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Abstract. Recently, security researchers have uncovered a significant
number of high-severity vulnerabilities in Netlink families, posing seri-
ous threats to overall kernel security. Despite these risks, there are no
automated methods available to effectively detect bugs in Netlink fam-
ilies. For example, Syzkaller—a state-of-the-art, general-purpose kernel
fuzzer—fails to achieve effective fuzzing for Netlink families because it
depends on manually written descriptions that are often incomplete or
inaccurate. To address this gap, we present NLSaber, the first special-
ized tool designed for enhancing Netlink family fuzzing. NLSaber uses
static taint analysis to construct parse graphs that model the message
parsing process, and then automatically generates complete and accu-
rate fuzzing descriptions based on these graphs. In our evaluation on
Linux 6.1.70, NLSaber identified 76 target families, encompassing 865
operations. The generated fuzzing descriptions were significantly more
complete (supporting 43% more families) and more accurate (93% vs.
33% accuracy) compared to existing descriptions. Using these generated
descriptions, our enhanced fuzzer improved code coverage by 9.1% over
Syzkaller in families supported by both tools (and by 40.8% when includ-
ing Syzkaller-unsupported families). Additionally, NLSaber uncovered 19
previously unknown vulnerabilities, all reported and confirmed, with 12
CVEs assigned.
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1 Introduction

Netlink is a socket-based communication interface that facilitates inter-process
communication (IPC) between the kernel and userspace processes. Introduced
in Linux 2.2, Netlink offers greater flexibility than the traditional ioctl interface,
supporting higher throughput and a richer feature set [37]. Initially, Netlink
was designed for exchanging networking-related information. It has since been
adopted by other kernel subsystems [24] and integrated into operating systems
such as FreeBSD [27].

The widespread adoption of Netlink has improved efficiency but also intro-
duced significant security risks. Recently, security researchers have uncovered
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numerous high-severity vulnerabilities [29,9,28,15,4] in Netlink families, most of
which can lead to privilege escalation, threatening the security of the Linux ker-
nel and millions of devices. Thus, automatically detecting Netlink vulnerabilities
before they can be exploited in the wild remains a pressing challenge and an open
research problem.

Fuzzing is a promising approach for automatically detecting bugs in OS ker-
nels. For example, Syzkaller [35], a state-of-the-art kernel fuzzer developed by
Google, has uncovered thousands of Linux kernel bugs since 2017. However, we
observed that Syzkaller fails to achieve effective Netlink family fuzzing. A key
limitation is that the syscall descriptions it relies on, which enable structure-
aware fuzzing, are incomplete or inaccurate (see Sect. 2). Consequently, Syzkaller
often fails to perform as expected, leaving many code paths inadequately tested.

The problem is particularly severe for Netlink families because their inputs,
known as Netlink messages, are highly complex. These messages use special-
ized attribute encoding and require a specific parsing process to extract usable
payloads. Notably, Netlink messages have an average nesting-depth 3 five times
greater than that of ioctl arguments used in device drivers according to the
existing descriptions. This complexity makes manual description writing both
time-consuming and error-prone, while also rendering existing automated de-
scription generation approaches for device drivers[8,33,22,6] ineffective.

To address this gap, we propose a dedicated model called the parse graph
for systematically analyzing the Netlink message parsing process. This graph,
constructed using static taint analysis, captures essential parsing details for re-
covering the complex Netlink messages. By traversing and translating the parse
graph, we generate complete and accurate syscall descriptions, thereby enhanc-
ing the effectiveness of Netlink family fuzzing. We implemented the prototype
system NLSaber and evaluated it on Linux 6.1.70. Cross-validation shows that
the generated descriptions are more complete (supporting 43% more families)
and accurate (93% vs. 33%) than existing descriptions. Additionally, we assessed
the system’s effectiveness through comprehensive fuzzing experiments. The en-
hanced fuzzing improved code coverage by more than 9.1% for common fam-
ilies (and by 40.8% when including Syzkaller-unsupported families). NLSaber
uncovered 19 previously unknown vulnerabilities, all have been reported and
confirmed, with 12 CVEs assigned.
Contributions In summary, our main contributions are in the following.

– We found that the state-of-the-art fuzzer Syzkaller is ineffective in Netlink
family fuzzing due to its incomplete and inaccurate descriptions. Existing
device-driver-targeted solutions are difficult to adapt for Netlink due to their
inability to analyze the message parsing process.

– We propose a solution that models the Netlink message parsing process us-
ing parse graphs constructed with static taint analysis. These graphs capture
essential parsing details, enabling the generation of complete and accurate
syscall descriptions to enhance Netlink family fuzzing.

3 Syzkaller types are organized in directed-acyclic graph form. We call the depth of
the expanded tree from one type as the nesting-depth for this type.
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– We present a prototypical implementation named NLSaber and evaluate its
effectiveness on Linux 6.1.70. The evaluation shows that our generated descrip-
tions are more complete and accurate than existing ones. Using these improved
descriptions, the enhanced fuzzing improved code coverage by over 9.1% (and
by 40.8% when including Syzkaller-unsupported families). Moreover, NLSaber
uncovered 19 previously unknown vulnerabilities, with 12 CVEs assigned.

2 Technical Background and Motivation

2.1 Netlink Family and Message Parsing

Netlink facilitates communication between the kernel and userspace processes [25].
Similar to driver interfaces (e.g., char and block device drivers), Netlink pro-
vides multiple interfaces, such as NETLINK_ROUTE, the foundation of Linux ker-
nel components for packet routing and device hook frameworks, and NETLINK
_NETFILTER, the foundation for packet filtering and iptables. Each Netlink fam-
ily registers callback functions (called operations) to handle Netlink messages 4.
These messages, sent from userspace via network syscalls like send and sendmsg,
consist of a fixed-format metadata header followed by a stream of attributes con-
taining userspace payloads in TLV (Type, Length, Value) format [20]. Figure 1
presents an operation snippet for configuring a virtual network interface, along
with its Netlink policies and message structure. The header comprises a 16-byte
message header (nlmsghdr) and a family-specific header (ifinfomsg). Each sub-
sequent attribute begins with 4-byte metadata (nlattr), followed by the actual
payload. Notably, attributes can be nested, meaning a payload may contain an-
other TLV-formatted attribute stream to carry complex data.

