
Computers & Security 157 (2025) 104564

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full length article

Detecting DBMS bugs with context-sensitive instantiation and multi-plan

execution
Jiaqi Li a,b , Ke Wang a, Yaoguang Chen b, Yajin Zhou a ,∗, Lei Wu a , Jiashui Wang a,b
a College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
b Department of Security Countermeasure Technology, Ant Group CO Ltd, Hangzhou, Zhejiang, China

A R T I C L E I N F O

Dataset link: https://github.com/anonymous44
117/Kangaroo

Keywords:
Database security
Software testing
Fuzzing

 A B S T R A C T

DBMS (Database Management System) bugs can cause serious consequences, posing severe security and privacy
concerns. This paper works towards the detection of crash-related bugs and logic bugs in DBMSs, and aims
at solving the two innate challenges, including how to generate semantically correct SQL queries in a test
case, and how to propose effective oracles to capture logic bugs. To this end, our system proposes two key
techniques. The first key technique is called context-sensitive instantiation, which can obtain all static semantic
requirements to guide query generation. The second key technique is called multi-plan execution, which can
effectively capture logic bugs. Given a test case, multi-plan execution makes the DBMS execute all query
plans instead of the default optimal one, and compares the results. A logic bug is detected if a difference
is found among the execution results of the executed query plans. We have implemented a prototype system
called Kangaroo and applied it to three widely used and well-tested DBMSs, including SQLite, PostgreSQL, and
MySQL. Our system successfully detected 54 previously unknown bugs, including 41 crash-related bugs and
13 logic bugs. The comparison between our system with the state-of-the-art systems shows that our system
outperforms them in terms of the number of generated semantically valid SQL queries, the explored code paths
during testing, and the detected bugs.
1. Introduction

Database management systems (DBMSs) provide fundamental in-
frastructure for many applications (Anon, 2022k,f), so it is crucial that
they can be relied upon. DBMS bugs could result in data leakage, data
manipulation, or service termination, and even pose severe security
threats (Bannister, 2021; Cimpanu, 2019; Jung et al., 2019; Zhong
et al., 2020). Thus, timely detection of DBMS bugs is an emerging need.

DBMS bugs can be roughly categorized into crash-related bugs and
logic bugs. The crash-related bug occurs when the DBMS abnormally
terminates due to a memory error or an assertion failure. A logic bug
occurs when DBMS produces an incorrect output for a given test case.
Recent works show that coverage-guided mutation-based DBMS fuzzing
systems (Andreas Seltenreich, 2022; Chen et al., 2021; Zhong et al.,
2020; Liu et al., 2021; Zhang et al., 2021; Ghit et al., 2020) have proven
more effective than generation-based ones because they can generate
more diverse test cases to trigger the bugs.

However, effectively detecting DBMS bugs has two innate chal-
lenges. The first challenge is how to generate syntactically and semantically

∗ Corresponding author.
E-mail addresses: lijiaqi93@zju.edu.cn (J. Li), krking@zju.edu.cn (K. Wang), yaoguang.cyg@antgroup.com (Y. Chen), yajin_zhou@zju.edu.cn (Y. Zhou),

lei_wu@zju.edu.cn (L. Wu), 12221251@zju.edu.cn (J. Wang).

correct SQL statements as test cases. DBMS performs syntactic and seman-
tic checking on the SQL statements to ensure their validity. Invalid SQL
statements will be discarded before being fed into the DBMS execution
engine and therefore cannot trigger bugs in the execution engine. The
second challenge is how to propose effective oracles to capture logic bugs.
Unlike crash-related bugs that can easily be captured by sanitizers such
as ASan (Anon, 2022a), logic bugs that generate incorrect results are
hard to detect.
Limitations of Existing Systems Existing DBMS fuzzers have limita-
tions in addressing these challenges. First, current DBMS fuzzers are
limited in generating diversity and valid SQL statements due to the
incomplete and inaccurate semantic constraints they obtain. In general,
a test case contains multiple SQL statements, where each statement con-
tains many variables (i.e., identifiers and constants) that should satisfy
the semantic constraints to guarantee semantic correctness. Existing
systems always try to strike a balance between the diversity and validity
of generated queries. For example, SQLancer (Rigger and Su, 2020a,b,c;
Ba and Rigger, 2024) achieves high validity of generating queries but
https://doi.org/10.1016/j.cose.2025.104564
Received 16 February 2025; Received in revised form 25 May 2025; Accepted 6 Ju
vailable online 7 July 2025
167-4048/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
ne 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0009-0007-2446-2727
https://orcid.org/0000-0001-7610-4736
https://orcid.org/0000-0003-1675-5283
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
mailto:lijiaqi93@zju.edu.cn
mailto:krking@zju.edu.cn
mailto:yaoguang.cyg@antgroup.com
mailto:yajin_zhou@zju.edu.cn
mailto:lei_wu@zju.edu.cn
mailto:12221251@zju.edu.cn
https://doi.org/10.1016/j.cose.2025.104564
https://doi.org/10.1016/j.cose.2025.104564
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2025.104564&domain=pdf

J. Li et al. Computers & Security 157 (2025) 104564
covers only a limited subset of the entire SQL grammars. In contrast,
Squirrel (Zhong et al., 2020) and SQLRight (Liang et al., 2022) support
full SQL grammars but can only gather identifier types (e.g., table, col-
umn) constraints. However, these constraints are incomplete, causing
many invalid queries to be generated. For example, even though all
identifier types in the statement “SELECT Name+1 FROM StudentList” are
correct, it is invalid in PostgreSQL because it adds a string to an integer.
Therefore, we need an SQL statement generator that supports all SQL
grammars while maximizing the validity of generated statements to
enhance testing efficiency.

