execution service, the SP looks
for an idling pre-executor, activates it, and assigns it to the
user. The user verifies the pre-executor with the Manufacturer’s
credentials and sends the parameters of the transactions to the
assigned pre-executor. The pre-executor starts running upon
receipt. During the process, the pre-executor may query for the
balance of accounts, bytecodes of called contracts, or records
in the K-V storage, from the Node if not found locally. The
behaviors of the transactions are recorded by the tracer. After
all transactions in the bundle have been simulated, the traces of
each transaction, including the ReturnData, gas cost, balance
transferred, and storage modifications, are sent back to the
user. At last, the pre-executor is released and returns to the
idle state.

B. Threat Model

The threat model of HarDTAPE aligns with existing TEE
products such as SGX or Trustzone. Intuitively, we trust the
on-chip components authenticated by the Manufacturer, and
distrust all the off-chip components controlled by the SP.

The adversary’s goal is to break the confidentiality or
integrity of the user’s data or control flow. They are assumed
to have full control over (and physical access to) all the off-
chip components. However, although they can launch pre-
execution runs of any Ethereum contracts in parallel with the
user, they cannot directly observe or modify any on-chip state.
In particular, we consider an adversary who wishes to launch
the following attacks: (A1) Provide the user with a fake pre-
executor. (A2) Access or probe (e.g., via side channels) the
on-chip state from the untrusted hosting system or other pre-
executors on the same chip. (A3) Seize the control flow of
the pre-executor, the running transaction, or the Hypervisor
if exists. (A4) Leak or tamper with the swapped-out runtime
data when the secure memory is insufficient. (A5) Monitor



the data swap pattern to learn the memory usage; this may
expose the program counter trace and the bytecode size, which
are distinguishable identities of Smart Contracts. (A6) Provide
the user with fake on-chain data. (A7) Monitor the user’s on-
chain data query and access pattern. Defenses against physical
or fault injection attacks are discussed by other works such as
[33], and are orthogonal to our work.

IV. DESIGN

Now we introduce HarDTAPE where the secure transac-
tion pre-execution service runs on. For better isolation, it is
designed as a coprocessor running separately from the host
machine, and protects all the data flow to and from the
chip package. It can be connected to the host system with
PCIe, Ethernet, or other interface peripherals. We recommend
Ethernet for its scalability, in which case the chip must be
installed on a motherboard with network peripherals.

The chip package comprises multiple HEVMs, a CPU for
the Hypervisor firmware, and a configuration-security unit
(CSU), together with memory and DMA controllers. The order
of steps for simulating user transaction bundles is labeled in
Figure 3. (1) When the chip is powered on, the CSU verifies
and boots the secure bootloader (SBL), which resets the
HEVMs and boots the Hypervisor. The Hypervisor establishes
a connection to the ORAM server run by the SP. (2) When
a user tries to connect, the Hypervisor responds to the user’s
remote attestation request, generates keys for authentication
and encryption, and establishes a secure channel for the user.
(3) When receiving a user’s transaction bundle, it queues until
an HEVM is idle. The Hypervisor exclusively assigns the
idling HEVM to the user and activates it. (4) The HEVM
executes the transactions in the bundle. Most of the pre-
execution functionalities can be completed by the HEVM
alone. (5) When the HEVM needs to swap data with the
untrusted external memory, query for on-chain data, or finish
execution, it emits an exception to the Hypervisor. (6) To
handle the exceptions, the Hypervisor may interact with the
off-chip components with protected messages. The data field
of the messages is automatically authenticated and encrypted
if needed. (7) When handling contract calls, the call stack
must allocate space for a new execution frame. Pages from
lower execution layers are dumped to the untrusted memory
if the on-chip call stack has insufficient free space. (8) On-
chain data, including contract bytecodes, are queried from
the ORAM server. (9) The trace of the transactions is stored
temporarily by the on-chip tracer until the bundle finishes exe-
cution. Then, the Hypervisor sends the trace to the user via the
secure channel. (10) The HEVM is reset to the idle state and
all its on-chip memories are cleared. World state modifications
made by the pre-executed transactions are not written into any
persistent storage such as the ORAM. (11) When new blocks
are created on-chain, HarDTAPE synchronizes the world state
after executing these blocks to the ORAM for later access.
The synchronized blocks and their access patterns need not be
confidential because they are public. However, the integrity of
the results must be guaranteed.