To parse the Netlink message and attributes to get the accessible payload,
the rtnl_setlink function takes a parameter nlh (of type struct nlmsghdr *),
which points to the message header. Then, nlmsg_data (L2) retrieves the family-
specific header, assigning it to the pointer ifm. Next, nlmsg_parse_deprecated
(L3) parses nlh into an array of attributes tb. Attribute-type enums, such as
IFLA_IFNAME and IFLA_NEW_IFINDEX, are then used as indices to get specific at-
tribute pointers from the array tb (L11,12). Functions like nla_strscpy (L11)
and nla_get_s32 (L12) are used to extract the payload from these attributes.
For nested attributes, such as tb[IFLA_XDP], the function nla_parse_nested
_deprecated (L14) is called to parse the nested payload into another attribute
array xdp. Importantly, during parsing, Netlink families may define validation
rules through Netlink policies. For example, the ifla_policy in Fig. 1 speci-
fies the following constraints: (1) IFLA_IFNAME’s payload must be a string shorter
than IFNAMSIZ; (2) IFLA_XDP must be a nested attribute; and (3) IFLA_NEW
_IFINDEX’s payload must be a signed integer with a minimum value of 1. The
function nlmsg_parse_deprecated verifies these constraints. If any validation
fails, it returns an error and terminates the parsing process. Such validations
4 Netlink family also transmits messages to userspace via unicast or broadcast. This

study focuses on the case where userspace is the sender.

https://github.com/torvalds/linux/blob/v6.14/include/uapi/linux/netlink.h#L52
https://github.com/torvalds/linux/blob/v6.14/include/uapi/linux/netlink.h#L229
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msg header(nlh)

family header(ifm)

nla(tb[IFLA_IFNAME])

attributes stream(tb)

nla(tb[IFLA_NEW_IFINDEX]) nla(tb[IFLA_XDP])

nested attributes(xdp)

static int rtnl_setlink(struct nlmsghdr *nlh) {
struct ifinfomsg* ifm = nlmsg_data(nlh);
err = nlmsg_parse_deprecated(nlh,

sizeof(*ifm), tb, ..., ifla_policy, ...);
do_setlink(ifm, tb);
}

static int do_setlink(struct ifinfomsg *ifm,
struct nlattr **tb) {

char ifname[IFNAMSIZ];
nla_strscpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
int new_ifindex = nla_get_s32(

tb[IFLA_NEW_IFINDEX]);
err = nla_parse_nested_deprecated(xdp, ...,

tb[IFLA_XDP], ifla_xdp_policy, ...);
}

struct nla_policy ifla_policy[IFLA_MAX+1] 
= {

[IFLA_IFNAME] = {.type = NLA_STRING, 
.len = IFNAMSIZ-1 },

[IFLA_XDP] = {.type = NLA_NESTED },
// = NLA_POLICY_NESTED(ifla_xdp_policy),
[IFLA_NEW_IFINDEX] = \

NLA_POLICY_MIN(NLA_S32, 1),
...

};

struct nla_policy
ifla_xdp_policy[IFLA_XDP_MAX+1] = ...
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(a) Parsing Code (b) Parsing Policy

ifname ifindex

... ...

(c) Netlink Message

metadata(nlattr)

Fig. 1. Simplified code snippet for network link configuration, including Netlink poli-
cies and message structure.

are flexible yet robust, making them widely used in the Netlink family code for
payloads verification.

2.2 Motivation

Recently, security researchers have uncovered numerous high-severity vulnera-
bilities in Netlink families [29,9,28]. Notably, over half of the kCTF [15] sub-
missions exploit this attack surface to achieve privilege escalation. Despite this,
no specialized tool exists for detecting these vulnerabilities. Even Syzkaller, the
state-of-the-art advanced general-purpose kernel fuzzer, fails to achieve effective
fuzzing of Netlink families due to incomplete and inaccurate descriptions. In the
following, we elaborate on these two issues, which motivate our work to generate
complete and accurate descriptions to enhance Netlink family fuzzing.
Issue I. Current descriptions are incomplete. Our analysis on Syzkaller’s
descriptions reveals the following: (1) Since 2020, Syzkaller has added descrip-
tions for nine new Netlink families, yet eight 5 of them have already existed in
the kernel for over two years. (2) Five critical vulnerabilities 6 were reported in
kCTF 2023, but their corresponding descriptions were not updated in Syzkaller
until over a year later (September 2024). Furthermore, our evaluation shows that
over 23 Netlink families still lack descriptions (see Sect. 4.1), with 17 of them
present in the kernel for more than five years.
Issue II. Current descriptions are inaccurate. Although Syzkaller’s de-
scriptions are written by experts, they contain errors. As evidence, we identified
and reported 85 errors (see Sect. 4.1) in Netlink-related descriptions. Besides, we

5 netlabels, nl80211, ipset, nfc, batman-adv, smc, nldev, mptcp
6 CVE-2023-4147,5197,4569,4015,5345
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also identified many redundant attributes (either unused or repeated). Specifi-
cally, since there is no available approach to analyze the message parsing process,
e.g., the parsing code listed in Fig. 1, the existing descriptions choose to include
all specified attributes in the parsing policies into their message structure defi-
nitions, regardless of whether their attributes are accessed or not. Consequently,
these inaccuracies lead to inefficient generation and mutation, hindering fuzzing
performance. For example, in our experiment on the Netlink family in Fig. 1,
only 19.3% of the attributes sent by Syzkaller were actually accessed, while over
20.1% were redundant.
Our Solution. We found that both issues stem from the complexity of Netlink
messages. Compared to ioctl arguments, Netlink messages exhibit significantly
deeper nesting (average depth of 15 vs. 3), as shown in existing descriptions.
The complexity makes previous approaches ineffective. For example, we tested
SyzGen++ [6], which uses symbolic execution to infer the input structure of the
operation shown in Fig. 1. However, the analysis either times out or runs out of
memory. To address this, we propose a specialized and systematic solution. It
analyzes how these messages are parsed, enabling the generation of complete and
accurate descriptions to enhance fuzzing for Netlink families. These automati-
cally generated descriptions solves above issues. First, they remain up to date
with new or modified kernel code. Using them, our enhanced fuzzing uncovered
12 vulnerabilities in code unsupported by existing descriptions. Second, the im-
proved accuracy of the descriptions enhances fuzzing efficiency. In our evaluation,
our system not only improves code coverage but also detects previously unknown
bugs. Notably, it discovered a previously undetected null pointer dereference in
the Linux kernel, which had gone unnoticed for over 12 years, despite five years
of testing with related descriptions in Syzkaller (see Sect. 4.3).

