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 A B S T R A C T

DBMS (Database Management System) bugs can cause serious consequences, posing severe security and privacy 
concerns. This paper works towards the detection of crash-related bugs and logic bugs in DBMSs, and aims 
at solving the two innate challenges, including how to generate semantically correct SQL queries in a test 
case, and how to propose effective oracles to capture logic bugs. To this end, our system proposes two key 
techniques. The first key technique is called context-sensitive instantiation, which can obtain all static semantic 
requirements to guide query generation. The second key technique is called multi-plan execution, which can 
effectively capture logic bugs. Given a test case, multi-plan execution makes the DBMS execute all query 
plans instead of the default optimal one, and compares the results. A logic bug is detected if a difference 
is found among the execution results of the executed query plans. We have implemented a prototype system 
called Kangaroo and applied it to three widely used and well-tested DBMSs, including SQLite, PostgreSQL, and 
MySQL. Our system successfully detected 54 previously unknown bugs, including 41 crash-related bugs and 
13 logic bugs. The comparison between our system with the state-of-the-art systems shows that our system 
outperforms them in terms of the number of generated semantically valid SQL queries, the explored code paths 
during testing, and the detected bugs.
1. Introduction

Database management systems (DBMSs) provide fundamental in-
frastructure for many applications (Anon, 2022k,f), so it is crucial that 
they can be relied upon. DBMS bugs could result in data leakage, data 
manipulation, or service termination, and even pose severe security 
threats (Bannister, 2021; Cimpanu, 2019; Jung et al., 2019; Zhong 
et al., 2020). Thus, timely detection of DBMS bugs is an emerging need.

DBMS bugs can be roughly categorized into crash-related bugs and 
logic bugs. The crash-related bug occurs when the DBMS abnormally 
terminates due to a memory error or an assertion failure. A logic bug 
occurs when DBMS produces an incorrect output for a given test case. 
Recent works show that coverage-guided mutation-based DBMS fuzzing 
systems (Andreas Seltenreich, 2022; Chen et al., 2021; Zhong et al., 
2020; Liu et al., 2021; Zhang et al., 2021; Ghit et al., 2020) have proven 
more effective than generation-based ones because they can generate 
more diverse test cases to trigger the bugs.

However, effectively detecting DBMS bugs has two innate chal-
lenges. The first challenge is how to generate syntactically and semantically 
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correct SQL statements as test cases. DBMS performs syntactic and seman-
tic checking on the SQL statements to ensure their validity. Invalid SQL 
statements will be discarded before being fed into the DBMS execution 
engine and therefore cannot trigger bugs in the execution engine. The 
second challenge is how to propose effective oracles to capture logic bugs.
Unlike crash-related bugs that can easily be captured by sanitizers such 
as ASan (Anon, 2022a), logic bugs that generate incorrect results are 
hard to detect.
Limitations of Existing Systems Existing DBMS fuzzers have limita-
tions in addressing these challenges. First, current DBMS fuzzers are 
limited in generating diversity and valid SQL statements due to the 
incomplete and inaccurate semantic constraints they obtain. In general, 
a test case contains multiple SQL statements, where each statement con-
tains many variables (i.e., identifiers and constants) that should satisfy 
the semantic constraints to guarantee semantic correctness. Existing 
systems always try to strike a balance between the diversity and validity 
of generated queries. For example, SQLancer (Rigger and Su, 2020a,b,c; 
Ba and Rigger, 2024) achieves high validity of generating queries but 
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covers only a limited subset of the entire SQL grammars. In contrast, 
Squirrel (Zhong et al., 2020) and SQLRight (Liang et al., 2022) support 
full SQL grammars but can only gather identifier types (e.g., table, col-
umn) constraints. However, these constraints are incomplete, causing 
many invalid queries to be generated. For example, even though all 
identifier types in the statement “SELECT Name+1 FROM StudentList” are 
correct, it is invalid in PostgreSQL because it adds a string to an integer. 
Therefore, we need an SQL statement generator that supports all SQL 
grammars while maximizing the validity of generated statements to 
enhance testing efficiency.

Second, oracles used by existing systems (Rigger and Su, 2020c,a,b; 
Liang et al., 2022; Tang et al., 2023; Hao et al., 2023; Song et al., 
2023) to detect logic bugs have strict requirements on the SQL state-
ments. This makes the fuzzing system only explore a narrow space 
of inputs, leading to limited bugs that can be detected. For example, 
NoREC (Rigger and Su, 2020a) requires that the effective SQL query 
in a test case has WHERE clauses, thus it can only detect logic bugs 
due to the optimization in WHERE clauses. To address the limitation, 
TQS (Tang et al., 2023) and MOZI (Liang et al., 2024) leverage the 
idea of differential testing. They try to explore multiple query plans for 
SELECT statements by changing the configuration of DBMS and dis-
cover logic bugs by comparing their execution results. Each query plan 
can be viewed as an optimization combination of the DBMS for that 
statement. However, both of them can only cover partial optimization 
combinations in DBMS. Hence, an oracle that can be applied to SQL 
statements without strict requirements and explore more query plans 
is needed.
Our Solution This work proposes two key techniques to solve the 
two innate challenges. The first key technique is called context-sensitive 
instantiation, which performs a context-sensitive analysis to collect 
more comprehensive and accurate semantic constraints to improve 
the semantic correctness of the generated input. For instance, a SQL 
statement “SELECT x1+i1 FROM x2 WHERE x3=x4” has four identifiers x1∼x4 
and a constant i1. Squirrel and SQLRight can only infer that x1, x3 and 
x4 are columns of the table x2. In contrast, our system can additionally 
infer that the type of column x1 must be numeric and the type of 
columns x3 and x4 should be comparable (e.g., both are string). With 
more inferred semantic constraints, our system can enhance the validity 
of generated test cases while maintaining their diversity. We evaluated 
the effectiveness of our method and found it achieves 1.14x-3.22x 
higher semantic correctness than previous approaches (Section 5.2).

The second key technique is called multi-plan execution (abbreviated 
as MPE), a novel and general test oracle for detecting logic bugs in 
DBMS. MPE does not put strict limitations on the SQL queries that can 
be tested, which improves the capability of edge and bug discovery 
(Section 5.4). MPE leverages the idea of differential testing to compare 
the execution results of multiple query plans of a SQL query. Specifically, 
when a query is submitted to a DBMS, the query optimizer typically 
evaluates various query plans and determines the optimal one to ex-
ecute. MPE hooks the query optimization process to make the DBMS 
execute all the query plans (instead of the optimal one) and compares 
the results. A logic bug is detected if the results from different query 
plans are inconsistent.
Prototype and Evaluation We implemented a prototype named Kan-
garoo and applied it to three widely-used DBMSs: SQLite (Anon, 2022j), 
PostgreSQL (Anon, 2022h), and MySQL (Anon, 2022g), to evaluate its 
effectiveness. Kangaroo successfully identified 54 new bugs, consisting 
of 13 logic bugs, 19 crashes, and 22 assertion failures. As of the time of 
writing, 34 of these bugs have been fixed, with 11 assigned CVEs (Anon, 
2022d). These results demonstrate the efficacy of our system. We 
also compared Kangaroo with leading DBMS testing tools: Squirrel, 
SQLancer, and SQLRight. After conducting a 24-hour test on the three 
DBMSs, Kangaroo significantly outperforms these tools embedded with 
varying test oracles in terms of edge and bug discovery.

This work makes the following main contributions.
2 
Fig. 1. The example illustrates several syntactic rules of SQL. It contains five SQL 
clauses and some of their patterns. The uppercase words represent SQL keywords or 
variables, while the others represent SQL clauses.

• We revealed two challenges of effectively detecting DBMS bugs 
and the limitations of existing solutions.

• We proposed two key techniques to solve the challenges, in-
cluding context-sensitive instantiation to improve the semantic 
correctness of the mutated SQL queries and the MPE that can be 
applied to richer kinds of SQL queries can cover more query plans.

• We implemented a prototype system and applied it to three popu-
lar DBMSs and successfully detected 54 new bugs. A comparison 
with the previous approaches demonstrates the effectiveness of 
our two key techniques.

2. Background

2.1. Structured Query Language

Relational DBMSs use Structured Query Language (SQL) (Cham-
berlin and Boyce, 1974) for querying and maintaining the database. 
SQL statement is the smallest execution unit that typically consists of 
one or several SQL clauses, e.g., WHERE clause, FROM clause. Each SQL 
clause is a meaningful logical chunk that consists of tokens (including 
identifiers, constants, and SQL keywords), and sub-clauses. We refer to 
identifiers and constants as variables in this paper because their values are 
changeable and their changes do not affect the syntactic structure.

As shown in Fig.  1, each SQL clause consists of one or more specific 
patterns, with each pattern corresponding to a particular semantics. 
For example, the expression clause can be a literal, a column, or an 
arithmetic or logical expression. Each pattern may impose semantic 
requirements on sub-clauses or variables. For instance, the arithmetic 
expression pattern typically requires operands to be numeric. When 
the operands are columns, they must also be numeric. In conclusion, 
the semantic requirements of a variable (i.e., semantic constraints) are 
determined by the clauses to which it directly or indirectly belongs, as 
well as the patterns of these clauses. Failure to meet these requirements 
will result in a semantic error, causing the DBMS to reject the statement 
during earlier validation checks.

In this paper, we refer to the semantics of clauses as context in-
formation. Since our method derives semantic constraints by analyzing 
the patterns of all SQL clauses in a statement, we call it context-sensitive 
instantiation.

2.2. SQL query processing

A typical DBMS processes an SQL query in several stages, involving 
four main components: the parser, translator, planner, and executor. A 
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Table 1
Eight levels of SQL statement correctness and the corresponding reachable DBMS 
modules. The final column indicates the theoretical lower bound of the correctness 
level for input generated by different fuzzersa.
 Level Input class Module Incorrect input examples Fuzzers  
 1 Binary input Lexer – AFL  
 2 Sequence of ASCII Lexer Binary input  
 3 Sequence of words Parser Incorrect SQL keywords  
 4 Syntactically correct Translator Missing semicolon  
 5 Identifier type correct Translator Query a trigger Squirrel  
 SQLRight  
 6 Data type correct Translator Add an integer to a string  
 7 Statically conforming Executor Ambiguous column names Kangaroo 
 8 Dynamically conforming Executor Scalar query returns  
 (Semantic correctness) multiple values  
a Fuzzers that do not support the full SQL grammar, such as SQLancer, are excluded 
from the table.

typical DBMS consists of four main components: the parser, translator, 
planner, and executor. First, the parser performs lexical analysis to 
divide the query into tokens (e.g., SQL keywords). It then performs 
syntax analysis to construct a raw parse tree that represents the query’s 
syntactic structure. During this process, it checks for syntax validity 
and terminates execution if any errors are found. Next, the translator 
analyzes the parser tree, checks its semantics, and converts it into 
an internal representation that can be used by the optimizer and 
the executor. The planner (also called optimizer) will try to find all 
possible query plans for a SQL statement and select the optimal one 
by evaluating the cost of each query plan. Finally, the executor of 
DBMS runs the optimal query plan and returns the required result. The 
executor also checks whether the dynamic semantics are correct during 
execution.