code input memory return
<1k 9.5% 95.0% 92.7% 100.0%
1-4k 25.3% 4.0% 5.7% 0.0%
4-12k 39.6% 0.2% 0.6% 0.0%

12-64k 25.6% 0.0% 0.0% 0.0%
>64k 0.0% 0.1% 0.1% 0.0%

(a) Memory-like size by type in bytes per frame.
keys

⩽ 4 79.9%
5-16 19.0%
17-64 0.01%
> 64 0.00%

(b) Storage keys per frame.

depth
1 40.8%

2-5 52.6%
6-10 6.3%
> 10 0.2%

(c) Call depth per Tx.

TABLE I: The distribution of memory size per frame, stor-
age records per frame, and call depth per transaction from
recent real-world blocks (Ethereum Mainnet #19145194 -
#19145293).

In the remaining part of this section, we will discuss the
protection schemes designed for each step.

A. Booting and Secure Channel Initiation

First, the user must ensure their transactions are processed
by a trusted device. Most existing TEE works have provided
their implementations of secure boot and remote attestation
protocols [28], [44]. The generic idea is to use a hardware-
visible secret (e.g., a physically unclonable function (PUF))
as the root of trust to seed or decrypt a pair of asymmetric
device keys, which are used to sign the booted image (software
binaries, FPGA bitstreams, etc.). The PUF and the device
keys are generated by the trusted Manufacturer. In our proof-
of-concept implementation, we followed the design of [44].
After the user receives a valid attestation report from the
Hypervisor, the user and the Hypervisor each generate a pair of
elliptic curve digital signature algorithm (ECDSA) keys, and
cooperatively create a session AES key using Diffie-Hellman
key exchange (DHKE). This establishes the secure channel
between them, which is later used to transmit user inputs and
pre-execution results.

B. Transaction Simulation

Second, transactions in the user’s input bundle are sequen-
tially simulated in the HEVM. The HEVM should be func-
tionally equivalent to the interpreter module of Geth, a popular
implementation of Ethereum Node. The only difference is that
the world state modifications are temporary, and the traces are
visible only to the owner of the pre-execution bundle.
Contract instruction interpretation. The HEVM directly
executes EVM bytecodes. It should be able to decode EVM
instructions with variable length, perform 256-bit arithmetic,
and maintain the data structures of the current execution frame.
Because the HEVMs are not shared between users, cache
prefetching and speculative branching can be enabled securely
without introducing cache-probing side channels.

Lu et al. have proposed the Smart Contract Unit (SCU),
a novel HEVM design with high performance [30]. Theoreti-
cally, by applying our security mechanisms to manage its Input
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Buffer (corresponding to our layer 2 memory in Figure 3),
SCU cores can be ported as a good HEVM implementation.
Unfortunately, SCU is not open-sourced, so we designed a
four-stage pipelined HEVM in our proof-of-concept system as
the performance baseline. To support the rapid upgrades of the
EVM ISA, this simple design can be replaced by any future
hardware EVM accelerators. However, for security reasons,
we require the replacing HEVM not to add non-standard
instructions that violate the isolation, e.g., access the memory
space of other HEVM cores.
Gas maintenance. The gas cost of the instructions is auto-
matically accumulated simultaneously as the instructions are
interpreted. Some instructions have additional dynamic gas
costs according to the increment of Memory size or whether
an address or a storage key has been accessed before. The
HEVM can obtain this information by checking the MSIZE
environment register or recording whether a call stack miss
is triggered. The SP can prevent DoS attacks (occupying an
HEVM too long) by charging gas fees or setting low gas limits
because the gas cost approximately represents the computing
resource consumption.
Data organization. As described in Section II-A, the execu-
tion of a transaction consists of multiple execution frames,
each maintains a runtime stack of 1024 slots, permanent stor-
age of up to 2256 slots, and runtime memory-likes (i.e., Code,
Input, Memory, and ReturnData) of theoretically infinite size.
It is impossible to put all these data structures on the limited
trusted hardware, so we designed a 3-layer memory structure.
We highlight this structure as the most significant difference
from existing works which only support one contract, and our
security features are mainly implemented here.