Second, oracles used by existing systems (Rigger and Su, 2020c,a,b;
Liang et al., 2022; Tang et al., 2023; Hao et al., 2023; Song et al.,
2023) to detect logic bugs have strict requirements on the SQL state-
ments. This makes the fuzzing system only explore a narrow space
of inputs, leading to limited bugs that can be detected. For example,
NoREC (Rigger and Su, 2020a) requires that the effective SQL query
in a test case has WHERE clauses, thus it can only detect logic bugs
due to the optimization in WHERE clauses. To address the limitation,
TQS (Tang et al., 2023) and MOZI (Liang et al., 2024) leverage the
idea of differential testing. They try to explore multiple query plans for
SELECT statements by changing the configuration of DBMS and dis-
cover logic bugs by comparing their execution results. Each query plan
can be viewed as an optimization combination of the DBMS for that
statement. However, both of them can only cover partial optimization
combinations in DBMS. Hence, an oracle that can be applied to SQL
statements without strict requirements and explore more query plans
is needed.
Our Solution This work proposes two key techniques to solve the
two innate challenges. The first key technique is called context-sensitive
instantiation, which performs a context-sensitive analysis to collect
more comprehensive and accurate semantic constraints to improve
the semantic correctness of the generated input. For instance, a SQL
statement “SELECT x1+i1 FROM x2 WHERE x3=x4” has four identifiers x1∼x4
and a constant i1. Squirrel and SQLRight can only infer that x1, x3 and
x4 are columns of the table x2. In contrast, our system can additionally
infer that the type of column x1 must be numeric and the type of
columns x3 and x4 should be comparable (e.g., both are string). With
more inferred semantic constraints, our system can enhance the validity
of generated test cases while maintaining their diversity. We evaluated
the effectiveness of our method and found it achieves 1.14x-3.22x
higher semantic correctness than previous approaches (Section 5.2).

The second key technique is called multi-plan execution (abbreviated
as MPE), a novel and general test oracle for detecting logic bugs in
DBMS. MPE does not put strict limitations on the SQL queries that can
be tested, which improves the capability of edge and bug discovery
(Section 5.4). MPE leverages the idea of differential testing to compare
the execution results of multiple query plans of a SQL query. Specifically,
when a query is submitted to a DBMS, the query optimizer typically
evaluates various query plans and determines the optimal one to ex-
ecute. MPE hooks the query optimization process to make the DBMS
execute all the query plans (instead of the optimal one) and compares
the results. A logic bug is detected if the results from different query
plans are inconsistent.
Prototype and Evaluation We implemented a prototype named Kan-
garoo and applied it to three widely-used DBMSs: SQLite (Anon, 2022j),
PostgreSQL (Anon, 2022h), and MySQL (Anon, 2022g), to evaluate its
effectiveness. Kangaroo successfully identified 54 new bugs, consisting
of 13 logic bugs, 19 crashes, and 22 assertion failures. As of the time of
writing, 34 of these bugs have been fixed, with 11 assigned CVEs (Anon,
2022d). These results demonstrate the efficacy of our system. We
also compared Kangaroo with leading DBMS testing tools: Squirrel,
SQLancer, and SQLRight. After conducting a 24-hour test on the three
DBMSs, Kangaroo significantly outperforms these tools embedded with
varying test oracles in terms of edge and bug discovery.

This work makes the following main contributions.
2
Fig. 1. The example illustrates several syntactic rules of SQL. It contains five SQL
clauses and some of their patterns. The uppercase words represent SQL keywords or
variables, while the others represent SQL clauses.

• We revealed two challenges of effectively detecting DBMS bugs
and the limitations of existing solutions.

• We proposed two key techniques to solve the challenges, in-
cluding context-sensitive instantiation to improve the semantic
correctness of the mutated SQL queries and the MPE that can be
applied to richer kinds of SQL queries can cover more query plans.

• We implemented a prototype system and applied it to three popu-
lar DBMSs and successfully detected 54 new bugs. A comparison
with the previous approaches demonstrates the effectiveness of
our two key techniques.

2. Background

2.1. Structured Query Language

Relational DBMSs use Structured Query Language (SQL) (Cham-
berlin and Boyce, 1974) for querying and maintaining the database.
SQL statement is the smallest execution unit that typically consists of
one or several SQL clauses, e.g., WHERE clause, FROM clause. Each SQL
clause is a meaningful logical chunk that consists of tokens (including
identifiers, constants, and SQL keywords), and sub-clauses. We refer to
identifiers and constants as variables in this paper because their values are
changeable and their changes do not affect the syntactic structure.