Among these components, the planner and executor are the most 
complex and error-prone. Therefore, improving the semantic valid-
ity of generated queries is essential to effectively testing these two 
components.

2.3. Levels of DBMS testing

The correctness of a SQL statement can be divided into eight levels 
as shown in Table  1. For a syntactically correct SQL statement, the 
value of variables in the statement determines whether the statement 
is semantically correct. The statement’s context information imposes 
various restrictions, including static constraints checked by the trans-
lator and dynamic constraints checked by the executor. For example, in 
the statement SELECT 1==(SELECT a FROM t1), a should be numeric, which 
is a static constraint; the subquery SELECT a FROM t1 should return no 
more than one row, which is a dynamic constraint. Statements with all 
constraints satisfaction are semantically correct (level-8). A statement 
is statically conforming (level-7) if it meets all static constraints but 
fails to satisfy certain dynamic constraints. Static constraints can be 
further divided into different levels. Identifier type correct (level-5) 
indicates that all identifiers in SQL statements have correct types 
(e.g., Column) and the data type correct (level-6) guarantees the data 
type (e.g., integer) of variables is correct.

Different systems can guarantee different correctness levels.
General-purpose fuzzers (e.g., AFL (Anon, 2022c)) are inefficient for 
DBMS testing since they lack sophisticated approaches to generate 
higher-level correct inputs. Benefiting from syntax-preserving muta-
tions and constraint-guided instantiation, Squirrel is more likely to 
generate higher quality input, thus significantly improving the ability to 
detect bugs. However, Squirrel has to limit the complexity of generated 
queries to tolerate its incomplete and inaccurate constraints. To better 
explore the core modules of DBMS, we propose a new method to 
generate more diverse and complex test cases, while at the same time, 
they can be statically conforming (level-7).
3 
2.4. Test case generation

DBMS testing aims to trigger bugs by constructing abundant test 
cases that typically contain multiple SQL queries. The query gen-
eration consists of two phases: structure generation and variable 
instantiation.

The structure generation constructs the syntactic structure of SQL 
queries (i.e., without concrete variables) to ensure the generated SQL 
queries can pass the SQL parser. There are two structure generation 
methods. The rule-based ones (Sutton et al., 2007; Tang et al., 2023; 
Rigger and Su, 2020a,b,c) generate test cases following a predefined 
model. However, building a precise model requires domain knowledge. 
Besides, the generated inputs cannot efficiently explore the program’s 
state space since they waste much effort on similar queries. Mutation-
based methods (Neystadt, 2008; Zhong et al., 2020; Liang et al., 2022, 
2023; Fu et al., 2022) generate new test cases by performing grammar-
based mutation on seed queries. Specifically, it first generates a syntax 
tree for seed queries, then creates specific mutations by using mutation 
operators on a tree node.

The variable instantiation concretizes the variables within queries to 
improve the semantic correctness of generated SQL queries. For a given 
syntactic structure of SQL queries, each variable within SQL queries 
should satisfy specific constraints to ensure semantic correctness. The 
variable instantiation analyzes the syntactic structure of SQL queries 
to collect the constraints, and then fills the variables with concrete 
values that satisfy these constraints. However, inferring comprehensive 
and accurate constraints from SQL statements is challenging due to 
the complexity and diversity of SQL grammar. Without accurate con-
straints, previous DBMS fuzzers tend to generate many invalid queries. 
To tolerate the inaccurate constraints, previous works either support a 
small subset of SQL grammars (Rigger and Su, 2020a,b,c) or limit the 
complexity of generated queries (Zhong et al., 2020; Liang et al., 2022).

2.5. DBMS test oracles

An oracle is a mechanism for determining whether the actual out-
puts match the expected outcomes, facilitating logic bug detection. The 
two most widely used types of test oracles are differential testing and 
metamorphic testing. Differential-testing-based oracles (Slutz, 1998; 
Jung et al., 2019; Liang et al., 2024) use different implementations of 
the same functionality as cross-referencing oracles. They provide the 
same inputs to a series of similar systems, such as DBMSs with different 
configurations, and then observe the results. Any inconsistency between 
the results may indicate a potential bug. However, these methods typi-
cally test limited DBMS functionalities. For instance, functionalities that 
cannot be modified through configuration settings remain untestable 
when comparing DBMSs with different configurations.

Metamorphic-testing-based oracles (Rigger and Su, 2020a,b; Ba 
and Rigger, 2024; Hao et al., 2023) address the test oracle problem 
by applying a specific input transformation that produces predictable 
changes in the output. They detect bugs by verifying whether the 
transformed query’s output exhibits the expected change compared 
to the original query’s output. For example, NoREC (Rigger and Su, 
2020a) converts a query that is potentially optimized by DBMS into a 
semantically equivalent one that can hardly be optimized, then checks 
for consistency between the results of the original and the translated 
query. However, these methods are typically limited to a subset of SQL 
that can be translated, thereby limiting the scope of queries that can 
be tested.

3. Motivating examples

In this section, we use two real examples to demonstrate the advan-
tages of our system’s two key techniques.
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Fig. 2. Comparison of Variable Instantiation Approaches. (a) A mutated test case with the final statement undergoing instantiation. (b) Type-sensitive instantiation relies on 
predefined rules and identifier types, often producing incorrect and incomplete constraints. (c) Context-sensitive instantiation constructs a semantic tree and performs bottom-up 
analysis to infer accurate and complete constraints, improving the validity of generated queries. Each node in the semantic tree represents a SQL clause and its associated pattern, 
with child clauses indexed as $1, $2, etc. The leading number denotes the order of bottom-up analysis.
3.1. Context-sensitive instantiation

As aforementioned, variable instantiation requires that the variables 
in the SQL statement meet their semantic requirements to ensure 
semantic correctness. However, due to the significant syntactic dif-
ferences between DBMSs, using a general approach to infer accurate 
semantic constraints from SQL statements is challenging. Due to the 
limited human effort, some test case generators in previous DBMS 
fuzzers (Rigger and Su, 2020a,b,c; Ba and Rigger, 2024), only support 
a small subset of SQL grammars, which limits the diversity of the 
queries they generate. Therefore, the input space that can be tested 
is narrow. Expanding this approach to support full SQL grammars 
requires significant engineering effort, and the grammar differences 
across DBMSs limit its universality.

To address this issue, some DBMS fuzzers (Zhong et al., 2020; 
Liang et al., 2022) use a general method (called type-sensitive instan-
tiation in this paper) that infers the dependency between identifiers 
(one type of semantic constraint) through theirs type (e.g., TableDef, 
ColumnRef) and some manually predefined rules. However, without the 
context information, these fuzzers tend to build incorrect and incom-
plete dependencies among variables, causing many invalid queries to 
be generated. Moreover, the difficulty of guaranteeing query validity 
dramatically increases as query complexity grows. To mitigate this 
impact, they limit the complexity of generated queries by limiting the 
length of statements in test cases and the size of test cases. Even so, 
they still generate over 40% invalid queries.

Generating invalid queries has a significant negative impact on 
fuzzing performance. First, invalid queries discarded by DBMS earlier 
validation checks cannot trigger deep logic, such as optimization and 
execution processes. Therefore, obtaining accurate semantic constraints 
to improve the semantic correctness of generated queries is critical for 
detecting deep bugs in the DBMS. More importantly, invalid queries 
are ineffective for logic bug detection, as they cannot be executed 
successfully and produce output for comparison.
Why Existing Works Suffer from Inaccurate Semantic Constraints.
Squirrel (Zhong et al., 2020) proposes type-sensitive instantiation
which can instantiate queries involving full SQL grammars supported 
by DBMS at the cost of lower validity. Specifically, it labels the types 
of identifiers during parsing, and infers their dependencies according 
to manually predefined rules. Then, it instantiates variables to ensure 
that they satisfy all these dependency constraints. For example, the 
4 
third dependency rule in Fig.  2b builds the dependency constraints that 
any identifier of type ColumnRef could be a column of any identifier of 
type TableRef. Based on type-sensitive instantiation, SQLRight (Liang 
et al., 2022) enhances the accuracy of inter-statement constraints by 
maintaining DBMS states (e.g., table schema). This prevents statements 
from referencing tables that have been dropped by a preceding DROP 
statement. These approaches do not require consideration of context 
information, making their implementation simple and ensuring their 
universality across various DBMS syntax implementations.

However, all these works suffer from incorrect and incomplete 
intra-statement constraints, as they only infer the dependency ac-
cording to predefined rules but ignore the context information. The 
inaccurate constraints cause many invalid queries to be generated. Fig. 
2b shows an incorrect concrete statement suffers from three different 
semantic errors even though it satisfies all constraints considered by 
type-sensitive instantiation utilized by SQLRight.

The incorrect constraints stem from assigning the scope of each 
identifier based on predefined, coarse-grained rules, which are inher-
ently inaccurate, such as assigning the scope of an identifier to the 
statement it belongs to. In Fig.  2b, they build an incorrect constraint 
that x5 could be a member of x6 based on the dependency rules that a 
ColumnRef could be a member of any TableRef. Unfortunately, because 
x4 belongs to the TableReference x2 JOIN x3 ON x4=x5, x4 could only be 
the member of x2 or x3.

The incomplete constraints mainly result from ignoring the at-
tribute requirements of the identifiers. For example, a column iden-
tifier may need to meet certain requirements in terms of name, data 
type (e.g., INT, TEXT), and attributes (e.g., PRIMARY KEY, FOREIGN KEY, 
GENERATED), etc. In Fig.  2b, the invalid query suffers from ambiguous 
column names and illegal expression errors due to the failure to account 
for the constraints on the name and data type of columns. Further-
more, the incomplete constraints may also arise from overlooking the 
semantic requirements on constants. For example, the semantics of a 
constant might represent the ordinal position of a column in a table, 
so its valid values should be integers between 0 and the number of 
columns in the table.

Extending the predefined dependency rules further can help miti-
gate the false positives and false negatives in constraints derived from 
type-sensitive instantiation. However, the absence of context informa-
tion hinders the accurate assignment of scopes to identifiers and the 
recognition of their attributes and associated requirements. As a result, 
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it cannot fundamentally resolve the problems of false positives and false 
negatives.

Our Solution We propose context-sensitive instantiation, which infers 
constraints of variables, including both identifiers and variables, from 
their contextual information (i.e., the SQL clause pattern and relation-
ships among clauses), rather than predefined rules. Due to differences 
in grammar implementations across DBMSs, deriving semantic con-
straints from context presents significant challenges to generalizability. 
To overcome this, as shown in Fig.  2c, we first convert the syntax tree 
into a unified semantic tree, where each node corresponds to a specific 
SQL clause. Semantic constraints are then inferred by traversing this 
semantic tree and analyzing each clause node in a post-order manner.