Layer 1, or the cache, stores the recently accessed data of the
current execution frame. Each HEVM has its isolated layer 1
memory, so users cannot see transactions pre-executed by each
other. It is in the same clock domain as the HEVM circuit and
is kept small to achieve a higher clock frequency. The layer
1 memory is partitioned for the runtime stack, each of the
memory-likes, the frame state, and the world state respectively.
Because almost every EVM instruction fetches operands from
and writes results to the runtime stack, we store the entire

runtime stack (up to 32 KB) in the cache for efficiency. The
frame state consists of 32 32-byte slots, corresponding to the
EVM instructions with opcode 0x30 - 0x4A (e.g., ADDRESS,
CODESIZE, refer to the official documentation [8] for details).

The sizes of other partitions are chosen based on the
statistics of recent transactions. We evaluated transactions from
100 recent blocks (namely block #19145194 - #19145293 from
Ethereum Mainnet) as the evaluation set, and the results are
listed in Table I. Among them, in over 99% of the execution
frames, the Code size is less than 64 KB, the Memory and
Input size are less than 4 KB, the ReturnData size is less
than 1 KB, and no more than 64 storage records are accessed.
According to these insights, we assign 64 KB for the Code
cache, 4 KB for other memory-like caches, and set the page
size to 1 KB. We also assign 4 KB for the world state cache,
which is suitable for 64 account balances or storage records.

Layer 2, or the on-chip call stack, manages the execution
frames. The layer 2 memory is also isolated for each HEVM,
but has a larger size and lower frequency. The layer 1 caches
only swap data with the corresponding fields in the current
(topmost) layer 2 execution frame. The size of an execution
frame may grow as it accesses higher Memory addresses.

The CALL-RETURN instructions are implemented by man-
aging the top of the call stack. Specifically, when the HEVM
performs a CALL instruction, all the contents of layer 1 are
evicted to layer 2, and a new execution frame is created for the
callee. Its frame state and Input fields are set according to the
call parameters, and its world state fields are initialized with
a copy of the caller’s version containing all the modifications
made before this call. When the HEVM performs a RETURN or
STOP instruction, the callee’s world state is merged into that
of the caller, overwriting existing values. When the HEVM
performs a REVERT instruction, the callee’s world state is
discarded. In both cases, the callee execution frame is popped
from the call stack, and the ReturnData is exported as part of
the execution trace. The tracer is implemented as a virtual
frame added below all execution frames, to preserve the
execution results across transactions in a bundle.

Layer 3, or the untrusted memory, contains the swapped-
out contents from layer 2, in case the on-chip memory is



insufficient. It can be implemented either as a memory re-
gion allocated from the hosting system memory or use extra
DRAMs installed on the HarDTAPE motherboard. The base
offsets of the execution frames are kept on-chip to prevent
leakage or manipulation of the call stack structure. However,
we must also consider that the swapping behavior may leak
information about the control flow to the adversary. The
generic solution is to implement the layer 3 memory as an
ORAM, which however might be too expensive. Fortunately,
if the current execution frame is small enough to be stored
entirely on-chip, cache misses from layer 1 can always be
handled by layer 2 and are therefore secure. This assumption
is practical according to our measurements in Table I. Thus,
we only need to protect the creation, expansion, and deletion
pattern of the execution frames in layer 2.