3 System Design & Implementation

Entrypoint Identification. Similar to prior work [8] that identifies device
driver handlers, we use interface-specific models to detect target Netlink fam-
ilies and their corresponding operation functions. For example, the operation
rtnl_setlink (Fig. 1) is registered via rtnl_register 7 (registration details
omitted). By analyzing all calls to rtnl_register, we can identify other related
operations. To our knowledge, this work presents the first systematic summary
of models for each Netlink interface. These models allow us to extract all op-
eration functions for Netlink families in the kernel, serving as entrypoints for
Netlink message analysis.
Parse Graph Internal and Construction. To analyze the Netlink message
parsing process, we propose a dedicated graph model. This key insight is that the
parsing process follows a principled approach, with most parsing actions handled
by a limited set of library functions (defined in lib/nlattr.c, highlighted in red
in Fig. 1). Hence, we can first model these limited library functions and use them

7 The latest kernel uses a similar function named rtnl_register_many.
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(.ntype=
IFLA_NEW
_IFINDEX)

HDR

NLMSG(.msg=RTM_SETLINK)

ATTRS1(.policy=ifla_policy)

PAYLOAD1

NLA1 NLA2

ATTRS2

NLA3

L2:nlmsg_data

PAYLOAD2

(.type=ifinfomsg)

(.type=string,
.len=IFNAMSIZ-1)

(.type=int,
.min=1)

(.policy=ifla
_xdp_policy)

L3:nlmsg_parse_deprecated

L11:[] L13:[] L15:[]

(.ntype=
IFLA_

IFNAME)

L11:nla_strscpy L12:nla_get_s32

(.ntype=
IFLA_XDP)

nlmsg_send(s sock, msg NLMSG, f flags);

type NLMSG \
netlink_msg[RTM_SETLINK,HDR,ATTRS1]

type HDR ifinfomsg # L2
ATTRS1 {              # ifla_policy L4

1   optional[NLA1]              # L11
2   optional[NLA2]              # L13
3   optional[NLA3]              # L15

} [packed, unorder]

type NLA1 nlattr[IFLA_IFNAME,
string[handles,IFNAMESIZ]]    # L11

type NLA2 nlattr[IFLA_NEW_IFINDEX,
int32[1:MAX]]                 # L12

type NLA3 nlnest[IFLA_XDP, ATTRS2]# L14

ATTRS2 { ... }    # ifla_xdp_policy L15
ifinfomsg { ... }
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L14:nla_parse_
nested_deprecated

Fig. 2. Example parse graph for Fig. 1 (a) and the demo descriptions (b).

as waypoints to analyze the entire parsing process. Based on this insight, we pro-
pose parse graphs to model how Netlink messages are parsed. For example, Fig-
ure 2 (a) presents an example of the code listed in Fig. 1. In this graph, the nodes
represent parsing elements in five concluded types: NLMSG for the entire mes-
sage; HDR for the family-specific header; ATTRS for the stream of attributes;
NLA for the sole attribute; and PAYLOAD for the payload carried in the at-
tribute. Nodes with these types are highlighted with different colors in Fig. 2
(a). The edges represent associated parsing actions, such as the calls to library
functions (L2,3,11,12,14) and array expressions of attributes array (L11,13,15).
Furthermore, as demonstrated in Fig. 2(a), each node contains additional in-
formation. For example, the NLMSG node contains the message type (.msg),
which determines the handler function (in this case, rtnl_setlink). The HDR
and PAYLOAD nodes contain type information (.type) inferred from related
expressions—for example, the ifinfomsg* type inferred from the return value of
nlmsg_data. Some types may also have additional constraints, such as length
(.len) for string type in PAYLOAD1. The ATTRS node contains the parsing
policy (.policy), while the NLA node includes the attribute type (.ntype). In
summary, the graph node contains key information and constraints necessary for
recovering the message structure and generating accurate descriptions.

To construct the parse graph, we start by identifying all parsing actions
and collecting relevant information through an iteration over all basic blocks.
Each identified action defines a parsing element (e.g., the call to nlmsg_parse
_deprecated (L3) defines ATTRS1), which is marked as a taint source. Using
static taint analysis, we trace how this tainted element is used by other actions
(e.g., ATTRS1) is used in array expressions (L11,13,15). These tainted elements
are then connected to form parse paths, and the collection of all such paths con-
stitutes the complete parse graph (see Table 3 for more details). When the taint
is propagated to an indirect call site, apply the MLTA algorithm [26] to deter-
mine the possible callee candidates. In addition, our taint analysis also traces all
comparisons involving the extracted payloads. This information can be used to
refine the payload types. For instance, if the analysis reveals that a payload is
involved in an enum-based switch statement, we extract the corresponding enum
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values and include them in the fuzzing dictionary (represented as flags in the
Syzlang syntax) when specifying this payload during description generation.
Updating with Netlink Policy. Since our taint analysis does not traverse
pre-modeled library functions (e.g., nlmsg_parse_deprecated), the resulting
graphs lack internal details and are therefore incomplete. To address this, we
refine the parse graph using Netlink policies, which reflect the side effects of these
library functions and provide more detailed constraints for attribute payloads.
Specifically, we first dump all Netlink policies from the kernel and convert them
into graphs with a structure compatible with the parse graph. Each policy graph
has a parent node of type ATTRS and child nodes of type NLA, containing
all defined constraints. If a policy defines nested constraints (e.g., using NLA
_POLICY_NESTED) for an attribute NLAnested, we first identify the associated
nested policy, convert it into another policy graph, and then attach it as a
child subgraph of node NLAnested. This process is performed recursively in a
depth-first manner, terminating upon encountering a repeated policy to prevent
infinite recursion. After preparing all policy graphs, we update each ATTRS
node in the parse graph by: (1) Locating the corresponding policy graph based
on .policy; (2) Matching child NLA nodes between the parse graph and located
policy graph based on .ntype; (3) Merging information and constraints from
the grandchild PAYLOAD nodes. This ensures the parse graph incorporates all
constraints from Netlink policies. For example, in Fig. 2 (a), the red-marked
constraint (.min = 1) in PAYLOAD2 originates from the policy ifla_policy.
It is worth noting that the update process also helps detect parsing errors. For
example, we identify conflicts between the parsing code and the defined parsing
policies (refer to Sect. 5.1 for further details).
Resolving Cross-Message Dependency. Once constraints are updated with
Netlink policy, the parse graph should contain sufficient information to define
valid messages for a single operation. To further improve fuzzing performance, we
must also account for cross-message dependencies involving multiple operations.
For example, when a userspace application configures or deletes a network link,
the messages must reference an existing link created by prior messages. Unlike
the open syscall, which returns a descriptor, such references are not explicitly
returned by the kernel in syscall output. That is, cross-message dependency is a
type of implicit dependency and the most accurate solution is cross-syscall input
propagation analysis via techniques like symbolic execution [23].