This approach enables the accurate capture of attribute require-
ments and scopes for variables, thereby avoiding the incorrect and 
incomplete constraints that type-sensitive strategies encounter. Specifi-
cally, in the Expression clause 3⃝, we can infer that both the column x1 
and the constant i1 must be numeric, preventing the operator mismatch 
error. In the TableReference clause 11⃝, the context restricts x4 and x5 
to reference only columns within the joined table x2 JOIN x3, thereby 
preventing erroneous references to x6. Besides, this TableReference 
clause also enforces that x4 and x5 must reference unique columns, 
which prevents self-joins in this clause.

Since this process is similar to the semantic checking process in 
DBMSs (DBMSs check the semantics during tree traversal whereas 
we collect the constraints they check), it can theoretically obtain ac-
curate static constraints and thereby generate statically conforming 
statements. Our approach ignores dynamic constraints because en-
forcing dynamic constraints requires intermediate states during query 
execution, which is challenging. We leave it as part of future work.

3.2. Multi-plan execution

Metamorphic testing is a prevalent approach to testing DBMS. It 
finds some specific changes or transformations to the input that will 
cause predictable changes to the output. A result that does not conform 
to the expected changes indicates a potential logical bug. However, all 
these oracles (Rigger and Su, 2020a,b; Hao et al., 2023; Song et al., 
2023; Ba and Rigger, 2024) construct test cases based on specific 
features, which limits the SQL grammar they can support. For example, 
NoREC (Rigger and Su, 2020a) requires the queries to be a SELECT 
statement with WHERE clause such that it can do the transformation. An-
other oracle PQS (Rigger and Su, 2020c) generates queries along with 
its ground-truth result which also puts strict limitations on generated 
queries.

Another type of DBMS test oracle leverages the idea of differential 
testing. TQS (Tang et al., 2023) and MOZI (Liang et al., 2024) run 
one query under different DBMS optimization settings, which may 
alter the query plans chosen for execution. This method imposes fewer 
restrictions on test queries, allowing it to test a wider range of DBMS 
functionality. However, optimization settings in DBMS typically only 
manipulate a subset of the optimizations, therefore some optimiza-
tion strategies in DBMS can never be tested by this approach. In 
addition, optimization settings cannot force optimization adoptions if 
the optimization cannot reduce the amount of computation. Besides, 
optimization settings are global settings that cannot control the scope 
of optimizations. For example, it cannot disable the index search in 
table t1 but enables index search in t2. These limit their ability to 
explore various combinations of optimizations, thus covering limited 
query plans.

We propose a novel test oracle, MPE, which imposes no constraints 
on SQL grammar and can explore all possible query plans for each 
query. Specifically, it hooks into the DBMS optimizer to execute all 
query plans and compare their results. If the results of these query plans 
are inconsistent, a logic bug is detected. In the following, we use one 
real-world SQLite bug in Fig.  3 to illustrate why the existing oracles 
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Fig. 3. A mutated test case that exposes a real-world logic bug in SQLite, detected 
by MPE but missed by previous oracles (e.g., NoREC, TQS). The instantiated SELECT 
statement Q1 yields four valid query plans, with the last one producing a result 
inconsistent with the others. By manually transforming Q1 into Q2, we construct a 
query that can trigger the buggy plan in the original DBMS.

cannot detect the logic bug and how the MPE can capture such a bug. 
When the test case is executed, the DBMS optimizer generates four valid 
query plans for the SELECT statement Q1. Among these, plan one is the 
optimal plan and is executed by SQLite by default, while plan four is 
the buggy plan.
Why Existing Works Cannot Detect the Bug. The oracles NoREC, 
TQS, and MOZI all attempt to explore different query plans for com-
parison. Specifically, NoREC shifts the condition in the WHERE clause 
to the SELECT_TARGET, then executes both to compare the execution 
result. However, the SELECT statement Q1 in Fig.  3 does not meet the 
requirement (lacks WHERE clause), thus unable to detect the bug. TQS 
and MOZI can additionally test plan two in Fig.  3 by turning off index 
optimization. However, they still fail to reveal the bug, which only 
occurs in plan four.
Why Our System Can Capture the Bug. By hooking the query plan 
selection function, our system executes all valid query plans for a given 
query and compares their outputs. Since plan four produces a non-
empty result that differs from the results of the other three plans, our 
system successfully identifies this as a logic bug.

One may argue that the bug found in query plan four is mean-
ingless since it will not be executed by default. In other words, the 
bug cannot be triggered in practice. However, even though the buggy 
query plan is not optimal for the SELECT statement in the test case, it 
can be the optimal one by adjusting the statement or changing the 
optimization setting. For example, by adjusting the statement Q1 to 
Q2, we successfully triggered the buggy query in the original DBMS. 
Actually, almost all bugs detected by MPE can be triggered in practice. 
We discuss exceptions later in Section 6.2.

The root cause of this bug is the incorrect equivalence transfer 
optimization. Because the expression in join constraints clause is c1=c0 
AND c2=c0, which implies c1=c2. SQLite uses the index on c1 for the 
constraint on c2 because of this inference. Specifically, it uses the values 
of c0 as the key to search index t1_c1 to fetch all records that satisfy 
c1=c0 and then tries to judge c1=c0 on these records again. However, it 
should check c1=c2 rather than c1=c0. As a result, the expression c1=c0 
AND c2=c0 is incorrectly optimized to c1=c0.

3.3. Focus of this paper

This work aims to enhance the effectiveness of fuzzers in detect-
ing bugs, especially logical ones, in DBMSs by proposing two novel 
techniques. The first technique is a variable instantiation (Section 2.4) 
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Fig. 4. The overall architecture of our system.
approach, which infers more accurate semantic constraints on state-
ments to improve the semantic correctness of generated SQL state-
ments. Existing works that propose new SQL structure generation ap-
proaches (Neystadt, 2008; Zhong et al., 2020; Liang et al., 2022, 
2023; Fu et al., 2022; Wang et al., 2019) or utilize error feedback 
to guide the variable instantiation (Jiang et al., 2023) are orthogonal 
to our proposed technique. The second technique is a test oracle that 
can detect logic bugs on a broader range of DBMS functionality than 
previous approaches.

4. Design

4.1. Overall design

Our system aims at detecting both crash-related bugs and logic bugs 
in DBMSs. Fig.  4 illustrates the overall architecture of our system. The
parser generation (Section 4.2) takes a semi-automatic way to generate 
SQL parsers before the testing. During the testing, it first performs a
parse tree mutation (Section 4.3) to mutate the query structure while pre-
serving syntactic correctness. Then, our system conducts the process of
context-sensitive instantiation (Section 4.4) to instantiate all variables in 
queries. At last, the mutated SQL queries will be executed by the DBMS. 
The multiple-plan execution (Section 4.5) hooks into the optimizer in 
DBMS to execute all query plans (instead of the optimal one) and 
compare the returned results. Any inconsistency between the results 
indicates a logic bug. Any crash-related bug can also be detected during 
the execution of query plans.
Example We use the test case in Fig.  3 that triggers a logic bug in 
SQLite to illustrate the workflow of our system. Generating this test 
case takes several rounds of mutation on the initial seed. We take 
the last round of mutation as an example. The last round of mutation 
is performed on the SELECT statement which replaces the expression 
node x>i with the expression node x=x. After that, our system performs 
context-sensitive instantiation to replace the symbolic values with con-
crete values. Specifically, it first normalizes the parse tree into a unified 
semantic tree to eliminate the differences in syntactic structure. Then, it 
analyzes the semantic tree to collect semantic constraints on variables. 
Next, it utilizes the randomized backtracking algorithm (Anon, 2023a) 
(also called randomized depth-first search) to find a random solution 
for all variables that satisfy all semantic constraints. At last, it translates 
the concretized semantic tree to an SQL string as a new statement (Q1). 
The mutated test case will be fed to the modified DBMS which executes 
all four query plans one by one and finds that three of them return an 
empty result, while the fourth plan returns a non-empty value. This 
leads to the detection of the logic bug.

4.2. Parser generation

The syntactic rules of SQL parsers vary in different DBMSs. A valid 
statement for SQLite may be rejected by the parser of PostgreSQL. To 
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guarantee the mutated test case is syntactically correct, an accurate 
parser for each DBMS is needed.

Implementing an accurate parser requires non-negligible effort. To 
save manual effort, we propose a semi-automatic approach to generate 
the parser. Our core insight is that almost all DBMSs leverage a stan-
dardized format called Backus Normal Form (BNF) (Knuth, 1964) to 
describe the grammar of the supported SQL queries. Thus, we can con-
struct an accurate parser by automatically extracting and analyzing the 
DBMS BNF rules. Specifically, the parser generator extracts syntactic 
rules (Fig.  1) from the target DBMS grammar file. Then, it uses syntactic 
rules and a semantic configuration to build the parser. We explain the 
semantic configuration in parse tree normalization of Section 4.4.

4.3. Parse tree mutation

Our system mutates the SQL queries based on the parse tree. This 
can ensure the mutated queries are always syntactically correct. Similar 
to Squirrel (Zhong et al., 2020), we also focus on structure mutation 
since it is more effective than data mutation. Specifically, our system 
symbolizes all the variables in statements and concretizes them after 
the mutation.

To mutate a test case, our system randomly picks up one node
v from the parse tree and randomly fetches a new one w with the 
same type from the mutation library. Then, it replaces v (including 
its children) with w. The mutation library is a dictionary where the 
key is the node type and the value is a list of distinct parse trees 
rooted at nodes of that type. Our system accepts DBMSs’ official test 
cases to initialize the mutation library. The mutation strategy is not a 
contribution of our work, as it is basically the same as the previous 
work (Zhong et al., 2020).

4.4. Context-sensitive instantiation

After mutating the parse tree, we analyze the SQL statement to 
collect semantic constraints and instantiate all variables in the mutated 
query. Building a general analysis module for SQL is challenging for 
several reasons. First, the query analysis logic in DBMSs is usually 
deeply embedded and difficult to reuse or extend. Second, although 
DBMSs typically follow the standard SQL grammar, they often include 
many extra clauses. Some of these are dialect clauses (e.g., hint clauses) 
used to support DBMS-specific features. Others are internal clauses intro-
duced during implementation. These internal clauses do not contribute 
to actual meaning but increase the complexity of constraint analysis. 
More importantly, these internal clauses vary across DBMSs, making it 
difficult to design a unified approach for constraint analysis.

To address these challenges, we normalize the parse tree into a 
unified semantic tree. Each node in the semantic tree represents a 
SQL clause. This unified representation allows the semantic tree to 
capture the meaning of SQL statements in a simpler and more general 
way. To support different DBMS dialects, the semantic tree grammar 
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Fig. 5. An example to show the process of translating a parse tree to a unified semantic tree.
includes both standard clauses (e.g., WHERE clause) and dialect clauses. 
We then perform context-sensitive analysis on this semantic tree to 
extract semantic information and infer constraints. Finally, we use these 
constraints to guide variable instantiation.
Step I: Parse Tree Normalization The parse tree is a hierarchical 
representation of the syntactic structure of an SQL statement, where 
each node corresponds to a clause or token in the statement. However, 
different DBMSs often produce significantly different parse trees for 
the same SQL input due to variations in their parsers. To enable 
generalizable semantic analysis, we normalize parse tree into a unified 
semantic tree that abstracts the SQL clause structure in a consistent 
manner.