As shown in Fig. 1, each SQL clause consists of one or more specific
patterns, with each pattern corresponding to a particular semantics.
For example, the expression clause can be a literal, a column, or an
arithmetic or logical expression. Each pattern may impose semantic
requirements on sub-clauses or variables. For instance, the arithmetic
expression pattern typically requires operands to be numeric. When
the operands are columns, they must also be numeric. In conclusion,
the semantic requirements of a variable (i.e., semantic constraints) are
determined by the clauses to which it directly or indirectly belongs, as
well as the patterns of these clauses. Failure to meet these requirements
will result in a semantic error, causing the DBMS to reject the statement
during earlier validation checks.

In this paper, we refer to the semantics of clauses as context in-
formation. Since our method derives semantic constraints by analyzing
the patterns of all SQL clauses in a statement, we call it context-sensitive
instantiation.

2.2. SQL query processing

A typical DBMS processes an SQL query in several stages, involving
four main components: the parser, translator, planner, and executor. A

J. Li et al. Computers & Security 157 (2025) 104564
Table 1
Eight levels of SQL statement correctness and the corresponding reachable DBMS
modules. The final column indicates the theoretical lower bound of the correctness
level for input generated by different fuzzersa.
 Level Input class Module Incorrect input examples Fuzzers
 1 Binary input Lexer – AFL
 2 Sequence of ASCII Lexer Binary input
 3 Sequence of words Parser Incorrect SQL keywords
 4 Syntactically correct Translator Missing semicolon
 5 Identifier type correct Translator Query a trigger Squirrel
 SQLRight
 6 Data type correct Translator Add an integer to a string
 7 Statically conforming Executor Ambiguous column names Kangaroo
 8 Dynamically conforming Executor Scalar query returns
 (Semantic correctness) multiple values
a Fuzzers that do not support the full SQL grammar, such as SQLancer, are excluded
from the table.

typical DBMS consists of four main components: the parser, translator,
planner, and executor. First, the parser performs lexical analysis to
divide the query into tokens (e.g., SQL keywords). It then performs
syntax analysis to construct a raw parse tree that represents the query’s
syntactic structure. During this process, it checks for syntax validity
and terminates execution if any errors are found. Next, the translator
analyzes the parser tree, checks its semantics, and converts it into
an internal representation that can be used by the optimizer and
the executor. The planner (also called optimizer) will try to find all
possible query plans for a SQL statement and select the optimal one
by evaluating the cost of each query plan. Finally, the executor of
DBMS runs the optimal query plan and returns the required result. The
executor also checks whether the dynamic semantics are correct during
execution.

Among these components, the planner and executor are the most
complex and error-prone. Therefore, improving the semantic valid-
ity of generated queries is essential to effectively testing these two
components.

2.3. Levels of DBMS testing

The correctness of a SQL statement can be divided into eight levels
as shown in Table 1. For a syntactically correct SQL statement, the
value of variables in the statement determines whether the statement
is semantically correct. The statement’s context information imposes
various restrictions, including static constraints checked by the trans-
lator and dynamic constraints checked by the executor. For example, in
the statement SELECT 1==(SELECT a FROM t1), a should be numeric, which
is a static constraint; the subquery SELECT a FROM t1 should return no
more than one row, which is a dynamic constraint. Statements with all
constraints satisfaction are semantically correct (level-8). A statement
is statically conforming (level-7) if it meets all static constraints but
fails to satisfy certain dynamic constraints. Static constraints can be
further divided into different levels. Identifier type correct (level-5)
indicates that all identifiers in SQL statements have correct types
(e.g., Column) and the data type correct (level-6) guarantees the data
type (e.g., integer) of variables is correct.

Different systems can guarantee different correctness levels.
General-purpose fuzzers (e.g., AFL (Anon, 2022c)) are inefficient for
DBMS testing since they lack sophisticated approaches to generate
higher-level correct inputs. Benefiting from syntax-preserving muta-
tions and constraint-guided instantiation, Squirrel is more likely to
generate higher quality input, thus significantly improving the ability to
detect bugs. However, Squirrel has to limit the complexity of generated
queries to tolerate its incomplete and inaccurate constraints. To better
explore the core modules of DBMS, we propose a new method to
generate more diverse and complex test cases, while at the same time,
they can be statically conforming (level-7).
3
2.4. Test case generation

DBMS testing aims to trigger bugs by constructing abundant test
cases that typically contain multiple SQL queries. The query gen-
eration consists of two phases: structure generation and variable
instantiation.

The structure generation constructs the syntactic structure of SQL
queries (i.e., without concrete variables) to ensure the generated SQL
queries can pass the SQL parser. There are two structure generation
methods. The rule-based ones (Sutton et al., 2007; Tang et al., 2023;
Rigger and Su, 2020a,b,c) generate test cases following a predefined
model. However, building a precise model requires domain knowledge.
Besides, the generated inputs cannot efficiently explore the program’s
state space since they waste much effort on similar queries. Mutation-
based methods (Neystadt, 2008; Zhong et al., 2020; Liang et al., 2022,
2023; Fu et al., 2022) generate new test cases by performing grammar-
based mutation on seed queries. Specifically, it first generates a syntax
tree for seed queries, then creates specific mutations by using mutation
operators on a tree node.