However, porting symbolic execution to analyze Netlink messages in the
Linux kernel is non-trivial. Instead, inspired by the existing descriptions, we
adopt a heuristic approach that leverages our constructed parse graphs to re-
solve cross-message dependencies. The key insight is that, unlike in device driver
targets, where dependency-related payloads are encapsulated in various struc-
tures, Netlink families always encapsulate these payloads in the same type of
attribute across messages. For instance, the IFLA_IFNAME attribute appears in
both link creation and link configuration/deletion messages and contains a pay-
load string for identifying the network device. We refer to such attributes, whose
payloads must remain consistent across messages, as Handle Attributes (HAs).
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To identify HAs based on parse graphs, we investigated the existing descriptions
and summarized below heuristic rules: (1) Use Case Rule: a HA-related node
should exist in more than one parse graph. (2) Type Rule: a HA-related payload
should be of a simple type, such as a string or integer, rather than a more com-
plex structure. (3) Compare Rule: a HA-related payload should be compared
with a non-constant value. The first and third rules are straightforward because
we know that handle attributes are used in more than one operation, and the
payload should be compared to check for existence. The second rule is empir-
ically motivated based on the existing descriptions. To reduce false negatives,
based on the found HAs, we do back-propagation from where their payloads are
extracted to identify more HAs that serve the same purpose. After identification,
we impose constraints to confine HAs’ payload values to a limited set, thereby in-
creasing the chance that payload hits the same value across messages during the
fuzzing process. Note that potential false positives from our heuristic approach
do not negatively impact fuzzing performance for two main reasons. First, we
do not apply constraints to payloads that already have defined restrictions (such
as value ranges or constant enums). As a result, our method avoids introduc-
ing conflicting constraints or reducing the randomness of such payloads. Second,
regarding any unnecessary constraints, we observed that Syzkaller’s SQUASH
trait [19] will randomly convert constrained data structures into random blobs
during fuzzing. This mechanism allows the fuzzer to bypass unnecessary con-
straints and continue exploring the input space effectively.
Description Generation. Finally, we traverse the parse graphs and translate
each visited node to the Syzlang type. The node-to-type translation follows the
schemas below (all line number references refer to the demo in Fig. 2 (b)):

– NLMSG nodes are translated into the Syzlang predefined struct netlink_msg,
with message type and references to child nodes (e.g., the L3 NLMSG definition).

– ATTRS nodes have two translation methods, depending on how their rep-
resented elements are parsed. (1) For ATTRS nodes parsed via loops (e.g.,
nlmsg_for_each_attr), which allow repeated attributes, we adopt a defini-
tion consistent with existing descriptions. Specifically, we use Syzlang union
and variable-length array to model the stream as a “permutation with repe-
tition”. (2) For ATTRS nodes parsed by library functions (e.g., nlmsg_parse
_deprecated) that reject repeated attributes, we introduce a new type un-
ordered struct, with Syzlang optional type to define the stream as a “per-
mutation without repetition”. For example, see the definition of ATTRS1 at L6.
This method can save the fuzzing effort wasted on generating and mutating
redundant attributes, thereby improving overall efficiency.

– NLA nodes are translated into Syzlang’s predefined structs (nlattr and nlnest).
For example, the definitions of NLA1,2,3 at L12,14,16.

– PAYLOAD nodes are translated based on their detailed type: For C structs,
we use Syzkaller’s built-in tool syz-headerparser to extract the struct defi-
nitions (e.g., the ifinfomsg definition at L19). For C scalars (e.g., integers),
we use the corresponding Syzlang type (e.g., int) and leverage features like
min, max, and flags to define constraints (e.g., the NLA2 payload definition

https://github.com/google/syzkaller/blob/7ddf5ede47abe686371bbd99e8f712213895e4e0/sys/linux/socket_netlink.txt#L92
https://github.com/google/syzkaller/blob/7ddf5ede47abe686371bbd99e8f712213895e4e0/sys/linux/socket_netlink.txt#L110
https://github.com/google/syzkaller/blob/7ddf5ede47abe686371bbd99e8f712213895e4e0/sys/linux/socket_netlink.txt#L112
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at L15). For C strings, we use Syzlang’s string or stringnoz types. Other
Syzlang types (e.g., const, void) are applied as appropriate. Additionally, for
identified handle attributes, we use handles for string-type handles (e.g., the
payload of NLA1 at L13), and handlei for integer-type handles. These special
types use Syzlang’s proc type, allocating 16 unique slots per fuzzing process.

After translating all nodes, we wrap the root type with a pseudo-syscall nlmsg
_send (e.g., L1 in Fig. 2 (b)) to finalize the description for the operation.
Implementation Details. The static analysis component of NLSaber is im-
plemented using CodeQL v2.18.2 [14]. We selected CodeQL due to its efficiency
(well-designed multi-process and caching) and complete support for taint analy-
sis. It enables users to define sources and sinks easily to detect desired taint
flows. The entire system consists of 7.4K lines of Python code, 5K lines of
QL code, and 500 lines of Syzkaller patches (e.g., adding new pseudo-syscalls
and types). NLSaber is the first system designed to enhance Netlink family
fuzzing by generating descriptions. To promote the development of similar sys-
tems and address concerns of reproducibility, the source code is available at
https://github.com/TroySysSec/NLSaber.

4 Evaluation

General Setup. We conducted all experiments on a machine equipped with
48 Intel(R) Xeon(R) CPU E5-2678 and 128 GB of RAM, running Ubuntu 20.04
LTS. The target Linux kernel version is 6.1.70 LTS (released in Feb 2024).
The Syzkaller and related Syzlang descriptions version is based on commit
8d34fd8d3a26 (released in Feb 2025). Like previous kernel fuzzing research, we
use the kernel configuration provided by Syzbot [17], which incorporates the best
practices from Google.
Research Questions. This section addresses the following research questions:

– RQ1: Are generated descriptions more complete and accurate?
– RQ2: Can generated descriptions enhance fuzzing’s code coverage?
– RQ3: Can generated descriptions help find new vulnerabilities?

4.1 Descriptions Generation (RQ1)

During the target family identification, we consider a family interesting if it
contains at least one operation with a PAYLOAD node. These families are then
selected as fuzzing targets. Using this criterion, NLSaber identified 76 target
families and 865 operations across six Netlink interfaces by scanning the entire
6.1.70 kernel. These targets span over 2,700 files and more than 2,000 KLOC. In
addition, the constructed parse graphs contain an average of 285 nodes, and the
graph for route CORE and the generic nl80211 family exceeds 3k nodes. Such
complexity highlights the need for an automated tool like NLSaber, as manual
auditing is insufficient for comprehensive analysis.

To evaluate the correctness of the generated descriptions, we adopted a
methodology inspired by previous work [22], cross-validating our results against

https://github.com/TroySysSec/NLSaber
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manually written descriptions. Specifically, we begin by identifying all existing
message definitions based on their types (e.g., netlink_msg), and then group
them according to the belonging Netlink families. Next, we (reverse-)translate
the existing descriptions into parse graphs, enabling the comprehensive compar-
ison with our constructed graphs. We focused on four key aspects: (1) target
families (#fam), (2) operation functions (#op), and (3) parse paths (#ppath),
which represent how the payload is extracted, (3) handle attributes (#ha), about
cross-message dependency. We developed scripts to identify the same contents
like nodes, edges, and paths, as well as to highlight differences, between these
graphs. Then, we manually verified the true positives and false cases. While the
process was primarily manual, it was significantly supported by our static anal-
ysis tool, which reports precise code locations for all detected parsing actions
(see comments in Fig. 2(b)). Overall, the validation process took approximately
a person-month to complete across all target families. The validation results are
summarized in Table 1.