Parse tree differences across DBMSs stem from two main factors.
First, DBMSs introduce extra clause definitions in their parsers. These 
include dialect clauses and internal clauses. Dialect clauses support DBMS-
specific features. For example, MySQL introduces a hint clause to 
guide query optimization. We retain such clauses in the semantic tree 
to preserve compatibility with DBMS-specific features. Internal clauses
are used for implementation convenience but do not contribute to 
actual meaning. As such, they are considered redundant clauses and 
are removed during normalization. For instance, some DBMSs define 
a comp_op clause to unify comparison expressions as expression comp_op 
expression. Removing this clause yields a more granular form, such as 
expression ‘>’ expression, without semantic loss. More importantly, 
these granular patterns tend to be more consistent across different 
DBMSs. Second, clause and token names (including SQL keywords and 
variables) are often inconsistent across DBMSs. To resolve this, we 
manually annotate each clause with its corresponding standard SQL 
clause name in semantic configuration.

Based on these insights, we design a two-step normalization proce-
dure (Fig.  5) to produce a normalized semantic tree for downstream 
tasks. (1) Remove redundant clauses from the parse tree. For each 
removed clause, its child nodes are directly reattached to the par-
ent. (2) Convert the tokens and remaining clauses and tokens into 
corresponding semantic clause according to the semantic configuration.
Step II: Semantic Constraints Collection We analyze the semantic 
tree to infer semantic constraints. Algorithm 1 illustrates the constraint 
inference process. For each SQL statement, the system conducts a post-
order traversal of its semantic tree. During traversal, each semantic 
node (i.e., SQL clause) is analyzed to identify its pattern. Based on 
the identified pattern, the corresponding GetConstraint function is in-
voked to extract semantic information and infer relevant constraints. 
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These GetConstraint functions are implemented according to the target 
DBMS’s official documentation. This design enables precise inference 
of variable scopes and attribute requirements.

SQL clauses with the same syntax may pose different semantics 
constraints across DBMSs. To address this, we provide override func-
tions to accommodate the specific requirements of each DBMS. This 
design ensures efficient adaptation of our system to new DBMSs with 
minimal additional effort. A detailed description of the GetConstraint 
implementation is provided in Appendix  A.1.

Due to the diversity and volume of SQL clauses, implementing 
customized constraint analysis for each clause requires substantial en-
gineering effort. To balance accuracy with generality and reduce imple-
mentation overhead, we adopt a hybrid granularity semantic analysis 
strategy. Specifically, for clauses not yet covered by fine-grained cus-
tomized analysis, a coarse-grained but generic semantic analysis is 
applied as a fallback. This generic analysis is similar to type-sensitive 
instantiation, which infers approximate semantic constraints based on 
predefined rules. This design allows for direct adaptation to new DBMSs 
and progressive refinement as fine-grained analysis is incrementally 
developed.

Step III: Semantic Constraints Enforcement Conceptually, enforcing 
semantic constraints can be viewed as a Constrained Random Sampling 
(CRS) problem. It involves finding a solution to a constrained problem 
such that each feasible solution has an approximately equal probability 
of being chosen. Although the problem of finding a single solution to 
constrained problems has been extensively studied, less research has 
been paid to the efficient generation of random solutions. Given the 
relatively low complexity of static semantic constraints in SQL queries, 
our system adopts a randomized backtracking algorithm (Anon, 2023a) 
to solve these constraints. This method allows us to generate valid 
solutions while preserving randomness. In future work, we intend 
to integrate more sophisticated constraint sampling techniques, such 
as SMTSampler (Dutra et al., 2018), to efficiently find more diverse 
solutions.

The high-level idea of randomized backtracking algorithm is to 
randomly enumerate all possible dependencies for each variable until 
finding one determined dependency that satisfies all constraints. Ini-
tially, all variables are unassigned. At each step, a variable is chosen 
and a random candidate value is assigned to it and the satisfaction of 
the partial assignment is checked. If the partial assignment is valid, 
the algorithm proceeds recursively with the remaining unassigned vari-
ables. If a conflict is detected, it performs backtracking to explore 
alternative assignments. A valid solution is found when all variables 
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Algorithm 1: Algorithm of semantic analysis.
Input: SemanticTrees: the root node of the semantic tree of an 

SQL statement
Output: ConstraintSet: all semantic constraints of the current 

statement

1 Function  CollectConstraints( SemanticTree):
2  ConstraintSet ← vector()
3  PostOrderTrav( SemanticTree,  ConstraintSet)
4 return  ConstraintSet
5 Function  PostOrderTrav( SemanticNode,

ConstraintSet):
// children of the semantic node include 

semantic node, SQL keyword, and variables
6 for each child C in  SemanticNode.children do
7 if C is semantic node then
8  PostOrderTrav(C)
9 end 
0 end 
1  constraints ←  ClauseAnalyze (C)
2  ConstraintSet.update( constraints)
3 Function  ClauseAnalyze( SemanticNode):
4  MatchPattern ←  FindPattern(

SemanticNode.children) // find the matching 
pattern of the SQL clause

5  constraints ←  Getconstraint( MatchPattern)
6 return  constraints

1 @@ -5496,6 +5607,9 @@ get_cheapest_fractional_path(
RelOptInfo *rel, double tuple_fraction)

2 Path *best_path = rel->
cheapest_total_path;

3 ListCell *l;
4
5 + if (multi_plan_enable)
6 + return select_next_plan(rel, plan_id);
7
8 /* If all tuples will be retrieved , just return

the cheapest -total path */
9 if (tuple_fraction <= 0.0)

10 return best_path;

Listing 1 A patch snippet for PostgreSQL illustrating how to 
control the plan choose function to execute all query plans. The 
get_cheapest_fractional_path is the plan choose function, and we hook 
into it by adding two lines of code (lines 5–6). When multiple execution 
plans are enabled, it directly returns the execution plan with the 
ordinal number plan_ordinal. We re-execute the queries with different 
plan_ordinal until all query plans have been executed.

have been successfully assigned values that collectively satisfy the full 
set of constraints.
Contribution Summary Context-sensitive instantiation introduces a 
novel analysis approach to extract static semantic constraints from SQL 
statements. Unlike prior approaches that rely on manually predefined 
rules, it infers variable constraints based on the contextual structure 
of SQL clauses. This effectively addresses the issues of inaccurate 
and incomplete constraints in type-sensitive instantiation. By capturing 
more precise and comprehensive constraints, it significantly improves 
the validity of generated SQL test cases.

Context-sensitive instantiation is generalizable across different
DBMSs. First, it resolves structural differences in parse trees generated 
by different DBMSs for the same SQL statement by normalizing them 
into a unified semantic tree. All dialect-specific clauses are preserved 
within the semantic tree to support further semantic analysis. Besides, 
it adopts a hybrid granularity strategy to guarantee both scalability and 
compatibility with diverse SQL dialects. More specifically, it combines 
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coarse-grained analysis for compatibility with fine-grained analysis 
for precise constraint inference. Developers can gradually implement 
fine-grained analysis for dialect clauses to progressively improve the 
accuracy of constraints.

Context-sensitive instantiation is practically applicable to industrial 
DBMS. To the best of our knowledge, PostgreSQL and MySQL are 
among the most complex open-source DBMSs, with approximately 1.05 
million and 3.25 million lines of code (LOC), respectively. Our system 
prototype has been successfully applied to both of them, illustrating the 
practical applicability of our approach.

4.5. Multi-plan execution

MPE focuses on detecting logic bugs in the planner and executor be-
cause these components are the most complex ones and have not been 
well-tested. Our system hooks the query optimization process to execute 
all the query plans for a SELECT statement to detect the incorrect one(s) that 
may cause incorrect results. Aligned with the previous works (Rigger and 
Su, 2020a,b,c; Liang et al., 2022; Tang et al., 2023), we choose SELECT 
statements to demonstrate MPE. MPE can also be used to detect logic 
bugs in other statements (e.g., INSERT, UPDATE, etc.), which will be 
explored as part of future work.

Adopting MPE to DBMSs is not straightforward. The main chal-
lenge is how to make a DBMS execute all query plans with minor 
modifications. Our key observation is that DBMS typically employs a 
plan choose function to compare the estimated cost of different query 
plans and choose the best one. Therefore, by hooking into the plan 
choose function (as shown in Listing 1), we can execute any query plan 
generated by the DBMS. Additionally, we added a loop before the entry 
function for query processing to continuously execute the statement 
with different query plans until all plans are executed. Specifically, 
we record the total number of query plans generated by the DBMS 
during query plan generation phase. An iterator is then employed to 
specify the query plan to be executed in each iteration, incrementing 
sequentially until all plans have been processed. Furthermore, some 
DBMSs perform pruning during the generation of query plans to discard 
plans that are deemed inefficient based on cost estimates. This pruning 
is typically implemented through a dedicated pruning function. By 
hooking into this pruning function, we can retain execution plans that 
would otherwise be discarded.

Such modifications have two advantages. First, they do not break 
the functionality of DBMS, such as generating incorrect query plans, as 
they only intervene in the query plan selection and pruning process. 
Second, they require little implementation effort.
Runtime Overhead Executing all valid query plans for a given SQL 
statement can reduce the number of SQL statements executed within 
a fixed time budget. However, different SQL statements may compile 
into the same underlying query plan, resulting in redundant execu-
tions. Therefore, fuzzing efficiency is more accurately measured by the 
number of distinct query plans exercised or by overall path coverage.

From this perspective, the additional plans executed by MPE do not 
necessarily incur overhead. The actual overhead depends on whether 
executing multiple plans per statement introduces more redundant 
execution than only executing the optimal plan. Our ablation study 
in Section 5.4 demonstrates that enabling MPE slightly improves code 
coverage and results in the detection of more bugs. These findings 
suggest that MPE maintains, and potentially enhances, overall fuzzing 
efficiency despite its increased per-statement cost.

To further improve fuzzing efficiency, we plan to reduce redun-
dant executions by selectively executing query plans in future work. 
Specifically, each query plan will be uniquely identified via hashing and 
tracked with an execution count. Previously untested plans will always 
be executed, whereas previously tested plans will be executed less 
frequently as their execution count increases. This selective execution 
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Table 2
The lines of code of different components.
 Component Language Lines of code 
 Parser generator Python 1917  
 Parse-tree mutator C++ 849  
 Context-sensitive instantiation C++ 12,476  
 Result comparison C++ 909  
 Fuzzer C 5241  
 Other – 798  
 Total – 22,190  

strategy preserves the benefits of MPE while mitigating unnecessary 
redundant executions.
Contribution Summary We present MPE, a novel test oracle for de-
tecting logic bugs in SQL statements that contain multiple query plans. 
Similar to existing oracles such as NoREC and TQS, which detect bugs 
by comparing different query plans, MPE is not applicable to queries 
that yield only a single plan.