Consider the following strategy: We treat the layer 2 address
space as a ring, and conduct size expansion and data swapping
in the granularity of 1 KB pages. When expanding the current
execution frame, we dump the current bottom pages from
layer 2 to make room for the new pages. When returning to
a lower execution frame, we reload all its pages to maintain
the assumption that the current execution frame is entirely
on-chip. This makes the page-swapping order only related to
the total size of the call stack. At this point, the adversary
can still infer the page number of each execution frame
by counting consecutive reloads. Here we propose a simple
solution: we randomly pre-evict and pre-load more pages than
required. The random numbers are sampled from a secure
source of randomness proposed by the Manufacturer. This
always allows the HEVM to continue execution, while the
swap sizes observed by the adversary are added with random
noises following a distribution unrelated to the actual size.
Although we do not achieve strict obliviousness, the adversary
can only obtain the noisy sizes and depths of the call stacks,
which are too rough to identify the pre-executed contract.

We recommend a layer 2 memory capacity larger than
four execution frames, such that there are always enough
pages to pre-evict/load to generate large noises. Observing that
each execution frame normally occupies less than 256 KB of
memory, our proof-of-concept system provides 1 MB layer 2
memory for each HEVM. We keep in mind that the adversary
may deploy malicious contracts that intentionally exceeds this
limit. When the size of an execution frame reaches half of the
layer 2 memory size, the bundle will be regarded as an attack
and stopped with a Memory Overflow Error.
Exceptions. Interactions between the HEVM and the untrusted
world, including layer 3 data swaps and non-local world state
queries, are handled by the Hypervisor. The HEVM emits
exceptions to the Hypervisor CPU to call these functionali-
ties, and writes the exception metadata (e.g., types, memory
offsets, storage keys) into local registers accessible only to the
Hypervisor. The HEVM stalls until it receives the response
from the Hypervisor, and does not switch context to process
transactions from other users. Although sacrificing throughput,
this prevents the potential shared hardware side channels
(described in Section I) from the root cause.

C. Messages

Third, bidirectional data flow that passes through the
trusted-untrusted border must be protected. We let the Hyper-
visor handle both EVM exceptions and external inputs (from
the user, the ORAM server, or the Node). The hosting system
cannot access the on-chip memory space directly. Thus, to
transmit data to the HEVMs, it must store the message in
an Hypervisor-accessible buffer (e.g., send via Ethernet), and
then inform the Hypervisor with a non-preemptive interrupt.
The Hypervisor loads the message header, checks the validity
of its type, length, and target offset, and then invokes the
Authenticated Encryption DMA hardware (the A.E.DMAs in
Figure 3) to handle the copy.

The confidentiality and integrity of user interactions and
layer 3 memory contents are protected by the AES-GCM ci-
pher using the session key generated during remote attestation.
The contents of the ORAM are protected with another AES
ORAM key, which we will introduce in the next section.
When synchronizing new blocks from the Node, although
confidentiality is not required (because the blocks are already
public), we require Merkle proofs to authenticate the fetched
world state data.

Remark: The Merkle proofs are only checked during block
synchronization. Once written into the ORAM, the data in-
tegrity is protected by AES-GCM, so we do not need Merkle
proofs during pre-execution. This reduces both the perfor-
mance overhead and the risk of leaking access patterns.

D. World State Queries

Finally, HarDTAPE must keep the access pattern of the
world state queries confidential. This time, we cannot adopt a
strategy akin to layer 3 memory swapping. While page swap
offsets only reveal the call stack size, the queried addresses
and keys directly expose the user’s behavior.
ORAM why and how. We choose Path ORAM as the back-
bone of our protection scheme for its proven obliviousness and
simplicity [39]. Although Snoopy [22] provides better scala-
bility and throughput by using hash table ORAMs and batched
queries, the number of queries in the pre-execution scenario is
too small to create a query batch quickly, and the latency of
each query is too long (over 300 ms). Other approaches such as
PANCAKE [24] or Waffle [31] achieve sub-obliviousness (i.e.,
smoothing the distribution of queries) with lower performance
overhead on a Zipfian-distributed workload. However, they are
not designed against an active adversary who can send requests
to interfere with the distribution, which is in our threat model.