Table 1. Descriptions comparison results.

interface
SYZ SABER

#fam #op #ppath #ha #fam #op #ppath #ha
TP FP TP FP TP FP TP FP

NETLINK_CRYPTO 1 7 0 2 3 0 1 7 0 2 0 0
NETLINK_GENERIC 22 400 4 2,053 2,808 41 40 583 0 3,428 431 249
NETLINK_NETFILTER 8 65 0 2,390 4,441 51 8 67 0 3,530 12 86
NETLINK_RDMA 1 26 0 73 5 6 3 48 0 134 11 13
NETLINK_ROUTE 20 106 0 2,295 6,010 30 23 136 0 3,812 389 238
NETLINK_XFRM 1 22 2 99 563 1 1 24 0 102 0 1

#total 53 626 6 6,912 13,830 129 76 865 0 11,008 843 587

Overall, the generated descriptions are more comprehensive than the existing
ones. They cover 43% more target families (76 vs. 53) and support 38% more
operations (865 vs. 626). Among the 23 newly supported families, the oldest
was introduced in 2008 (Linux 2.6) and the newest in 2022 (Linux 5.17). Of
the 240 previously untested operations, 108 belong to these 23 families, while
the remaining 132 are newly added operations in families already supported by
Syzkaller. Our analysis shows that 92 of these 132 operations (70%) have been
present in the kernel for over three years. During validation, we identified six
false positives in the Syzkaller-defined operations. These were caused by missing
callback functions in the kernel: two due to deprecated commands and four due
to human errors. This underscores the incompleteness and obsolescence of the
existing descriptions and demonstrates the value of our automated approach in
improving the situation.

In terms of parse path (#ppath) comparison, the generated descriptions con-
tain significantly more true parse paths (11,008 vs. 6,912) and fewer false ones
(843 vs. 13,830), indicating that our method can better guide fuzzers in generat-
ing and mutating attributes, thereby improving code coverage. This advantage is
evident not only in interfaces where NLSaber covers more target families, such as
NETLINK_GENERIC, with 67% more paths (3,428 vs. 2,053), but also in NETLINK
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_NETFILTER (3,530 vs. 2,390). The latter benefits from frequent updates and the
addition of new attributes. Two additional observations are noteworthy. First,
we identified 85 broken parse paths in Syzkaller’s descriptions, caused by
incorrect assumptions about kernel parsing logic, leading to improperly defined
structures. These errors have been reported to and confirmed by the Syzkaller
team, underscoring the importance of automated approaches in reducing human
error. Second, our generated descriptions include 843 false parse paths, all of
which arise from challenging corner cases in static analysis. Some attribute types
depend on dynamically determined variables, making static resolution infeasi-
ble. To preserve soundness, NLSaber includes all possible outcomes, introducing
some redundancy. Additionally, certain families use shared callback functions
with internal flags to parse different messages, causing our tool to merge multi-
ple parse graphs together and resulting in false positives. Fortunately, such cases
are rare, and our approach still achieves a high accuracy of 93%.

NLSaber identifies 587 handle attributes (#ha). To evaluate these, we con-
duct an inclusion test to determine whether these attributes extracted from Sy-
zlang descriptions are present in the identified set. The test reveals that only five
out of 129 cases are missed, indicating that our generated descriptions guide the
fuzzer in resolving implicit dependencies at least as effectively as Syzkaller. For
the remaining 463 identified handle attributes, they may include false positives,
as our method relies on a simple heuristic rather than precise cross-syscall input
propagation analysis [23]. Determining whether these attributes correspond to
shared resources requires in-depth knowledge of the underlying implementation;
thus, we defer more precise verification to future work.

Answer to RQ1: Descriptions generated by NLSaber are more complete (cover
43% more families and 38% more operations) and achieve higher accuracy in
parse paths (93% vs. 33%).

4.2 Fuzzing Effectiveness: Coverage (RQ2)

Fuzzing Experiment Setup. In this section, we evaluate the effectiveness
of NLSaber by comparing it with other kernel fuzzers. Alongside the original
Syzkaller, we include two description-free fuzzers for a comprehensive evaluation.
The first is FuzzNG [2], a kernel device driver fuzzer based on LibFuzzer [18].
Instead of relying on complex descriptions to define pointer types in driver han-
dlers, FuzzNG instruments kernel I/O functions (e.g., copy_from_user (CFU)
to intercept kernel-user space interactions. This enables the LibFuzzer engine
to generate structured inputs when the kernel accesses user-provided data. To
adapt FuzzNG for fuzzing Netlink families, we modified its agent to: (1) open
the appropriate Netlink socket; (2) invoke the send syscall instead of driver-
specific read, write, and ioctl; and (3) generate random messages upon CFU
happens. The second fuzzer is WEIZZ [12], an AFL [16] variant that also oper-
ates without predefined descriptions. WEIZZ introduces a “surgical” stage that
infers message structures by tagging input bytes. To enable Netlink fuzzing, we
developed a harness that: (1) encodes WEIZZ inputs into Netlink messages; (2)
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sends them to the kernel using send syscall; and (3) collects KCOV coverage
and returns it to the fuzzer via shared memory. We used virtme [1] to run the
WEIZZ fuzzer in a QEMU KVM environment, consistent with the other fuzzers.

Each Netlink family was tested in a dedicated fuzzing session, with duration
based on the number of available operations (#op) : 24 hours for fewer than
10 operations, 48 hours for fewer than 20, 72 hours for fewer than 50, and
120 hours otherwise. Netlink families previously exploited in kCTF were always
tested for 120 hours. In all sessions, the fuzzer was allocated 4 GB of memory
and a single CPU core. Following prior work [22], we disabled crash reproduction
to focus solely on coverage, and we deleted all seed programs in both Syzkaller
and NLSaber to ensure a fair comparison.

Fuzzing Experiment Results. Each fuzzing session ran three times, and
the final average coverage (#cov) is summarized in Table 4. Moreover, we calcu-
late Vargha and Delaney’s Â12 statistics to estimate the effect size of coverage
advantage. The results demonstrate that:

– Fuzzing with descriptions significantly outperforms the description-free coun-
terparts. Specifically, Syzkaller and NLSaber achieve higher coverage across
all target Netlink families than FuzzNG and WEIZZ (more than doubling the
overall coverage). Our analysis of the fuzzing logs shows that the latter two
fuzzers often fail early due to attribute checks, which require each attribute
in the stream to have a valid type and length. This underscores the benefit
of using descriptions to guide Netlink family fuzzing. Additionally, the signif-
icant coverage advantage of Syzkaller-based fuzzers is partly attributable to
its advanced features, such as support for virtual netdevices, WiFi emulation,
and packet injection, which enable exploration of more code paths.