MPE introduces a new methodology for comparing query plans. 
Rather than rewriting queries (NoREC) or toggling DBMS optimization 
settings (TQS), MPE modifies the DBMS by hooking into its plan se-
lection function. This approach enables the comparison of results from 
all valid query plans for a given statement. MPE offers the following 
improvements:

Broader SQL feature coverage: Unlike NoREC and TQS, MPE imposes 
no restrictions on the SQL grammar, allowing it to support a wider 
range of SQL features. In contrast, NoREC is limited to queries that can 
be rewritten into a non-optimizable form, and TQS is confined to join 
queries, primarily targeting join-related optimization bugs.

Improve plan coverage and reduce false negatives: MPE explores a 
larger set of query plans per statement, enhancing code coverage and 
increasing the likelihood of exposing bugs hidden in rarely executed 
plans. Moreover, by comparing results across more valid query plans, 
MPE mitigates false negatives that occur when the same incorrect result 
arises in multiple plans due to shared erroneous logic.

4.6. Prototype implementation

We have implemented a prototype system called Kangaroo and ap-
plied it to three widely-used DBMSs: SQLite, PostgreSQL, and MySQL. 
Our system is built on top of AFL 2.56b (Anon, 2022c). It consists of 
21.9k lines of code (LoC) in total. Table  2 summarizes each of the 
components.

The SQL language comprises over 100 distinct types of clauses. 
Some clauses are standard SQL clauses, and some are dialects. Each 
clause typically has multiple syntactic patterns, each associated with 
distinct semantics. For example, the ColumnConstraint clause defines 
the attribute of a column, which contains nine different patterns, 
e.g., PRIMARY KEY and FOREIGN KEY.

Due to engineering constraints, our prototype currently supports 
fine-grained semantic constraint inference for the primary patterns of 
the 45 most frequently used SQL clauses. Among these, 42 are shared 
by the three target DBMSs, while the remaining 3 are DBMS-specific. 
To normalize clause names and facilitate constraint inference, our 
prototype defines 65 mapping rules for PostgreSQL, 79 for MySQL, and 
59 for SQLite in the semantic configuration. Table  3 summarizes the 
types of semantic constraints extracted from supported clauses.

For unsupported patterns and clauses, as discussed in Section 4.4, 
our system adopts a coarse-grained but general schema to infer approx-
imate constraints. Although these constraints may be incomplete, the 
overall semantic constraints captured by our system are always more 
accurate and comprehensive than those of existing methods.
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Table 3
Constraint types supported by our prototype.
 Constraint types Explains  
 Semantic Type Semantic types of identifiers and constants  
 Dependency Dependencies between identifiers  
 

ColumnAttributes

Name Column names  
 DataType Data types of columns, such as INT, TEXT  
 DataValue Constraints on column values  
 Others UNIQUE, PRIMARY_KEY, FOREIGN_KEY,  
 GENERATED, NOT_NULL, etc.  
 

TableAttributes

Name Table names  
 StorageEngine Storage engine of the table  
 Collation Table collation, which affects compression,  
 sorting, and storage of text columns  
 Others TEMPORARY, INSERT,  
 AUTO_INC, MAX_ROWS, etc.  
 
IndexAttributes

Name Index names  
 IndexType Types of indexes (e.g., B-tree, full-text indexes) 
 Others TEMPORARY  
 ConstantAttributes DataValue Constraints on constant values  

5. Evaluation

In this section, we answer the following research questions to show 
the advantages and effectiveness of Kangaroo.

• Effectiveness of detecting bugs in real-world DBMSs. How 
effective is Kangaroo in discovering new bugs in real-world 
production-level DBMSs (Section 5.1)?

• Generating valid queries. How effective is context-sensitive in-
stantiation in generating valid queries (Section 5.2)?

• Comparison with existing techniques. How effective are our 
two techniques in detecting bugs (Section 5.3)?

• Benefits of the proposed two key techniques. How do our two 
techniques help detect bugs (Section 5.4)?

Experimental Setup We perform all the experiments on a computer 
with Ubuntu 18.04 system, Intel Core i7-7700, and 32 GB RAM. We 
enlarge the bitmap size to 512K bytes to mitigate path collisions (Gan 
et al., 2018). Since SQLancer requires the particular SQLite version 
3.34.0, we use this version for comparison. For other DBMSs, we use the 
latest version, i.e., PostgreSQL version 14.2 and MySQL version 8.0.29.

We compare Kangaroo with three state-of-the-art and open-source 
DBMS testing tools: Squirrel (Zhong et al., 2020), SQLancer (Rigger 
and Su, 2020a,b,c), and SQLRight (Liang et al., 2022). Squirrel is a 
coverage-guided fuzzer that focuses on crash-related bug detection. To 
eliminate the impact of inconsistent SQL grammars supported, we ex-
tend its features to align with Kangaroo’s to build Squirrel+. SQLRight 
is a coverage-guided fuzzer embedded with two test oracles, NoREC 
and TLP, to detect logic bugs. SQLancer is a generation-based fuzzer 
for logic bug detection. It supports one more oracle, PQS, compared to 
SQLRight. We feed the same test cases to all fuzzing systems (except 
SQLancer) as the initial corpus and provide the same queries to initial-
ize their mutation libraries. SQLancer is a generate-based tool that does 
not require any initial inputs. We launch five fuzzing instances for each 
system and run each instance for 24 h. We report the average result 
except for the bug number. We collect all bug reports from the five 
fuzzing instances as the final result and then count their first occurrence 
time for each unique bug.

5.1. Detecting bugs in real-world DBMSs

As shown in Table  4, across intermittent runs during a 20-month 
period of development, Kangaroo successfully discovered 54 unique 
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bugs, including 41 crash-related bugs and 13 logic bugs. At the time 
of writing, all bugs have been confirmed, and 34 of them have been 
fixed with 11 CVEs assigned. The SQLite developers responded that many 
of the bugs we reported have been in the code for many years and no fuzzers 
have ever run across it, despite SQLite being heavily tested (Anon, 2022e) 
and used in literally millions of applications.

We manually investigate the bug-triggering queries and find that 
31 out of 54 bugs are first detected in non-optimal query plans. Our 
observation is that some query plans are rarely executed by DBMS and 
therefore are less tested. MPE can execute these less-tested query plans 
to find more bugs, demonstrating the effectiveness of MPE.

Another noteworthy observation is that Kangaroo detects more 
crash-related bugs than logic bugs, which aligns with the findings of 
previous studies on logic bug detection (Rigger and Su, 2020a,b,c). 
This is primarily because crash-related bugs are generally easier to 
detect, for two key reasons. First, logic bug detection typically relies on 
specialized oracles that are inherently limited in scope. For instance, 
our prototype employs MPE, which is designed to detect logic bugs 
in SELECT queries involving multiple query plans. In contrast, crash 
bugs can be detected across a wider range of SQL statements, including 
INSERT, CREATE, and others, thereby increasing the likelihood of their 
discovery. Second, detecting logic bugs requires high-quality inputs 
that are both semantically valid and capable of producing comparable 
results. Crash bugs, on the other hand, may be triggered even by invalid 
inputs, making them more likely to be uncovered during fuzzing.

5.2. Generating valid queries

As aforementioned, query generation consists of two phases: query 
structure generation and variable instantiation. The difficulty of vari-
able instantiation can vary substantially across different SQL state-
ments. To fairly evaluate the effectiveness of different variable instan-
tiation approaches, we construct a benchmark that consists of a set 
of predefined SQL skeletons (i.e., SQL statements with all variables 
stripped). Each approach is evaluated by instantiating these skeletons 
and verifying the validity of the resulting statements through execu-
tion on the target DBMS. To ensure broad coverage of SQL grammar 
features, we extract source SQL statements from the official unit tests 
of the target DBMSs. The benchmark is then constructed by replacing 
all variables in the source statements with representative placeholders 
(e.g., ‘‘v’’ for identifiers and 1 for integer constants), according to their 
respective data types.

We compare the performance of generating valid queries across 
Kangaroo, Squirrel+, and SQLRight. Both Squirrel+ and SQLRight em-
ploy type-sensitive instantiation to concretize variables, whereas Kan-
garoo adopts a context-sensitive instantiation strategy. SQLancer is also 
a well-known DBMS testing tool. However, it primarily focuses on 
oracle design rather than input generation. Therefore, its generator 
is tailored to produce queries that conform to the specific models 
required by its oracles, rather than to maximize input diversity and 
semantic validity. Furthermore, SQLancer adopts a fundamentally dif-
ferent generation strategy which incrementally builds queries clause 
by clause and assigning values during the generation of each clause. 
As a result, SQLancer is not capable of instantiating variables within 
predefined SQL skeletons, making it incompatible with this evaluation 
setup. Additionally, SQLancer supports only a limited subset of SQL 
grammar, making it easier to generate valid queries but limiting their 
variety. Owing to these differences, it is not feasible to conduct a fair 
standalone comparison of SQLancer’s variable instantiation strategy. 
Following previous works (Liang et al., 2022; Tang et al., 2023), we 
treat SQLancer’s query generator as a whole component and include it 
only in the overall comparison presented in Section 5.3.