The SP should run a Path ORAM server instead of an
ordinary Ethereum Node to store the entire 1.1 TB world state.
Extra spaces for dummy blocks and metadata may be required.
Meanwhile, the Hypervisor is integrated with a Path ORAM
client, whose local stash and highest-level position map are
kept on-chip. In the following, to distinguish from Ethereum
blocks, we use italicized block to denote the basic unit of
ORAM data.
Mixing query types. There are two types of queries to be
protected: the K-V style query for 32-byte integers (e.g.,



account balance, code length, or storage records), and the
Code query for the contract bytecode with variable size of tens
of KBs (as shown in Table I). This leads to three problems:
(1) The size of each storage record is too small to reach the
O(log2 n) size lower bound, as demanded by Path ORAM to
achieve the O(log n) overhead [39]. If we set the block size
to b bytes, the 1.1 TB full sync size [5] should be partitioned
into n = 1.1 × 1012/b blocks. If we have b = 32, the blocks
size in bits 8b = 256 is far less than ⌈log2 n⌉2 ≈ 1225. (2)
If the K-Vs and Codes are stored separately, the difference in
response size may leak the type of queries. The adversary may
record the number and time interval of K-V queries between
two Code queries (i.e. within an execution frame). This pattern
can possibly be used to identify the running contract. (3) The
Code of an execution frame cannot be retrieved all at once,
as this would reveal a burst query pattern, also distinguishing
Code queries from (sporadic) storage record accesses.

To solve problems (1) and (2), we divide the Codes into
1 KB blocks, and group the values of 32 storage records
with consecutive keys also into 1 KB blocks. We use this
grouping strategy because contracts compiled by Solidity
assign variables and array elements to consecutive keys [9].
This 1 KB block size eliminates the difference between the
two types of responses and also satisfies the O(log2 n)-bit
block size requirement (in this case n ≈ 109). The local stash
size should be O(log n) ≈ 30 pages, which fits in an on-chip
memory of about 1 MB.

To solve problem (3), we use pagewise Code prefetching
to spread the Code queries among storage queries. After each
ORAM access, an interval timer is set to a random value of
approximately half of the global average gap between queries.
When this timer goes to zero, we prefetch the next Code page.
Intuitively, we insert a prefetch query in the middle of every
two original queries. Therefore, the time intervals observed by
the adversary become approximately consistent.
ORAM key protection. As well known, the ORAM should
perform a randomized re-encryption after each access [39].
We keep the encryption key on-chip by the Hypervisor. To
reduce storage cost, the SP can run one ORAM server for
multiple HarDTAPE instances, leveraging the statelessness of
Path ORAM. Because the ORAM clients are managed by the
trusted Hypervisor, they can trust each other and share the
same ORAM key. The key is chosen randomly by the first
HarDTAPE Hypervisor when deployed. When adding a new
HarDTAPE device, it queries the ORAM key from a previous
device through a DHKE secure channel.

V. SECURITY ANALYSIS

In this section, we theoretically show how our design can
defend against each possible attack described in Section III-B.
Environment authenticity (A1). The remote attestation proto-
col cryptographically proves the authenticity of the device and
the correctness of the deployed Hypervisor to the user, as long
as the Manufacturer is honest and does not provide the device
private key to the adversary. We used the method described in

[44] (i.e., sign the generated session key and a user-generated
nonce) to defend against man-in-the-middle and replay attacks.

The Hypervisor and the HEVMs are not reconfigurable
once booted, so there is no time-of-check to time-of-use
(TOCTTOU) vulnerabilities.
Isolation of the HEVMs and the Hypervisor (A2). Each
HEVM has its dedicated hardware set, which is exclusively as-
signed to only one user. Also, guaranteed by our boot process,
the Hypervisor is the only piece of software running on-chip.
This dedicated hardware design prevents the adversary from
launching any attack (e.g., cache Evict-and-Reload) directly
from the resources occupied by the users or the Hypervisor.