– WEIZZ outperforms FuzzNG on more targets. Specifically, it achieved better
coverage, with a large effect size (Â12(n) ≥ 0.71) in 27 sessions (marked by
underlines). Furthermore, it achieved a 9.5% higher overall coverage (90,120
vs. 82.297). This improvement is due to WEIZZ’s ability to incrementally in-
fer message structures during fuzzing, enabling the generation of more valid
inputs and deeper code path exploration. However, this ability is not sufficient
to fully recover the message structures, and the related corpus gets easily re-
jected when one attribute is mutated erroneously. Worth noting that FuzzNG
achieved higher coverage with Â12(n) ≤ 0.29 in 15 sessions. Our analysis in-
dicates that this advantage stems from FuzzNG’s optimized snapshot-fuzzing
engine [2] and its instrumentation of kernel functions such as strncmp and
memcmp, which requires kernel modifications not supported by WEIZZ or other
fuzzers. These enhancements contribute to FuzzNG’s better performance in
some targets.

– NLSaber outperforms Syzkaller and achieves the best coverage for most tar-
gets. Specifically, it achieved better coverage, with a large effect size (Â12(d)
≥ 0.71) in 37 sessions (also marked by underlines). Furthermore, it achieved a
9.1% higher overall coverage (163,670 vs. 150,026) than Syzkaller in both sup-
ported targets. The improvement increases to 40.8% (211,271 vs. 150,026) if
including NLSaber-specific targets. In addition, our tool achieves the highest
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average coverage in 43/50 sessions (highlighted in bold). Such advantages in-
dicate the effectiveness of the generated descriptions in enhancing the Netlink
family fuzzing. Worth noting that, although Syzkaller achieves higher cov-
erage on some targets, there are no cases where it shows a large effect size
(Â12(d) ≤ 0.29). In five cases, it exhibits a medium effect size, and in two
cases, a small effect size, indicating that NLSaber performs comparably. Tak-
ing the 802154 session as an example, Syzkaller achieves 3.9% higher coverage.
Our analysis reveals that descriptions used by Syzkaller deliberately exclude
two operations: NL802154_CMD_DEL_INTERFACE and IEEE802154_DEL_IFACE.
These operations can remove fuzzer pre-configured devices, which could dis-
rupt fuzzing. By omitting them, Syzkaller achieves better coverage compared
to our approach, which retains these operations. Interestingly, our analysis
also shows that the slightly lower coverage in these cases may result from
NLSaber detecting more crashes. For instance, in the nbd family, our tool
triggered a use-after-free vulnerability that Syzkaller missed.

Answer to RQ2: Descriptions generated by NLSaber improves the fuzzing with
more than 9.1% greater code coverage compared to the original Syzkaller.

4.3 Fuzzing Effectiveness: Vulnerability (RQ3)

We used the generated descriptions to guide fuzzing for zero-day vulnerability
detection. Specifically, we conducted fuzzing campaigns on interesting kernel
versions, like the stable and associated candidate versions. So far, our tool has
uncovered in total 19 previously unknown vulnerabilities, all of which were re-
ported and confirmed, with 12 CVEs assigned.

Table 2. New vulnerabilities detected by enhanced fuzzing.

description lifespan CVE effect
1 deadlock in iwpm_hello_cb 6yr 3mo - DoS
2 global overflow of ksmbd_nl_policy 2yr 10mo CVE-2024-26608 DoS
3 global overflow of loggers 8yr 4mo Leak
4 heap overflow in xt_find_target 10yr 2mo

CVE-2023-6040
Exp

5 global overflow of rmnet_policy 5yr 10mo CVE-2024-26597 DoS
6 global overflow of wwan_rtnl_policy 3yr 9mo CVE-2024-50128 DoS
7 heap off-by-one in ieee80211_tx_control_port 2yr 7mo CVE-2024-56663 Exp
8 information leak in fl_set_geneve_opt 6yr 8mo
9 information leak in ip_tun_parse_opts_geneve 5yr 5mo
10 information leak in nft_tunnel_obj_geneve_init 5yr 2mo
11 information leak in tunnel_key_copy_geneve_opt 7yr 3mo

CVE-2025-22055 Leak

12 information leak in xfrm_address_filter 9yr 4mo CVE-2023-39194 Leak
13 information leak in xfrm_update_ae_params 1yr 8mo CVE-2023-3773 Leak
14 null-ptr-deref in xfrm_update_ae_params 12yr 5mo CVE-2023-3772 DoS
15 stack overflow in nft_set_desc_concat_parse 2yr 4mo CVE-2022-1972 Exp
16 type confusion in nft_tunnel_obj_geneve_init Exp
17 type confusion in nft_tunnel_opts_dump

5yr 2mo CVE-2025-22056
Leak

18 use-after-free in handshake_req_submit - - Exp
19 use-after-free in nfc_genl_llc_get_params 10yr 2mo CVE-2023-3863 Leak
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Among the 19 vulnerabilities, 13 are found in code (either new families or new
functions within existing families) not supported by existing descriptions (high-
lighted in gray in the table). All of them remained in the kernel (and could have
been exploited in the wild) for over a year. This again underscores the impor-
tance of developing automated tools to keep testing new and updated targets.
We also assessed the exploitability and impact of each vulnerability with our
best efforts. As shown in the table: (1) DoS marks indicate that the correspond-
ing vulnerability leads to Denial of Service in the kernel. For example, the first
deadlock bug could be exploited to spray non-killable threads and cause the ker-
nel to hang. (2) Leak marks indicate that the corresponding vulnerability could
cause kernel information leakage. Take the 11th vulnerability as an example: the
root cause of this one is an integer overflow that leads to type confusion. We
exploited this to get a heap out-of-bounds read primitive that allows us to read
the adjacent kmalloc-512 cache. Then, using heap spraying techniques with tty
_port as the spray object, we filled the kmalloc-512 cache with controlled data
and leaked a function pointer to bypass KASLR. (3) Exp marks are the worst,
as they enable stronger memory corruption, such as out-of-bounds or arbitrary
write primitives. To demonstrate this, we developed a complete exploit for the
16th vulnerability which gains a kernel space arbitrary code execution primitive
and achieves the Local Privilege Escalation (LPE). Similar to the aforemen-
tioned heap out-of-bounds read one, we also use heap spray techniques on the
kmalloc-512 cache to exploit this. Specifically, we choose the nft_object as the
victim object and use heap overflow to hijack the code pointer, thereby achieving
ROP by pivoting the stack to a controlled heap location. A demonstration of
this exploit is also available in our released artifacts.
Answer to RQ3: Descriptions generated by NLSaber help detect new vulner-
abilities. As evidence, our enhanced fuzzing uncovered 19 previously unknown
vulnerabilities, with 12 CVEs assigned.