Table  5 shows our evaluation results. Compared to SQLRight and 
Squirrel+, Kangaroo achieves the highest semantic correctness in all 
three DBMSs. Since both Kangaroo and SQLRight support full SQL 
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Table 4
Real-world Bugs Newly Detected by Kangaroo.
 ID Type Function Status Severity Reference  
 SQLite
 1 CS fts3 and snippet Fixed – cve-2020-23568  
 2 CS fts3 and matchinfo Fixed – cve-2020-23569  
 3 CS fts3 and ALTER Fixed – cve-2020-23570  
 4 CS multi-or covering index Fixed – 376e07  
 5 CS LIKE and OR optimizer Fixed – 84fe52  
 6 CS UNION ALL Fixed – 2aa354  
 7 LB equivalence transfer Fixed – 13976a  
 8 LB IS NOT NULL AND expr Fixed – 6a1424  
 9 LB GROUP BY NULL Fixed – 0094d8  
 10 LB type affinity Fixed – 0c437a  
 11 LB expression tree Fixed – 6a1424  
 12 AF query flatten Fixed – a97bbd  
 13 AF aggregate queries Fixed – d49628  
 14 AF NEVER() Fixed – bfb7ce  
 15 AF window function Fixed – 9d5aa9  
 PostgreSQL
 1 CS empty column value Fixed – #17477  
 2 AF table alias Fixed – #17480  
 MySQL
 1 CS parser Fixed S1 cve-2021-2427  
 2 CS parser Fixed S1 cve-2022-21303  
 3 CS storage Fixed S1 cve-2022-21304  
 4 CS val_int Fixed S1 cve-2022-21640  
 5 CS LEX Fixed S1 cve-2022-39400  
 6 CS find_item Fixed S1 cve-2022-21638  
 7 CS fix_semijoin_strategies Fixed S1 cve-2022-21638  
 8 CS make_active_options Fixed S1 cve-2022-39400  
 9 CS table_contextualize Fixed S1 cve-2022-21528  
 10 CS query_block_is_recursive Fixed S2 cve-2023-21917a 
 11 CS create_tmp_table Fixed S1 107825  
 12 CS WITH RECURSIVE Confirmed S1 S1649226  
 13 LB materialization_lookup Confirmed S3 107576  
 14 LB semi_and_left_join Confirmed S3 107585  
 15 LB indexed_materialization Confirmed S3 107629  
 16 LB UNION Confirmed S3 S1651202  
 17 LB index Confirmed S3 112802  
 18 LB hash_join Confirmed S2 112816  
 19 LB cast Confirmed S2 112910  
 20 LB primary_key_and_dupsweedout Confirmed S2 112911  
 21 AF CREATE VIEW UNION Fixed S6 107471  
 22 AF cond_bool_func Fixed S6 107578  
 23 AF val_real Fixed S6 107638  
 24 AF join_read_const_table Fixed S6 107681  
 25 AF ft_init_boolean_search Fixed S6 107733  
 26 AF tmp_table_field_type Fixed S6 107826  
 27 AF optimize_aggregated_query Fixed S6 107647  
 28 AF ha_index_init Confirmed S6 107636  
 29 AF val_decimal Confirmed S6 107660  
 30 AF select_in_like_transformer Confirmed S6 107661  
 31 AF create_ref_for_key Confirmed S6 107663  
 32 AF recalculate_lateral_deps Confirmed S6 107704  
 33 AF fix_outer_field Confirmed S6 107719  
 34 AF join_read_key_unlock_row Confirmed S6 107722  
 35 AF having_as_tmp_table_cond Confirmed S6 107723  
 36 AF add_key_field Confirmed S6 107768  
 37 AF mdl_request_init Confirmed S6 108237  
LB: Logic Bugs CS: Crashes AF: Assertion Failure
S1: Critical S2: Serious S3:Non-critical S6:Debug builds
a All bugs were submitted to DBMS developers between 2020 and 2022. MySQL 
developers assign CVE numbers only after the bugs are fixed, which may take over 
a year.

grammars, the results indicate that context-sensitive instantiation out-
performs previous work due to richer and more accurate semantic con-
straints rather than richer SQL grammars supported. SQLRight performs 
slightly better than Squirrel+ because it considers extra inter-statement 
constraints.

Another interesting observation is that all these tools achieve signif-
icantly better results in SQLite compare to other DBMSs. The primary 
reason lies in the differing levels of semantic strictness enforced by 
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Fig. 6. Comparison between different oracles. It shows the number of code coverage, query validity, and unique logic bugs over time. We run each fuzzing instance for 24 h, 
repeat each fuzzing for five times. We exclude the results of detected bugs in PostgreSQL as none of the fuzzing instances find any bugs within 24 h.
Table 5
The percentage of semantic correctness queries.
 SQLite PostgreSQL MySQL  
 Squirrel+ 24,792(60.1%) 5869(24.9%) 16,283(31.1%) 
 SQLRight 28,710(61.5%) 8508(26.0%) 35,012(32.5%) 
 Kangaroo 32,880(70.4%) 18,569(56.7%) 49,130(45.6%) 
 Total 46,672 32,753 107,693  

these DBMSs. SQLite, aligning with Postel’s Law (Postel et al., 1981), 
enforces significantly more relaxed semantic constraints compared to 
PostgreSQL and MySQL. For example, the query ‘‘SELECT ‘a’ + 1’’; 
is accepted in SQLite but is rejected by PostgreSQL. Consequently, 
SQLite requires fewer semantic constraints for the same SQL statements 
and thereby exhibits a higher likelihood of generating valid test cases. 
Due to the same reason, Kangaroo achieves a smaller improvement on 
SQLite than other DBMSs.

Kangaroo cannot achieve full semantic validity for two reasons. 
First, context-sensitive instantiation does not consider dynamic con-
straints. Second, the static constraints are incomplete since our pro-
totype only implements analysis for primary patterns of major SQL 
clauses (Section 4.6).

5.3. Comparisons with other techniques

Effectiveness of MPE. To ensure a fair comparison between the logic 
test oracles, we port MPE to SQLRight to build SQLRight𝑀𝑃𝐸 and 
compare it to SQLRight using different logic test oracles, including 
NoREC, TLP, and MPE. Doing a fair comparison between MPE and PQS 
is difficult. PQS requires a generation method to produce the ground-
truth result for each SELECT statement during test case generation, 
making it incompatible with mutation-based fuzzers. Additionally, it 
demands significant implementation effort and introduces considerable 
runtime overhead in test case generation. Considering that the support 
test case generation method is one of the evaluation metrics, we 
directly use SQLancer𝑃𝑄𝑆 as the comparison target. In summary, the 
effectiveness of logic test oracles is assessed by comparing SQLRight 
with various oracles and SQLancer𝑃𝑄𝑆 . As aforementioned, we perform 
the evaluation on each fuzzer for 24 h, repeat for 5 times.
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As shown in Fig.  6, SQLRight𝑀𝑃𝐸 outperforms other oracles on all 
three DBMSs. Specifically, MPE covers slightly more edges (2.24%–
12.27%) than other test oracles also used by SQLRight. More impor-
tantly, compared to PQS, NoREC, and TLP, MPE finds 7, 3, and 5 more 
logic bugs, respectively. The main reason for MPE’s improvement in 
bug detection and edge coverage is that it does not put any limitations 
on queries within test cases. This enables MPE to test a broader range 
of DBMS functionalities.

Table  6 presents the distribution of detected logic bugs, where all 
logic bugs found by NoREC are covered by MPE. This demonstrates that 
MPE can cover the query plans used by queries transformed by NoREC, 
enabling it to detect more bugs. MPE does not find the only logic bug 
detected by TLP. This is because TLP is not an oracle that compares 
different query plans for the same query. TLP transforms the query into 
a union of three queries and compares the results before and after the 
transformation. The query plan for the transformed query differs from 
all query plans of the original query.
Effectiveness of Context-sensitive Instantiation. The comparison 
between Kangaroo𝑀𝑃𝐸 , SQLRight𝑀𝑃𝐸 , and SQLancer𝑀𝑃𝐸 shows the 
overall effectiveness of their query generators. As expected,
SQLancer𝑀𝑃𝐸 achieves the highest query validity. This is primarily due 
to its adherence to a simplified version of SQL grammar. However, this 
design also constrains the diversity and complexity of the generated 
queries. For instance, SQLancer does not support the generation of 
subqueries, which allows it to bypass the complex constraints intro-
duced by multi-level nested subqueries. That makes it easier to generate 
valid statements but limits the diversity. That explains why it explores 
the fewest paths among these three fuzzing systems. In contrast, both 
Kangaroo𝑀𝑃𝐸 and SQLRight𝑀𝑃𝐸 produce more diverse queries, leading 
to better path coverage and bug detection. Benefiting from the richer 
semantic constraints, Kangaroo𝑀𝑃𝐸 achieves significantly higher query 
validity than SQLRight𝑀𝑃𝐸 .

To evaluate the contribution of context-sensitive instantiation to 
logic bug detection, we compare Kangaroo𝑀𝑃𝐸 to SQLRight𝑀𝑃𝐸 be-
cause the only difference between these two fuzzers is the variable 
instantiation strategy used. As shown in Fig.  7, Kangaroo𝑀𝑃𝐸 out-
performs SQLRight𝑀𝑃𝐸 on all three DBMSs. The results confirm that 
context-sensitive instantiation can significantly improve the perfor-
mance of logic bug detection compared to type-sensitive instantiation. 
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Fig. 7. Comparison between different query generators. It illustrates the contributions of context-sensitive instantiation for bug detection. Table  7 presents the distribution of logic 
bugs and crash-related bugs. We exclude the results of detected bugs in PostgreSQL as only Kangaroo𝑀𝑃𝐸 found one crash.
Table 6
Distribution of logic bugs found in DBMS within 24 h by different oracles.
 ID DBMS MPE NoREC TLP PQS 
 1 SQLite 3 5 5 5  
 2 SQLite 3 3 5 5  
 3 SQLite 3 5 5 5  
 4 SQLite 3 3 5 5  
 5 MySQL 3 3 5 5  
 6 MySQL 3 3 5 5  
 7 MySQL 3 5 5 5  
 8 MySQL 5 5 3 5  

Specifically, it achieves around 55%, 23%, and 33% validity for three 
tested DBMSs, which is significantly higher than SQLRight𝑀𝑃𝐸 . This 
proves that context-sensitive instantiation is helpful in improving query 
validity. Due to the higher query validity, Kangaroo𝑀𝑃𝐸 wastes less 
time in testing invalid queries and explores more edges, thereby find-
ing more logic bugs than SQLRight𝑀𝑃𝐸 . Specifically, compared to 
SQLRight𝑀𝑃𝐸 , Kangaroo𝑀𝑃𝐸 explores 14% more edges on average and 
discovers 4 more logic bugs in total.

To evaluate the contribution of context-sensitive instantiation to 
crash-related bug detection, we disable the MPE in Kangaroo to build 
Kangaroo!𝑀𝑃𝐸 and compare it to Squirrel+. Without logic bug test 
oracles, these two fuzzer settings focus on crash-related bug detec-
tion and utilize different variable instantiation strategies. Because 
Kangaroo!𝑀𝑃𝐸 has a higher probability of generating valid queries, it 
can better explore the deep logic of DBMS and find more bugs. Specif-
ically, Kangaroo!𝑀𝑃𝐸 explores 39.91% more edges on average and 
finds 8 more bugs than Squirrel+ with the help of context-sensitive in-
stantiation. These results confirm the effectiveness of context-sensitive 
instantiation in bug discovery.

5.4. Benefits of the two key techniques

We conduct an ablation study to evaluate the individual contribu-
tions of the two key techniques. Fig.  7 shows the evaluation results.
Context-Sensitive Instantiation As shown in Fig.  7def, tools that em-
ploy context-sensitive instantiation achieve significantly higher semantic 
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Table 7
Number of bugs detected in three DBMSs within 24 h. Value in brackets indicates the 
number of bugs detected in SQLite, PostgreSQL, and MySQL, respectively.
 Fuzzer Crash-related bugs Logic bugs Total  
 SQLRight𝑀𝑃𝐸 8(4/0/4) 7(4/0/3) 15(8/0/7)  
 Kangaroo𝑀𝑃𝐸 16(8/1/7) 11(5/0/6) 27(13/1/13) 
 Squirrel+ 5(1/0/4) – 5(1/0/4)  
 Kangaroo!𝑀𝑃𝐸 13(7/0/6) – 13(7/0/6)  

correctness than other tools. Consequently, it significantly improves 
the discovery of edges and crash-related bugs (from 5 to 13). More 
importantly, Kangaroo𝑀𝑃𝐸 discovers 5 additional logic bugs that were 
missed by SQLRight𝑀𝑃𝐸 with the help of context-sensitive instantia-
tion.. This result confirms that query validity plays an important role 
in effectively detecting logic bugs. This is reasonable because an invalid 
query cannot return results used for logic bug checking. In conclusion, 
context-sensitive instantiation can significantly improve the efficiency 
of bug detection, especially for logic bugs, by enhancing the validity of 
generated test cases.
Multi-Plan Execution The comparison between Kangaroo and
Kangaroo!𝑀𝑃𝐸 reveals the effect of MPE. First, MPE enables logic bug 
detection in SELECT statements that contain multiple query plans. Such 
statements are prevalent in practice. In our experiments, the SELECT 
statements generated by the system produce an average of 12.3, 15.7, 
and 16.1 query plans in SQLite, PostgreSQL, and MySQL, respectively. 
Interestingly, MPE also shows a slight improvement in detecting crash-
related bugs. Kangaroo captures four more crash-related bugs than 
Kangaroo!𝑀𝑃𝐸 in total, which is attributed to the exploration of rarely 
executed query plans.