The variable instantiation concretizes the variables within queries to
improve the semantic correctness of generated SQL queries. For a given
syntactic structure of SQL queries, each variable within SQL queries
should satisfy specific constraints to ensure semantic correctness. The
variable instantiation analyzes the syntactic structure of SQL queries
to collect the constraints, and then fills the variables with concrete
values that satisfy these constraints. However, inferring comprehensive
and accurate constraints from SQL statements is challenging due to
the complexity and diversity of SQL grammar. Without accurate con-
straints, previous DBMS fuzzers tend to generate many invalid queries.
To tolerate the inaccurate constraints, previous works either support a
small subset of SQL grammars (Rigger and Su, 2020a,b,c) or limit the
complexity of generated queries (Zhong et al., 2020; Liang et al., 2022).

2.5. DBMS test oracles

An oracle is a mechanism for determining whether the actual out-
puts match the expected outcomes, facilitating logic bug detection. The
two most widely used types of test oracles are differential testing and
metamorphic testing. Differential-testing-based oracles (Slutz, 1998;
Jung et al., 2019; Liang et al., 2024) use different implementations of
the same functionality as cross-referencing oracles. They provide the
same inputs to a series of similar systems, such as DBMSs with different
configurations, and then observe the results. Any inconsistency between
the results may indicate a potential bug. However, these methods typi-
cally test limited DBMS functionalities. For instance, functionalities that
cannot be modified through configuration settings remain untestable
when comparing DBMSs with different configurations.

Metamorphic-testing-based oracles (Rigger and Su, 2020a,b; Ba
and Rigger, 2024; Hao et al., 2023) address the test oracle problem
by applying a specific input transformation that produces predictable
changes in the output. They detect bugs by verifying whether the
transformed query’s output exhibits the expected change compared
to the original query’s output. For example, NoREC (Rigger and Su,
2020a) converts a query that is potentially optimized by DBMS into a
semantically equivalent one that can hardly be optimized, then checks
for consistency between the results of the original and the translated
query. However, these methods are typically limited to a subset of SQL
that can be translated, thereby limiting the scope of queries that can
be tested.

3. Motivating examples

In this section, we use two real examples to demonstrate the advan-
tages of our system’s two key techniques.

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 2. Comparison of Variable Instantiation Approaches. (a) A mutated test case with the final statement undergoing instantiation. (b) Type-sensitive instantiation relies on
predefined rules and identifier types, often producing incorrect and incomplete constraints. (c) Context-sensitive instantiation constructs a semantic tree and performs bottom-up
analysis to infer accurate and complete constraints, improving the validity of generated queries. Each node in the semantic tree represents a SQL clause and its associated pattern,
with child clauses indexed as $1, $2, etc. The leading number denotes the order of bottom-up analysis.
3.1. Context-sensitive instantiation

As aforementioned, variable instantiation requires that the variables
in the SQL statement meet their semantic requirements to ensure
semantic correctness. However, due to the significant syntactic dif-
ferences between DBMSs, using a general approach to infer accurate
semantic constraints from SQL statements is challenging. Due to the
limited human effort, some test case generators in previous DBMS
fuzzers (Rigger and Su, 2020a,b,c; Ba and Rigger, 2024), only support
a small subset of SQL grammars, which limits the diversity of the
queries they generate. Therefore, the input space that can be tested
is narrow. Expanding this approach to support full SQL grammars
requires significant engineering effort, and the grammar differences
across DBMSs limit its universality.

To address this issue, some DBMS fuzzers (Zhong et al., 2020;
Liang et al., 2022) use a general method (called type-sensitive instan-
tiation in this paper) that infers the dependency between identifiers
(one type of semantic constraint) through theirs type (e.g., TableDef,
ColumnRef) and some manually predefined rules. However, without the
context information, these fuzzers tend to build incorrect and incom-
plete dependencies among variables, causing many invalid queries to
be generated. Moreover, the difficulty of guaranteeing query validity
dramatically increases as query complexity grows. To mitigate this
impact, they limit the complexity of generated queries by limiting the
length of statements in test cases and the size of test cases. Even so,
they still generate over 40% invalid queries.