5 Discussion

5.1 Finding Parsing Errors via Static Testing

During parse graph construction, e.g., when updating with Netlink policies, we
perform static testing to find potential parsing errors. Specifically, we verify the
following rules during parsing: (R1). All active Netlink attributes must have cor-
responding entries in the associated parsing policies. This error typically occurs
when new attributes are introduced into the kernel but the corresponding policy
is not updated. As a result, there are no constraints on the attribute, allowing
attackers to craft malicious payloads for harmful purposes. (R2). Attributes that
are validated must also be used; otherwise, the validation is redundant, causing
confusing code or even functionality problems. (R3). Library functions must
be used correctly. For example, function nlmsg_parse_deprecated requires the
user to provide a destination array whose size should be equal to the value
of maxtype + 1. In practice, we identified 35 issues: 25 violations of R1, 4 of



NLSaber 15

R2, and 6 of R3. These parsing errors complement fuzzing-based approaches, as
they typically do not cause memory corruptions and thus remain undetectable
by sanitizers such as KASAN. All findings were reported, confirmed by the kernel
community, and fixed successfully.

5.2 Limitations

Inter-Attributes Relation. NLSaber does not account for the relations be-
tween attributes within a Netlink message, instead allowing the fuzzer to ex-
plore attribute combinations randomly (e.g., using optional type or union type).
However, certain attributes are mutually exclusive, while others must appear
together. By explicitly modeling these constraints and guiding the fuzzer to gen-
erate or mutate inputs accordingly, the fuzzing accuracy can be improved, and
fuzzing cycles wasted on wrong relations can be saved. Unfortunately, such re-
lationships are difficult to analyze automatically so they are left as future work.
Other interfaces. NLSaber targets operation functions that handle userspace
messages, as these are observed to be the most vulnerable. However, certain com-
plex Netlink families involve additional interfaces, making operation-level fuzzing
insufficient to uncover all bugs. For example, CVE-2022-10155 [9] is a complex
vulnerability that is triggered during packet processing by kernel background
threads, following a misconfiguration caused by malformed messages in opera-
tion functions. Identifying all relevant interfaces and performing comprehensive
fuzzing is non-trivial. Therefore, we currently focus on individual operations and
leave multi-interface scenarios for future work.
Other input structures. NLSaber focuses on Netlink families, so the pro-
posed analysis is primarily designed for the Netlink side. This naturally limits
the scope of our tool. Nevertheless, we believe that modeling the parsing process
using parse graphs is also effective in other scenarios involving complex input
structures, which we leave as future work.

6 Related Work

Structure-aware Fuzzing. Structure-aware fuzzing uses fuzzers that under-
stand input formats [5,38], allowing them to generate and mutate inputs more
effectively, which significantly improves performance [5]. To achieve structure-
aware fuzzing, some fuzzers rely on predefined input descriptions. For userspace
programs, tools such as AFLSmart [31] and Peach [11] allow users to define
complex input formats and protocols using grammar-based representations. For
kernel cases, Syzkaller [35] uses syscall descriptions and demonstrates its effec-
tiveness with thousands of reported bugs. Several previous studies [33,7,22,21]
aim to automate the generation of these descriptions for Syzkaller. For exam-
ple, KSG [33] uses dynamic probe analysis targeting device drivers and network
protocols. SyzDescribe [22] offers a systematic approach to generating syscall
descriptions for Linux kernel drivers. SyzGen++ [6] uses symbolic execution for
both Linux device drivers and closed-source macOS IOKit modules. However,
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none of these approaches is effective in fuzzing Netlink families because they can-
not handle complex Netlink messages. For example, we tried using SyzGen++’s
type analysis to infer the message structure in Fig. 1, but the symbolic execution
failed because it either timed out or ran out of memory.

Some other fuzzers do not rely on pre-existing descriptions. Instead, they infer
input structures dynamically using runtime feedback. For instance, WEIZZ [12]
infers message fields by analyzing dependencies between input bytes and com-
parison instructions. Polyglot [3], NestFuzz [10], and AIFORE [32] apply dy-
namic taint analysis to extract message structure. However, these approaches
are difficult to adapt to Netlink families, as they typically rely on frameworks
like DFSan [14], which are not supported in the upstream Linux kernel. In our
evaluation, we ported the WEIZZ fuzzer since the Linux kernel’s KCOV feature
supports collecting the comparison coverage it requires. Additionally, we ported
FuzzNG [2] as it also operates without relying on syscall descriptions.
Improving Kernel Fuzzing via Other Ways Rather than focusing on de-
scription generation, many existing approaches enhance kernel fuzzing via other
solutions. Moonshine [30] derives and refines seed test cases from dynamic execu-
tion traces to improve code coverage. SyzVegas [36] applies reinforcement learn-
ing to optimize the mutation strategy. Healer [34] proposes a relation learning-
based solution to improve the choice table algorithm of Syzkaller. StateFuzz [38]
leverages state coverage to guide fuzzing toward deeper program paths. Actor [13]
uses action-guided synthesis with specialized templates to help fuzzers discover
more bugs. Note that most of these studies require ready-made syscall descrip-
tions, so our work is orthogonal to theirs. That is, the descriptions we generate
can serve as a complement to these tools when fuzzing Netlink families.

7 Conclusion

In this paper, we present NLSaber, the first specialized tool that automati-
cally generates complete and accurate descriptions for fuzzing Netlink families.
NLSaber employs static taint analysis to construct parse graphs to model the
Netlink message parsing process. These graphs capture critical parsing elements,
associated actions, and other relevant details, enabling the generation of high-
quality descriptions for fuzzing. We evaluated NLSaber on Linux 6.1.70, demon-
strating that its generated descriptions are more complete and accurate than
existing ones. Using these generated descriptions, our enhanced fuzzing results
in over 9.1% improved code coverage. Additionally, it uncovered 19 previously
unknown vulnerabilities, with 12 CVEs assigned.
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Appendix Tables

Pre-Modeled Parsing Actions The complete list of pre-modeled parsing ac-
tions is provided in Table 3. In each entry, capitalized keywords denote taint ele-
ments or essential information values. XXXsrc (XXX could be HDR, NLMSG, ATTRS,
NLA, and PAYLOAD) indicates a new taint source introduced by the action, while
XXXdst represents a potential taint sink in some expected taint flows. During
the taint analysis, we mark all identified XXXsrc as the taint source and track
where the taint element flows to. If the flow reaches any of the XXXdst, we wrap
a graph node of XXX type and connect it according to the tainted action. Other
keywords are about the to-collect information, for example, the POLICY keyword
assists the analysis in identifying the corresponding Netlink policy, which pro-
vides details such as attribute constraints. NTYPE helps determine the attribute
type critical for reconstructing the message structure. MAXTYPE enables further
verification, as discussed in Sect. 5.1. Parsing actions 42–48 are special cases that
require additional explanation. In these actions, the inner parsing is not nested;
instead, it occurs at the same “parsing level”. In other words, these actions op-
erate directly on the attribute itself, rather than on its payload. When handling
these cases, we use sibling nodes rather than child nodes in the parse graph to
ensure a correct definition of the message structure.