6. Discussion and limitations

6.1. Limitations of context-sensitive instantiation

Our context-sensitive instantiation strategy is theoretically capable 
of inferring both complete and sound semantic constraints. However, 
similar to existing work (Zhong et al., 2020; Liang et al., 2022, 2024), 
we currently enforce only static constraints. This restriction reduces 
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the validity of generated queries involving dynamic behavior. This 
limitation arises from the practical challenges associated with dy-
namic constraints, which significantly increase the complexity of con-
straint reasoning. Furthermore, enforcing dynamic constraints would 
introduce considerable overhead during test case generation, poten-
tially lowering system efficiency. Thus, we restrict our enforcement to 
static constraints, which capture the majority of semantically invalid 
cases while maintaining efficiency. We consider supporting dynamic 
constraint enforcement as part of future work.

The theoretical completeness and soundness of context-sensitive 
constraint inference depend on the precise fine-grained semantic analy-
sis of SQL clauses. In practice, there are two main sources that may lead 
to constraint inaccuracies: (1) implementation errors in the semantic 
analysis for certain SQL clauses, and (2) lack of fine-grained constraint 
analysis for some clauses due to limited engineering effort. We do not 
view these issues as essential limitations of the approach itself. Instead, 
they reflect practical limitations of the current prototype and can be 
addressed through further development.

6.2. Limitations of MPE

Similar to existing oracles for detecting logic bugs in DBMSs, MPE 
also suffers from false positives (FP) and false negatives (FN). Below, 
we discuss these limitations and the strategies we employ to mitigate 
them in practice.
False Negatives Due to Shared Incorrect Results MPE may fail to 
detect certain logic bugs (i.e., false negatives) when all query plans for 
a given SQL statement yield the same incorrect result. This limitation is 
inherent to oracles that rely on differential behavior across alternative 
execution paths, such as PQS, TLP, and TQS. However, in comparison 
to these oracles, MPE reduces the likelihood of such false negatives by 
exploring a larger set of query plans. Furthermore, bugs that manifest 
consistently across all query plans typically stem from low-level compo-
nents. These components are often well covered by existing unit testing 
frameworks (Anon, 2023b).
False Positives from Non-Deterministic Queries SQL queries can be 
ambiguous due to the non-deterministic behavior in DBMSs. Therefore, 
inconsistencies between the results of different query plans for non-
deterministic queries do not necessarily indicate bugs. Such queries are 
common and can significantly reduce the effectiveness of test oracles, 
which also pose challenges to previous works (Rigger and Su, 2020b,a; 
Liang et al., 2022, 2024). To better understand and mitigate this 
issue, we evaluate a wide range of features in each tested DBMS. Our 
evaluation identifies four primary sources of non-determinism.

The first source of non-determinism comes from undefined data ac-
cess order. In most cases, it only impacts the row order in results, which 
can be eliminated by sorting the results. However, the non-determinism 
cannot be resolved if the statement contains certain SQL features. For 
instance, the LIMIT clause results in only part of the records being 
fetched. In such cases, the final output may vary, depending on the 
data access order during query execution. The second source is the non-
deterministic functions or variables such as random() and CURRENT_TIME. 
The third source is the loss of precision, which is common in DBMSs’ 
built-in statistical analysis functions. Finally, some non-deterministic 
behaviors depend on the dynamic execution context. For example, 
SQLite assigns an affinity type to each column and uses different 
comparison algorithms for different affinity types. The statement CREATE 
VIEW v1(c1) AS SELECT c0 FROM t1 UNION SELECT c0=10 FROM t1; involves two 
SELECT statements. SQLite is free to choose the execution order of the 
two SELECT statements, and the affinity type of column c1 depends on 
this order. This can lead to inconsistent results in subsequent queries, 
such as SELECT * FROM v1 NATURAL JOIN v1;.

To mitigate false positives caused by such non-determinism, we 
perform feature-aware analysis during context-sensitive instantiation. 
Specifically, we identify queries containing non-deterministic features 
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(e.g., the LIMIT clause), and exclude them from result comparison. 
Importantly, this strategy does not compromise our ability to detect 
memory-related bugs in these queries, as it only omits the result 
comparison step.
False Positives from Non-Triggerable Plans MPE requires modifying 
DBMSs, which might generate non-triggerable query plans and cause 
false positives. However, this rarely occurs since our intervention is 
limited to selecting among query plans generated by the DBMS, without 
altering the plan generation process. In practice, we encountered only 
one such instance, where a query plan consistently incurred higher 
costs compared to an alternative query plan. Specifically, the query 
plan attempted to perform a parallel table scan with only a single 
worker, which proved to be less efficient than a non-parallel scan. Con-
sequently, this query plan would never be chosen for execution by the 
original DBMS. However, this case can also be viewed as a performance 
bug since the DBMS wastes efforts on generating meaningless query 
plans.

6.3. Threats to validity

External validity A potential external validity threat is that the DBMSs 
selected for our experiment are all C/C++-based. This is because our 
system prototype is built on AFL, which can only statically instrument 
C/C++ programs to collect coverage information. However, the two 
techniques we propose are not limited by this constraint. Both of them 
can be applied to other fuzzing tools to detect bugs in non-C/C++-based 
DBMS.

Internal validity Minimizing systematic errors in the evaluation pro-
cess is essential. Since fuzzing involves inherent randomness, we miti-
gate this threat by repeating each experiment five times and reporting 
the average results. To ensure consistent and comparable coverage 
measurements, we evaluate the coverage achieved by all fuzzers on 
the same instrumented binary To avoid selection bias, we utilize the 
same set of initial seeds for all fuzzers, except SQLancer, which does 
not require any seeds.
Conclusion validity Evaluation metrics may introduce potential
threats to the results. In this paper, we selected commonly used, 
comprehensive indicators in previous bug detection works. To isolate 
the impact of the technique, we applied a controlled variable strategy 
in the comparison experiment. For example, when evaluating the 
effectiveness of different test oracles, we applied the same test tools 
to all oracles. The only exception is PQS, because it inherently requires 
a distinct test case generation method.

6.4. Practical applicability and integration

PoC Generation A test case that triggers a bug on the modified DBMS 
may fail to reproduce the bug on the original DBMS if the issue arises 
only with a non-optimal query plan. Such a test case cannot directly 
serve as proof-of-concept (PoC) (Anon, 2022i) that demonstrates the 
bug on the original system. To save DBMS developers’ effort, we submit 
DBMS diagnostic logs along with corresponding minimal PoCs

To build a minimal PoC, we first try to remove statements or 
clauses in the test case and check whether the bug is still triggered. 
Then, we manually adjust the minimal test cases to trigger bugs on 
the unmodified DBMS. Further details on the manual adjustment are 
provided in Appendix  A.3. In practice, we spent about 30 h manually 
constructing PoCs for all 31 bugs detected in non-optimal query plans.
Effort of Adoption Applying Kangaroo to a new DBMS requires domain 
knowledge of its grammar and query plan selection implementation. 
This requirement, however, aligns well with the expertise of the pri-
mary users of DBMS testing tools, i.e., DBMS developers. Developers 
can adopt Kangaroo by following the steps below:
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Table 8
Effort of adoption to DBMSs.
 Component(LOC) SQLite PostgreSQL MySQL 
 Semantic configuration 102 109 132  
 Parser 52 161 63  
 Context-sensitive instantiation 106 135 259  
 DBMS modification 248 271 191  
 Total Person-hours 32 40 45  

(1) Define semantic mappings: Define the mapping rules in the se-
mantic configuration to help identify the alias of standard SQL 
clauses.

(2) Augment syntax validation: Some DBMSs perform additional syn-
tax checks beyond BNF rules, which cannot be automatically 
ported. These checks must be manually ported to improve the 
accuracy of generated parser.

(3) Support DBMS-specific extensions: Add semantic definitions and 
constraint collection logic for DBMS-specific clauses to ensure 
proper support for non-standard SQL features.

(4) Refine constraint collection: For clause patterns whose semantic 
requirements deviate from general, override the default con-
straint collection logic.

(5) Enable multi-plan execution: Modify the DBMS to support the 
execution of all valid query plans.

Table  8 summarizes the human effort of adopting our prototype to 
specific DBMSs.
Extend to other statements MPE can also be applied to other state-
ments with multiple execution plans, such as INSERT and UPDATE. 
This extension introduces two main challenges. First, non-SELECT state-
ments do not yield directly comparable results since they typically do 
not return detailed information about data modifications. To address 
this, a follow-up query can be issued after executing each plan to 
retrieve information about the affected database objects (e.g., tables). 
Second, executing one query plan may modify the database state, which 
can affect the execution of subsequent plans. This can be addressed by 
using the DBMS transaction rollback mechanism to restore the original 
state before executing the following plans.
Integration into testing pipelines Recently, several mainstream
DBMSs have adopted fuzzing as an integral part of their official testing 
frameworks. For example, SQLite integrated fuzzing into its internal 
test suite in 2015 as a complementary approach to unit testing. Since 
Kangaroo is also a fuzzing-based tool, it can be seamlessly integrated 
into existing official DBMS fuzzing workflows.

Fuzzing is generally not well-suited for integration into main Con-
tinuous Integration (CI) pipelines due to its non-deterministic behavior, 
substantial computational overhead, and long execution times. Instead, 
it is typically employed as a complementary testing technique to un-
cover vulnerabilities that may be missed by conventional methods. In 
practice, fuzzing is often executed as a separate nightly or scheduled 
job. Although these jobs fall outside the core CI pipeline, they constitute 
an essential part of the broader testing framework. This asynchronous 
execution enables developers to leverage the fuzzing’s strengths in 
exploring execution paths without impacting the performance or re-
sponsiveness of the CI pipeline. Moreover, these jobs can be integrated 
within the Continuous Delivery (CD) process to provide deeper verifica-
tion of software robustness and security before release. Listing 2 in the 
Appendix illustrates a sample configuration for running nightly fuzzing 
jobs with GitHub Actions.