Generating invalid queries has a significant negative impact on
fuzzing performance. First, invalid queries discarded by DBMS earlier
validation checks cannot trigger deep logic, such as optimization and
execution processes. Therefore, obtaining accurate semantic constraints
to improve the semantic correctness of generated queries is critical for
detecting deep bugs in the DBMS. More importantly, invalid queries
are ineffective for logic bug detection, as they cannot be executed
successfully and produce output for comparison.
Why Existing Works Suffer from Inaccurate Semantic Constraints.
Squirrel (Zhong et al., 2020) proposes type-sensitive instantiation
which can instantiate queries involving full SQL grammars supported
by DBMS at the cost of lower validity. Specifically, it labels the types
of identifiers during parsing, and infers their dependencies according
to manually predefined rules. Then, it instantiates variables to ensure
that they satisfy all these dependency constraints. For example, the
4
third dependency rule in Fig. 2b builds the dependency constraints that
any identifier of type ColumnRef could be a column of any identifier of
type TableRef. Based on type-sensitive instantiation, SQLRight (Liang
et al., 2022) enhances the accuracy of inter-statement constraints by
maintaining DBMS states (e.g., table schema). This prevents statements
from referencing tables that have been dropped by a preceding DROP
statement. These approaches do not require consideration of context
information, making their implementation simple and ensuring their
universality across various DBMS syntax implementations.

However, all these works suffer from incorrect and incomplete
intra-statement constraints, as they only infer the dependency ac-
cording to predefined rules but ignore the context information. The
inaccurate constraints cause many invalid queries to be generated. Fig.
2b shows an incorrect concrete statement suffers from three different
semantic errors even though it satisfies all constraints considered by
type-sensitive instantiation utilized by SQLRight.

The incorrect constraints stem from assigning the scope of each
identifier based on predefined, coarse-grained rules, which are inher-
ently inaccurate, such as assigning the scope of an identifier to the
statement it belongs to. In Fig. 2b, they build an incorrect constraint
that x5 could be a member of x6 based on the dependency rules that a
ColumnRef could be a member of any TableRef. Unfortunately, because
x4 belongs to the TableReference x2 JOIN x3 ON x4=x5, x4 could only be
the member of x2 or x3.

The incomplete constraints mainly result from ignoring the at-
tribute requirements of the identifiers. For example, a column iden-
tifier may need to meet certain requirements in terms of name, data
type (e.g., INT, TEXT), and attributes (e.g., PRIMARY KEY, FOREIGN KEY,
GENERATED), etc. In Fig. 2b, the invalid query suffers from ambiguous
column names and illegal expression errors due to the failure to account
for the constraints on the name and data type of columns. Further-
more, the incomplete constraints may also arise from overlooking the
semantic requirements on constants. For example, the semantics of a
constant might represent the ordinal position of a column in a table,
so its valid values should be integers between 0 and the number of
columns in the table.

Extending the predefined dependency rules further can help miti-
gate the false positives and false negatives in constraints derived from
type-sensitive instantiation. However, the absence of context informa-
tion hinders the accurate assignment of scopes to identifiers and the
recognition of their attributes and associated requirements. As a result,

J. Li et al. Computers & Security 157 (2025) 104564
it cannot fundamentally resolve the problems of false positives and false
negatives.

Our Solution We propose context-sensitive instantiation, which infers
constraints of variables, including both identifiers and variables, from
their contextual information (i.e., the SQL clause pattern and relation-
ships among clauses), rather than predefined rules. Due to differences
in grammar implementations across DBMSs, deriving semantic con-
straints from context presents significant challenges to generalizability.
To overcome this, as shown in Fig. 2c, we first convert the syntax tree
into a unified semantic tree, where each node corresponds to a specific
SQL clause. Semantic constraints are then inferred by traversing this
semantic tree and analyzing each clause node in a post-order manner.

This approach enables the accurate capture of attribute require-
ments and scopes for variables, thereby avoiding the incorrect and
incomplete constraints that type-sensitive strategies encounter. Specifi-
cally, in the Expression clause 3⃝, we can infer that both the column x1
and the constant i1 must be numeric, preventing the operator mismatch
error. In the TableReference clause 11⃝, the context restricts x4 and x5
to reference only columns within the joined table x2 JOIN x3, thereby
preventing erroneous references to x6. Besides, this TableReference
clause also enforces that x4 and x5 must reference unique columns,
which prevents self-joins in this clause.

Since this process is similar to the semantic checking process in
DBMSs (DBMSs check the semantics during tree traversal whereas
we collect the constraints they check), it can theoretically obtain ac-
curate static constraints and thereby generate statically conforming
statements. Our approach ignores dynamic constraints because en-
forcing dynamic constraints requires intermediate states during query
execution, which is challenging. We leave it as part of future work.

3.2. Multi-plan execution

Metamorphic testing is a prevalent approach to testing DBMS. It
finds some specific changes or transformations to the input that will
cause predictable changes to the output. A result that does not conform
to the expected changes indicates a potential logical bug. However, all
these oracles (Rigger and Su, 2020a,b; Hao et al., 2023; Song et al.,
2023; Ba and Rigger, 2024) construct test cases based on specific
features, which limits the SQL grammar they can support. For example,
NoREC (Rigger and Su, 2020a) requires the queries to be a SELECT
statement with WHERE clause such that it can do the transformation. An-
other oracle PQS (Rigger and Su, 2020c) generates queries along with
its ground-truth result which also puts strict limitations on generated
queries.