An adversary-controlled HEVM can only access its own
layer 1 and 2 memory because the fixed circuit limits the data
or control path. Trying to overflow the layer 2 memory with
one execution frame will result in a Memory Overflow Error.
Trying to overflow the layer 2 memory with multiple execution
frames will only cause the lowest frame to be swapped out. In
all cases above, the on-chip memory spaces of other HEVMs
or the Hypervisor will not be affected.

An adversary from the untrusted world has no access to
any on-chip components. Although they can send interrupts
to the Hypervisor, these interrupts are non-preemptive, and
the Hypervisor only responds to them when in a secure
state (when it is idle). Therefore, the handling process of
other inputs will not be corrupted. Assuming that the on-chip
components cannot be physically manipulated, the off-chip
adversary cannot threaten the HEVMs or the Hypervisor.
Control flow integrity (A3). Control flow attacks do not
apply to HEVMs because their circuits are fixed. This is an
important reason why we choose hardware EVMs. Also, the
call stack frame pointers cannot be tampered with because
they are stored in the trusted memory.

The runtime memory required by the Hypervisor is about
250 KB (see Section VI-A) and is small enough to be kept
always on-chip. Due to the isolation we have demonstrated,
directly probing or manipulating the Hypervisor is impossible.
The adversary can only turn to input-based vulnerabilities
(e.g., input buffer overflow) to perform code injection or code
reuse attacks [16], [25]. However, this is also impossible
because the Hypervisor never stores the inputs in its runtime
memory. It only checks the message header (which has a fixed
size of only 32 bytes) and controls the DMA hardware to load
the proper amount of data into the HEVMs. Thus, to the best
of our knowledge, we significantly raise the bar for exploitable
vulnerabilities for control flow attacks against our system.
Off-chip swap data protection (A4). Assume the AES-GCM
and ECDSA algorithms can be trusted. The AES session
key and the two ECSDA private keys (for the user and the
Hypervisor respectively) are different for each session. Thus,
although the adversary can physically access the peripherals
and the layer 3 memory, they cannot decrypt or fake the
contents without the correct keys.
Off-chip swap pattern protection (A5). Page swaps will
only occur when the call stack overflows the 1 MB layer 2
memory, which seldom happens according to the statistics of



recent transactions (Table I). Even when overflows do occur,
the adversary can only learn the size of the execution frames
in page (1 KB) granularity, added with random pre-evict and
pre-load noises described in Section IV-B. We argue that this
information would be too imprecise to help the adversary
identify the running contract.
Query data integrity (A6). The integrity of ORAM-managed
world states is properly ensured by the ORAM protocol itself
[39]. The protection of the ORAM key is guaranteed by the
Hypervisor.

Contents of new blocks synchronized from the Node are
authenticated by block hashes and Merkle proofs. The user
can fetch the block hash that identifies their desired version
from multiple Nodes and trust the most acknowledged one.
Query obliviousness (A7). We trust the obliviousness of the
Path ORAM and all related security claims therein [39]. The
ORAM client which manages the local stash and position map
is trusted because it is implemented fully on-chip as part
of the Hypervisor. The fixed-sized responses and the code
prefetching strategy introduced in Section IV-D prevent an
adversary from distinguishing between access to bytecodes
and K-V pairs. Also, Merkle proofs are only fetched when
synchronizing on-chain blocks, during which obliviousness is
not required.
Conclusion. HarDTAPE is more secure than traditional so-
lutions against (A2) because the strictly isolated hardware
sets remove the attack surfaces of side channels. It is more
secure against (A3) because the hardware-based EVM and
DMA modules shrink the size of the software TCBs. Also,
HarDTAPE is a successful application of ORAM to defend
against (A7) in the Ethereum scenario. In other respects, it is
equally secure to traditional solutions because the same set of
techniques are applied.