By default, our system interacts with the target DBMS through 
its native API (e.g., libpq, libmysqlclient) to ensure efficient query 
execution and result retrieval. It also supports communication via 
standardized interfaces such as Open Database Connectivity (ODBC) 
and command-line interfaces (CLI). This interface flexibility facilitates 
integration of Kangaroo into existing testing pipelines.
14 
7. Related work

Oracles for detecting DBMS semantic bugs. DBMS semantic bug 
detection relies on test oracles to identify unexpected behavior, such as 
performance regressions and incorrect results. We can classify semantic 
bug detection approaches into three categories.

The first approach is based on differential testing which executes 
a given input with different DBMSs. Slutz proposed RAGE (Slutz, 
1998) for finding logic bugs by running the same queries on different 
DBMSs and comparing their results. Jinho et al. developed APOLLO
(Jung et al., 2019) to find performance regression bugs by executing the 
same query on the DBMSs with different versions. However, RAGE can 
only be applied to common features of different DBMSs, and APOLLO 
can only detect bugs introduced or fixed by newer versions.

Another approach is based on metamorphic testing which identifies 
bugs by running two queries with known relationships between their 
results. If their results do not conform to the expected relationships, 
a potential logic bug is detected. However, all of them (Sutton et al., 
2007; Tang et al., 2023; Rigger and Su, 2020a,b,c; Ba and Rigger, 2024) 
are limited to the queries that can be converted.

The last approach tries to build the test case along with the corre-
sponding ground-truth result. ADUSA (Khalek et al., 2008) generates 
all data and the full expected result for a query. However, generating 
full expected results can be expensive which inhibits it from finding 
more bugs. To simplify the ground truth generation, Pivoted Query 
Synthesis(PQS) (Rigger and Su, 2020c) only partly validates a query’s 
result. It synthesizes a query expected to fetch a single, randomly-
selected row and detects logic bugs by checking whether this row is 
fetched. Similar to NoREC, PQS is also mostly limited to finding bugs 
in WHERE clauses.
DBMS test cases generation. DBMS requires structural inputs to ma-
nipulate data in the database. Structural input generation mainly falls 
into two categories: generate-based approaches and mutation-based 
approaches.

The generation-based approach (Rigger and Su, 2020a,c,b; Slutz, 
1998; Andreas Seltenreich, 2022; Binnig et al., 2007; Khalek et al., 
2008; Tang et al., 2023) is effective in generating syntax-correct test 
cases since it typically follows a grammar model. However, these 
grammar rules are helpless in improving the semantic correctness of 
the test case. For example, SQLsmith (Andreas Seltenreich, 2022) can 
generate syntax-correct test cases from abstract syntax trees. It achieves 
quite a low accuracy on semantics which might inhibit it from finding 
bugs hidden in the deep logic. QAGen (Binnig et al., 2007) proves 
that generating a completely valid query is NP-complete. It improves 
semantic correctness by combining traditional query processing and 
symbolic execution. Previous works also try to improve query genera-
tion by generating queries that satisfy certain constraints (Khalek et al., 
2008). They reduce the query generation into the SAT problem, which 
is subsequently solved by a solver (e.g., Alloy (Anon, 2022b)).

The mutation-based approach incorporates execution feedback to 
explore the deep logic of tested programs. The general fuzzers
(Stephens et al., 2016; Yun et al., 2018; Chen and Chen, 2018; Chen 
et al., 2020; Gan et al., 2020) unaware of the input structure. They 
can hardly reach the deep logic of DBMSs even incorporating advanced 
techniques such as taint analysis or symbolic execution. Blazytko 
et al. (2019) utilizes grammar-like combinations to synthesize highly 
structured inputs without the need for explicit grammar, but most of 
the generated test cases are still syntax invalid. Recent works manually 
provide grammar specifications to guide mutation as they guarantee 
that the generated queries have correct grammar. For example, Bati 
et al. (2007) propose a genetic approach to mutate SQL by inserting, re-
placing, or removing grammar with the guidance of execution feedback 
such as query results and query plans.
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8. Conclusion

This paper presents Kangaroo, a mutation-based system for detect-
ing both logic and crash-related bugs in DBMS. It proposed two key 
techniques, i.e., context-sensitive instantiation to generate semantically 
valid SQL queries during mutation and multi-plan execution that can 
detect logic bugs in the DBMS execution engine. We developed a proto-
type system and applied it to three widely used DBMSs. It successfully 
identified 54 unique bugs. The further evaluation shows that Kangaroo 
outperforms existing tools.
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Appendix

1 name: Nightly Fuzzing
2
3 on:
4 schedule:
5 - cron: ’0 1 * * *’ # Run daily at 1:00 AM UTC
6 workflow_dispatch: # Allow manual trigger
7
8 jobs:
9 fuzz:
0 runs-on: ubuntu-latest
1 steps:
2 - name: Checkout repository
3 uses: actions/checkout@v3
4
5 - name: Set up dependencies
6 run: |
7 ......
8
9 - name: Build fuzzer toolchain
0 run: |
1 cd /path/to/Kangaroo
2 make # build fuzzer
3 cd AFL
4 make # Build compiler for instrumentation
5
6 - name: Build instrumented DBMS
7 run: |
8 # Specify the compiler for instrumentation
9 export CC= /path/to/afl-gcc
0 export CXX= /path/to/afl-g++
1 # Build instrumented DBMS
15 
2 mkdir build
3 cd build
4 cmake -DENABLE_MPE=ON .. # Assume MPE has been

integrated
5 make fuzz_target
6
7 - name: Run fuzzing
8 run: |
9 cd /path/to/fuzz/dir
0 # Run the fuzzing script
1 # It first sets up the DBMS, and then launches

the fuzzer to test it.
2 ./run_kangaroo.sh
3
4 - name: Upload crash artifacts (if any)
5 if: always()
6 uses: actions/upload-artifact@v3
7 with:
8 name: fuzz-crashes
9 path: /path/to/fuzz/dir/output/crash

Listing 2 Example Nightly Fuzzing Workflow Configuration for GitHub 
Actions

A.1. Implementation detail of constraint collection

Kangaroo implements a GetConstraint function for each clause pat-
tern. Fig.  8 illustrates the GetConstraint functions for several SQL clause 
patterns. For example, in Fig.  8(a), the GetConstraint function for the 
first pattern in JoinedTabled can infer, based on the context of the 
current pattern, that the scope of the TableRef identifiers, i.e., columns 
of this joined table can be referenced by ColumnRef identifiers within 
JoinConstraints. In Fig.  8(b), the GetConstraint functions can capture 
the attributes of a ColumnDef identifier when defined and infer the 
attribute requirements for identifiers.

The semantic constraints of the same clause pattern may vary across 
different DBMSs. For example, the pattern Expression ‘+’ Expression 
generally requires both operands to be numeric; however, SQLite per-
mits addition operations between operands of any type. To address 
this, when a DBMS enforces semantic constraints that differ from the 
general behavior, we implement a new GetConstraint function to over-
ride the original one. Furthermore, some DBMSs have their own SQL 
dialect. As aforementioned, the semantic tree grammar also contains 
the SQL dialect of the tested DBMS. Therefore, we can implement the 
GetConstraint function for the patterns of these dialects. In addition, 
we provide a set of APIs to capture semantic information and insert 
various semantic constraints, significantly simplifying the engineering 
effort required to implement the GetConstraint function. These design 
choices facilitate the adaptation of our methodology to other DBMSs 
with minimal engineering effort.

A.2. Randomized backtracking algorithm example

The process of the randomized backtracking algorithm is as follows. 
First, we obtain a topological order of variables based on their de-
pendencies and instantiate the variables sequentially according to this 
order. During each instantiation, a value is randomly assigned to the 
variable such that all constraints imposed on it are satisfied. If no valid 
solution can be found for a variable, the algorithm backtracks to the 
variables it depends on and re-instantiate them.

For example, in Fig.  2, x2, x3, and x6 only depend on previously 
declared tables t0 and t1, so we first instantiate them in turn by 
randomly selecting a referenced table. Next, we instantiate x1, x4, and 
x5, as all their dependencies have already been instantiated. Suppose 
we concretize both x2 and x3 with table t1, the joined table will have 
two columns with conflicting names. When concretizing identifier x4, 
the column dependency requires that x4 should be a column with 
a unique name in the joined table, but no dependencies satisfy this 
constraint. In this case, we will re-instantiate x3, x4, and all variables 
that depend on them.
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Fig. 8. An example to show some GetConstraint functions. We provide a set of APIs 
to simplify the implementation of GetConstraint function. The figure only lists the 
three APIs used to insert different types of constraints.

A.3. PoC generation strategies

MPE can only conduct the PoC on modified DBMSs. To build PoC 
on unmodified DBMSs, our goal is to make the buggy query plan to 
be optimal. The ways to achieve this goal can be classified into three 
categories.

First, force a query plan to be chosen by using a hint to give DBMS 
an explicit optimization instruction. For example, in MySQL, the hint 
FORCE INDEX forces a table scan to use the specified index if possible. 
If the buggy query plan scans a table with an index and others do not, 
this hint could force the plan to be chosen.

Second, eliminate more efficient query plans. That can be achieved 
by turning off certain optimizations, which is feasible since DBMSs 
typically provide a configuration to switch on/off some optimization 
strategies. Sometimes, using hints (e.g. IGNORE INDEX) can also elim-
inate some query plans. Besides, rewriting test cases can achieve this 
goal as well. For example, by removing the CREATE INDEX statement, 
query plans that use this index will be eliminated.

Third, modify the cost of query plans by adjusting either action 
count or action cost. A query plan is composed of a series of operations, 
and the cost of an operation can be simplified as action count * action 
cost. action count is the amount of data to process/access, and action 
16 
cost is the overhead of processing one unit of data. In some DBMS, 
e.g. PostgreSQL, the action cost is a serial of parameters that can be set 
by the user. To change the action count, we can modify expressions in 
the statement, change the DBMS status, or provide hints for SELECT 
statements. For example, we found a buggy query plan that sequence 
scans a table perform worse than another use index search performed 
better because the SELECT statement had a condition filter ‘‘𝑎 < 10’’. 
Suppose the table has 100 rows and only 10 of the rows satisfy this 
condition, the index search will perform better since it requires less data 
access. If we set the condition to ‘‘𝑎 < 100’’ such that all rows satisfy 
this condition, the sequence scan will perform better because the index 
search operation requires the same action count as the sequence scan 
operation but extra action cost to search the index. Modifying the data 
in the query table to make more data satisfy the expression can achieve 
the same purpose. Some DBMS allow us to use hints to intervene in the 
probability that a logical expression is true. For example, we can use 
hints ‘‘𝑙𝑖𝑘𝑒𝑙𝑦(𝑎 < 10)’’ to tell SQLite that this condition is likely to be 
true to increase the action count of the index search operation.

Data availability

Data Availability. The artifact associated with this article, including 
experimental data, scripts, and instructions is available at: https://
github.com/anonymous44117/Kangaroo.
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