Another type of DBMS test oracle leverages the idea of differential
testing. TQS (Tang et al., 2023) and MOZI (Liang et al., 2024) run
one query under different DBMS optimization settings, which may
alter the query plans chosen for execution. This method imposes fewer
restrictions on test queries, allowing it to test a wider range of DBMS
functionality. However, optimization settings in DBMS typically only
manipulate a subset of the optimizations, therefore some optimiza-
tion strategies in DBMS can never be tested by this approach. In
addition, optimization settings cannot force optimization adoptions if
the optimization cannot reduce the amount of computation. Besides,
optimization settings are global settings that cannot control the scope
of optimizations. For example, it cannot disable the index search in
table t1 but enables index search in t2. These limit their ability to
explore various combinations of optimizations, thus covering limited
query plans.

We propose a novel test oracle, MPE, which imposes no constraints
on SQL grammar and can explore all possible query plans for each
query. Specifically, it hooks into the DBMS optimizer to execute all
query plans and compare their results. If the results of these query plans
are inconsistent, a logic bug is detected. In the following, we use one
real-world SQLite bug in Fig. 3 to illustrate why the existing oracles
5
Fig. 3. A mutated test case that exposes a real-world logic bug in SQLite, detected
by MPE but missed by previous oracles (e.g., NoREC, TQS). The instantiated SELECT
statement Q1 yields four valid query plans, with the last one producing a result
inconsistent with the others. By manually transforming Q1 into Q2, we construct a
query that can trigger the buggy plan in the original DBMS.

cannot detect the logic bug and how the MPE can capture such a bug.
When the test case is executed, the DBMS optimizer generates four valid
query plans for the SELECT statement Q1. Among these, plan one is the
optimal plan and is executed by SQLite by default, while plan four is
the buggy plan.
Why Existing Works Cannot Detect the Bug. The oracles NoREC,
TQS, and MOZI all attempt to explore different query plans for com-
parison. Specifically, NoREC shifts the condition in the WHERE clause
to the SELECT_TARGET, then executes both to compare the execution
result. However, the SELECT statement Q1 in Fig. 3 does not meet the
requirement (lacks WHERE clause), thus unable to detect the bug. TQS
and MOZI can additionally test plan two in Fig. 3 by turning off index
optimization. However, they still fail to reveal the bug, which only
occurs in plan four.
Why Our System Can Capture the Bug. By hooking the query plan
selection function, our system executes all valid query plans for a given
query and compares their outputs. Since plan four produces a non-
empty result that differs from the results of the other three plans, our
system successfully identifies this as a logic bug.

One may argue that the bug found in query plan four is mean-
ingless since it will not be executed by default. In other words, the
bug cannot be triggered in practice. However, even though the buggy
query plan is not optimal for the SELECT statement in the test case, it
can be the optimal one by adjusting the statement or changing the
optimization setting. For example, by adjusting the statement Q1 to
Q2, we successfully triggered the buggy query in the original DBMS.
Actually, almost all bugs detected by MPE can be triggered in practice.
We discuss exceptions later in Section 6.2.

The root cause of this bug is the incorrect equivalence transfer
optimization. Because the expression in join constraints clause is c1=c0
AND c2=c0, which implies c1=c2. SQLite uses the index on c1 for the
constraint on c2 because of this inference. Specifically, it uses the values
of c0 as the key to search index t1_c1 to fetch all records that satisfy
c1=c0 and then tries to judge c1=c0 on these records again. However, it
should check c1=c2 rather than c1=c0. As a result, the expression c1=c0
AND c2=c0 is incorrectly optimized to c1=c0.

3.3. Focus of this paper

This work aims to enhance the effectiveness of fuzzers in detect-
ing bugs, especially logical ones, in DBMSs by proposing two novel
techniques. The first technique is a variable instantiation (Section 2.4)

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 4. The overall architecture of our system.
approach, which infers more accurate semantic constraints on state-
ments to improve the semantic correctness of generated SQL state-
ments. Existing works that propose new SQL structure generation ap-
proaches (Neystadt, 2008; Zhong et al., 2020; Liang et al., 2022,
2023; Fu et al., 2022; Wang et al., 2019) or utilize error feedback
to guide the variable instantiation (Jiang et al., 2023) are orthogonal
to our proposed technique. The second technique is a test oracle that
can detect logic bugs on a broader range of DBMS functionality than
previous approaches.