VI. EVALUATION

In this section, we evaluate our design from four perspec-
tives: (1) Evaluate the resource consumption of the design. (2)
Verify the correctness by comparing the execution trace with
on-chain ground truth.(3) Evaluate the performance on real-
world transactions. (4) Estimate the scalability based on the
throughput of the HEVM and the ORAM server.
Implementation and experiment setup. The prototype of
HarDTAPE is synthesized using Xilinx Vivado 2021.2 [1]
and implemented on an XCZU15EV MPSoC chip [2]. This
MPSoC comprises a quad-core ARM Cortex-A53 applications
processor to run the Hypervisor, and FPGA resources to run
the HEVMs. The chip package provides the isolation and on-
chip secure resources (PUF and secure RNG) we demand, so
it can be directly used in production. An SP can simply write
the bitstream of our design to the off-the-shelf MPSoC to run
their service.

The clock frequency of the HEVMs is set to 0.1 GHz,
and the ARM core runs at 1.4 GHz. The FPGA BlockRAMs
act as the layer 1 and 2 memory of the HEVMs and the
ORAM local stash. A 256 KB on-chip memory is used as
the runtime memory of the Hypervisor. The chip is installed

on a motherboard with 2GB DDR4 (untrusted) memory and
Ethernet peripherals. The ORAM server runs on a Windows
server with 32 GB DDR4 memory and an Intel Core i7-12700
CPU running at 4.35 GHz. HarDTAPE can access the server
via Ethernet with a 2 ms latency. As a baseline, we run Geth
[7] on the same server. The ORAM Server and Geth are never
activated simultaneously and never compete for memory.

We use blocks #19145194 - #19145293 from the Ethereum
Mainnet as the evaluation set in all experiments in this paper.
For Geth, all referred data are prefetched to the server’s main
memory. For ORAM-disabled configurations of HarDTAPE,
these data are prefetched to the untrusted memory. For the
ORAM-enabled configuration, these data are not prefetched
to HarDTAPE but only synchronized to the ORAM server.

A. Resource Utility
Hardware. According to the utilization report generated by
Vivado, when deploying one HEVM instance, the total re-
source consumption includes 103388 LUTs, 37104 FFs, and
509 KB BlockRAM. Limited by the LUT utility bottleneck,
each XCZU15EV chip can deploy up to three HEVMs.
Software (memory). The size of the Hypervisor binary is 156
KB. This includes a network protocol stack, which can be run
in the untrusted world. For security purposes, the Hypervisor
does not require any heap memory. However, it used up to
92 KB stack space during the experiment. The total memory
usage is 248 KB and fits in the 256 KB on-chip memory.

B. Pre-execution Correctness
We verify that the behavior of HarDTAPE is identical to

a standard Node in the network. Specifically, quicknode.com
provides the debug_traceTransaction RPC method to
fetch ground truth traces of real-world transactions, including
step-by-step PC, stack contents, remaining Gas, storage record
accessed, and contract calls [10]. The Memory Overflow Error
may occur when executing roll-up transactions (see Section
II-A), which may exceed the layer 2 frame size limit. Support
for these contracts is left as future work. By comparing our
traces with the ground truth, we examined that HarDTAPE can
run the remaining transactions correctly.

C. Performance and Overheads
We compare the performance of HarDTAPE and Geth on

the evaluation set, using each transaction as a separate bundle.
This estimates the lower bound of our performance, because
more transactions in a bundle lead to less time-consuming
ECDSA verifications and signatures.
Overall response time. We measured the end-to-end response
time of HarDTAPE with different configurations. The end-
to-end time refers to the period between the SP receives the
user’s requests and sends out the traces. The results are shown
in Figure 4. With all security features turned on, the -full
configuration uses 164.4 ms for each transaction on average.
As pointed out in Section III-A, a latency of less than 600 ms
is reasonable for the user.
Security feature overheads breakdown. To show the perfor-
mance overhead of each of our security features respectively,
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we test HarDTAPE with the following configurations to com-
pare with Geth. The -raw configuration runs the HEVM while
disabling all off-chip data protections. Then, we step-by-step
toggle on encryption (-E), user data signature and verification
(-ES), ORAM for storage (-ESO), and ORAM for all world
state data (-full) based on the last configuration. The results
are shown correspondingly in Figure 4.