Table 3. List of pre-modeled parsing actions and to-collect information.

Parsing Actions
1 HDRsrc=nlmsg_data(NLMSGdst);

2−4 nlmsg_parse{_deprecated}{_strict}(NLMSGdst, ∼, ATTRSsrc, MAXTYPE, POLICY, ∼);
5 nlsmg_validate_deprecated(NLMSGdst, ∼, MAXTYPE, POLICY, ∼);
6 NLAsrc = nlmsg_attrdata(NLMSGdst);
7 NLAsrc = nlmsg_find_attr(NLMSGdst, ∼, NTYPE);
8 NLAsrc = ATTRSdst[NTYPE];

9−24 PAYLOADsrc = nla_get_{u/s/be/le}{8/16/32/64}(NLAdst);
25 PAYLOADsrc = nla_data(NLAdst);

26−30 PAYLOADsrc = nla_get_{flag/msecs/in_addr/in6_addr/bitfield32}(NLAdst);
31−32 nla_{strscpy/memcpy}(PAYLOADsrc, NLAdst, SIZE);

33 PAYLOADsrc = nla_strdup(NLAdst, ∼);
34−35 nla_{strcmp/memcmp}(NLAdst, ∼, ∼);

36 NLAsrc = nla_data(NLAdst);
37 NLAsrc = nla_find_nested(NLAdst, NTYPE);

38−39 nla_parse_nested{_deprecated}(ATTRSsrc, MAXTYPE, NLAdst, POLICY, ∼);
40−41 nla_validate_nested{_deprecated}(NLAdst, MAXTYPE, POLICY, ∼);

42 NLAsrc* = nla_next(NLAdst*);
43 NLAsrc* = nla_find(NLAdst*, ∼, NTYPE);

44−46 nla_parse{_deprecated}{_strict}(ATTRSsrc*, MAXTYPE, NLAdst*, ∼, POLICY, ∼);
47−48 nla_validate{_deprecated}(NLAdst*, ∼, MAXTYPE, POLICY, ∼);

Fuzzing Coverage Experiment Results Due to space limits, we present
the fuzzing coverage results for Sec. 4.2 in Table. 4.
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Table 4. Fuzzing coverage results.

interface family FuzzNG WEIZZ
Â12(n)

Syzkaller NLSaber
Â12(d)

#cov #cov #op #cov #op #cov
NETLINK_CRYPTO - 1,523 1,363 0.0 7 1,819 7 1,862 0.89

NETLINK_GENERIC

802154* 2,257 2,845 1.0 55 7,989 57 7,690 0.33
batadv 1,371 1,403 1.0 19 3,508 19 3,733 0.89
devlink 1,348 1,357 0.56 35 5,970 73 7,430 1.0
ethtool 2,875 1,737 0.0 39 4,121 58 4,225 1.0

fou 1,958 2,148 1.0 4 4,067 4 4,101 0.78
gtp 1,299 1,342 1.0 5 3,274 5 3,261 0.44
hsr 1,230 1,217 0.22 / 2 2,938 1.0
ila 1,647 1,479 0.0 / 5 3,111 1.0

ioam6 1,478 1,373 0.0 / 7 2,977 1.0
ipvs 1,373 1,384 0.67 17 4,337 17 4,444 0.78
l2tp 1,373 2,279 1.0 11 4,141 11 4,367 1.0

macsec 1,281 1,357 1.0 / 11 3,388 1.0
mptcp 1,373 1,404 0.89 12 2,194 12 2,953 1.0
nbd 2,959 2,973 0.67 4 5,008 4 4,945 0.33
ncsi 1,322 1,282 0.0 / 7 3,089 1.0

net_dm 1,102 1,499 1.0 2 2,729 5 3,070 1.0
netlabels* 1,468 1,794 1.0 24 3,728 24 3,734 0.67

nfc 1,547 2,999 1.0 19 5,075 20 5,113 0.89
nl80211 4,316 5,108 1.0 114 12,441 122 14,497 1.0

openvswitchs* 1,686 2,287 1.0 / 23 6,204 1.0
seg6 1,261 1,371 1.0 4 2,971 4 2,978 0.44
smbd 1,227 1,424 1.0 / 16 2,932 1.0
smcs* 1,384 1,349 0.11 5 2,955 23 3,076 1.0

taskstats 1,417 1,378 0.11 / 1 2,980 1.0
tcm_user 1,197 1,229 1.0 / 4 2,828 1.0

tcp_metrics 1,337 1,260 0.11 / 3 2,963 1.0
team 1,277 1,326 1.0 4 3,089 4 3,084 0.33

thermal 1,231 1,205 0.11 / 5 2,785 1.0
tipcv2 1,436 1,529 0.78 27 5,540 28 5,562 0.67
vdpa 1,329 1,267 0.22 / 9 2,490 1.0

NETLINK_NETFILTER

ACCT 1,301 1,332 0.78 4 1,994 4 1,969 0.33
CONNTRACK* 1,509 1,596 0.78 20 2,613 20 2,956 1.0

IPSET 1,343 1,398 0.78 15 4,927 16 5,124 0.67
NFTABLES 1,399 1,428 0.56 23 3,147 23 5,418 1.0

QUEUE 1,273 1,272 0.56 3 1,958 4 1,936 0.33

NETLINK_RDMA
IWCM 1,147 1,418 1.0 / 8 2,431 1.0

LS 1,128 1,217 0.89 / 3 2,352 1.0
NLDEV 1,402 1,397 0.44 26 5,175 37 5,274 0.67

NETLINK_ROUTE

CORE* 7,213 9,744 1.0 54 17,351 75 19,147 1.0
DCB 1,274 1,245 0.33 / 2 2,056 1.0

IPV6SPEC* 1,392 1,419 1.0 8 2,260 8 2,312 1.0
MDB 1,287 1,237 0.11 3 2,296 3 2,364 0.89

NEXTHOP* 1,343 1,374 0.78 8 3,662 10 3,962 1.0
NSID 1,330 1,321 0.22 3 2,796 3 2,789 0.44
RULE 1,898 2,020 1.0 7 3,928 9 3,935 0.44

SCHED* 1,804 1,818 0.67 20 5,417 20 7,831 1.0
TUNNEL 1,292 1,241 0.22 / 3 2,077 1.0

VLAN 1,247 1,194 0.0 3 3,010 3 3,472 1.0
NETLINK_XFRM - 1,833 2,481 1.0 22 4,536 24 5,056 1.0

#total common - 61,074 68,241 - 626 150,026 756 163,670 -
#total all - 82,297 90,120 865 211,271

* means there are multiple families grouped together for better fuzzing;
/ means the family is not supported.
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