4. Design

4.1. Overall design

Our system aims at detecting both crash-related bugs and logic bugs
in DBMSs. Fig. 4 illustrates the overall architecture of our system. The
parser generation (Section 4.2) takes a semi-automatic way to generate
SQL parsers before the testing. During the testing, it first performs a
parse tree mutation (Section 4.3) to mutate the query structure while pre-
serving syntactic correctness. Then, our system conducts the process of
context-sensitive instantiation (Section 4.4) to instantiate all variables in
queries. At last, the mutated SQL queries will be executed by the DBMS.
The multiple-plan execution (Section 4.5) hooks into the optimizer in
DBMS to execute all query plans (instead of the optimal one) and
compare the returned results. Any inconsistency between the results
indicates a logic bug. Any crash-related bug can also be detected during
the execution of query plans.
Example We use the test case in Fig. 3 that triggers a logic bug in
SQLite to illustrate the workflow of our system. Generating this test
case takes several rounds of mutation on the initial seed. We take
the last round of mutation as an example. The last round of mutation
is performed on the SELECT statement which replaces the expression
node x>i with the expression node x=x. After that, our system performs
context-sensitive instantiation to replace the symbolic values with con-
crete values. Specifically, it first normalizes the parse tree into a unified
semantic tree to eliminate the differences in syntactic structure. Then, it
analyzes the semantic tree to collect semantic constraints on variables.
Next, it utilizes the randomized backtracking algorithm (Anon, 2023a)
(also called randomized depth-first search) to find a random solution
for all variables that satisfy all semantic constraints. At last, it translates
the concretized semantic tree to an SQL string as a new statement (Q1).
The mutated test case will be fed to the modified DBMS which executes
all four query plans one by one and finds that three of them return an
empty result, while the fourth plan returns a non-empty value. This
leads to the detection of the logic bug.

4.2. Parser generation

The syntactic rules of SQL parsers vary in different DBMSs. A valid
statement for SQLite may be rejected by the parser of PostgreSQL. To
6
guarantee the mutated test case is syntactically correct, an accurate
parser for each DBMS is needed.

Implementing an accurate parser requires non-negligible effort. To
save manual effort, we propose a semi-automatic approach to generate
the parser. Our core insight is that almost all DBMSs leverage a stan-
dardized format called Backus Normal Form (BNF) (Knuth, 1964) to
describe the grammar of the supported SQL queries. Thus, we can con-
struct an accurate parser by automatically extracting and analyzing the
DBMS BNF rules. Specifically, the parser generator extracts syntactic
rules (Fig. 1) from the target DBMS grammar file. Then, it uses syntactic
rules and a semantic configuration to build the parser. We explain the
semantic configuration in parse tree normalization of Section 4.4.

4.3. Parse tree mutation

Our system mutates the SQL queries based on the parse tree. This
can ensure the mutated queries are always syntactically correct. Similar
to Squirrel (Zhong et al., 2020), we also focus on structure mutation
since it is more effective than data mutation. Specifically, our system
symbolizes all the variables in statements and concretizes them after
the mutation.

To mutate a test case, our system randomly picks up one node
v from the parse tree and randomly fetches a new one w with the
same type from the mutation library. Then, it replaces v (including
its children) with w. The mutation library is a dictionary where the
key is the node type and the value is a list of distinct parse trees
rooted at nodes of that type. Our system accepts DBMSs’ official test
cases to initialize the mutation library. The mutation strategy is not a
contribution of our work, as it is basically the same as the previous
work (Zhong et al., 2020).

4.4. Context-sensitive instantiation

After mutating the parse tree, we analyze the SQL statement to
collect semantic constraints and instantiate all variables in the mutated
query. Building a general analysis module for SQL is challenging for
several reasons. First, the query analysis logic in DBMSs is usually
deeply embedded and difficult to reuse or extend. Second, although
DBMSs typically follow the standard SQL grammar, they often include
many extra clauses. Some of these are dialect clauses (e.g., hint clauses)
used to support DBMS-specific features. Others are internal clauses intro-
duced during implementation. These internal clauses do not contribute
to actual meaning but increase the complexity of constraint analysis.
More importantly, these internal clauses vary across DBMSs, making it
difficult to design a unified approach for constraint analysis.

To address these challenges, we normalize the parse tree into a
unified semantic tree. Each node in the semantic tree represents a
SQL clause. This unified representation allows the semantic tree to
capture the meaning of SQL statements in a simpler and more general
way. To support different DBMS dialects, the semantic tree grammar

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 5. An example to show the process of translating a parse tree to a unified semantic tree.
includes both standard clauses (e.g., WHERE clause) and dialect clauses.
We then perform context-sensitive analysis on this semantic tree to
extract semantic information and infer constraints. Finally, we use these
constraints to guide variable instantiation.
Step I: Parse Tree Normalization The parse tree is a hierarchical
representation of the syntactic structure of an SQL statement, where
each node corresponds to a clause or token in the statement. However,
different DBMSs often produce significantly different parse trees for
the same SQL input due to variations in their parsers. To enable
generalizable semantic analysis, we normalize parse tree into a unified
semantic tree that abstracts the SQL clause structure in a consistent
manner.

Parse tree differences across DBMSs stem from two main factors.
First, DBMSs introduce extra clause definitions in their parsers. These
include dialect clauses and internal clauses. Dialect clauses support DBMS-
specific features. For example, MySQL introduces a hint clause to
guide query optimization. We retain such clauses in the semantic tree
to preserve compatibility with DBMS-specific features. Internal clauses
are used for implementation convenience but do not contribute to
actual meaning. As such, they are considered redundant clauses and
are removed during normalization. For instance, some DBMSs define
a comp_op clause to unify comparison expressions as expression comp_op
expression. Removing this clause yields a more granular form, such as
expression ‘>’ expression, without semantic loss. More importantly,
these granular patterns tend to be more consistent across different
DBMSs. Second, clause and token names (including SQL keywords and
variables) are often inconsistent across DBMSs. To resolve this, we
manually annotate each clause with its corresponding standard SQL
clause name in semantic configuration.