The unprotected configuration (-raw) brings about 0.5 ms
overhead per transaction compared to Geth. Using an HEVM
with higher performance can remove this overhead, but as we
will point out later, the performance bottleneck lies in the
security features. Thus, optimization of the HEVMs is out of
the scope of this paper.

The encrypted configuration (-E) introduces 2.9 ms over-
head. The overhead is small because the layer 2 memory of
each HEVM is large enough in most cases, and encryption is
only applied to user inputs and returning traces.

In contrast, the ECDSA signature (-ES), although only used
for inputs and traces as well, adds 80 ms overhead to the over-
all runtime. This is expected because the ECDSA procedure
is much more complex than AES-GCM. Fortunately, only one
ECDSA signature is needed for each bundle independent of its
size, so this overhead can be amortized to all its transactions.

The Path ORAM introduces another 80 ms for all world

state queries (-full), in which about 30 ms are for key-
value style queries (-ESO) and the rest are for bytecodes. We
admit this is a large performance overhead compared to Geth
and the -raw version. However, we recall that pre-execution
is designed for risk-avoiding users who always have higher
confidentiality requirements, so this sacrifice is worth it.
Local execution performance. It is hard to compare the
common-case average performance of HarDTAPE with other
works about EVMs in TEEs due to their differences in targeted
use cases. For instance, TSC-VEE [26] is designed for single
Confidential Smart Contracts and does not support cross-
account contract calls. It prefetches all the bytecode and
storage records to the secure memory. In contrast, HarDTAPE
cannot do so because we must support access to the entire 1
TB world state. However, we may consider a practical case in
the pre-execution scenario: users may frequently call the same
contract and operate on the same set of storage records when
testing their FHT strategies. In this case, all data can be found
locally after first access, thus there is no security overhead.

We show that HarDTAPE is almost as efficient as TSC-VEE
in this case, by design benchmarks to evaluate the time cost
of arithmetic instructions, local storage accesses, and contract
calls (to ERC20-transfer). We run these benchmarks on Geth,
HarDTAPE, and TSC-VEE, such that bytecodes and storage
keys are warmed up to their lowest-level cache. As shown in
Figure 5, except Geth runs slower on the Transfer benchmark,
there is no significant difference between the three platforms.
This implies that, if we adapt TSC-VEE to pre-execution, it
will have no performance advantage when appended with the
same signature and ORAM overheads.

D. Scalability

Transaction bundles can run in parallel because they are
not designed to be aware of each other in pre-execution.
Thus, a HarDTAPE chip equipped with three HEVM cores
can approximately process 3 × (1/0.164) = 18 transactions
per second. The throughput of one HarDTAPE instance can
already support the current throughput of Ethereum Mainnet of
about 17 transactions per second. So, at least two HarDTAPE
instances (one for pre-execution and one for block synchro-
nization) are enough to run the pre-execution service.

By increasing the number of HarDTAPE instances, this
throughput can continue to grow until the ORAM server
becomes the bottleneck. Because an ORAM server occupies
even more storage than a full-synchronized Node, we assume
the SP can only afford to run one ORAM server. We set
up a timer on the ORAM server to estimate the maximum
supported client number which does not stack its query queue.
We observed that the server averagely requires 25 us to
process a query, while the average gap between queries from
each HEVM is 630 us. Therefore, each ORAM server can
approximately support ⌊630/25⌋ = 25 full-load HEVMs.

VII. CONCLUSION

Users have security concerns over existing transaction pre-
execution services because they did not consider access pattern



confidentiality and may have inherent security issues. As a
solution, we propose HarDTAPE, a security-focused trans-
action pre-execution coprocessor. It has a smaller software
TCB, better resists side channel and control flow attacks with
dedicated hardware EVM executors, and protects the access
pattern confidentiality with a Path ORAM. We show by ex-
periments that HarDTAPE can achieve acceptable performance
and throughput on SoCs with limited on-chip resources.
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