Based on these insights, we design a two-step normalization proce-
dure (Fig. 5) to produce a normalized semantic tree for downstream
tasks. (1) Remove redundant clauses from the parse tree. For each
removed clause, its child nodes are directly reattached to the par-
ent. (2) Convert the tokens and remaining clauses and tokens into
corresponding semantic clause according to the semantic configuration.
Step II: Semantic Constraints Collection We analyze the semantic
tree to infer semantic constraints. Algorithm 1 illustrates the constraint
inference process. For each SQL statement, the system conducts a post-
order traversal of its semantic tree. During traversal, each semantic
node (i.e., SQL clause) is analyzed to identify its pattern. Based on
the identified pattern, the corresponding GetConstraint function is in-
voked to extract semantic information and infer relevant constraints.
7
These GetConstraint functions are implemented according to the target
DBMS’s official documentation. This design enables precise inference
of variable scopes and attribute requirements.

SQL clauses with the same syntax may pose different semantics
constraints across DBMSs. To address this, we provide override func-
tions to accommodate the specific requirements of each DBMS. This
design ensures efficient adaptation of our system to new DBMSs with
minimal additional effort. A detailed description of the GetConstraint
implementation is provided in Appendix A.1.

Due to the diversity and volume of SQL clauses, implementing
customized constraint analysis for each clause requires substantial en-
gineering effort. To balance accuracy with generality and reduce imple-
mentation overhead, we adopt a hybrid granularity semantic analysis
strategy. Specifically, for clauses not yet covered by fine-grained cus-
tomized analysis, a coarse-grained but generic semantic analysis is
applied as a fallback. This generic analysis is similar to type-sensitive
instantiation, which infers approximate semantic constraints based on
predefined rules. This design allows for direct adaptation to new DBMSs
and progressive refinement as fine-grained analysis is incrementally
developed.

Step III: Semantic Constraints Enforcement Conceptually, enforcing
semantic constraints can be viewed as a Constrained Random Sampling
(CRS) problem. It involves finding a solution to a constrained problem
such that each feasible solution has an approximately equal probability
of being chosen. Although the problem of finding a single solution to
constrained problems has been extensively studied, less research has
been paid to the efficient generation of random solutions. Given the
relatively low complexity of static semantic constraints in SQL queries,
our system adopts a randomized backtracking algorithm (Anon, 2023a)
to solve these constraints. This method allows us to generate valid
solutions while preserving randomness. In future work, we intend
to integrate more sophisticated constraint sampling techniques, such
as SMTSampler (Dutra et al., 2018), to efficiently find more diverse
solutions.

The high-level idea of randomized backtracking algorithm is to
randomly enumerate all possible dependencies for each variable until
finding one determined dependency that satisfies all constraints. Ini-
tially, all variables are unassigned. At each step, a variable is chosen
and a random candidate value is assigned to it and the satisfaction of
the partial assignment is checked. If the partial assignment is valid,
the algorithm proceeds recursively with the remaining unassigned vari-
ables. If a conflict is detected, it performs backtracking to explore
alternative assignments. A valid solution is found when all variables

J. Li et al.

1

1

1

1

1

1

1

Computers & Security 157 (2025) 104564
Algorithm 1: Algorithm of semantic analysis.
Input: SemanticTrees: the root node of the semantic tree of an

SQL statement
Output: ConstraintSet: all semantic constraints of the current

statement

1 Function CollectConstraints(SemanticTree):
2 ConstraintSet ← vector()
3 PostOrderTrav(SemanticTree, ConstraintSet)
4 return ConstraintSet
5 Function PostOrderTrav(SemanticNode,

ConstraintSet):
// children of the semantic node include

semantic node, SQL keyword, and variables
6 for each child C in SemanticNode.children do
7 if C is semantic node then
8 PostOrderTrav(C)
9 end
0 end
1 constraints ← ClauseAnalyze (C)
2 ConstraintSet.update(constraints)
3 Function ClauseAnalyze(SemanticNode):
4 MatchPattern ← FindPattern(

SemanticNode.children) // find the matching
pattern of the SQL clause

5 constraints ← Getconstraint(MatchPattern)
6 return constraints

1 @@ -5496,6 +5607,9 @@ get_cheapest_fractional_path(
RelOptInfo *rel, double tuple_fraction)

2 Path *best_path = rel->
cheapest_total_path;

3 ListCell *l;
4
5 + if (multi_plan_enable)
6 + return select_next_plan(rel, plan_id);
7
8 /* If all tuples will be retrieved , just return

the cheapest -total path */
9 if (tuple_fraction <= 0.0)

10 return best_path;

Listing 1 A patch snippet for PostgreSQL illustrating how to
control the plan choose function to execute all query plans. The
get_cheapest_fractional_path is the plan choose function, and we hook
into it by adding two lines of code (lines 5–6). When multiple execution
plans are enabled, it directly returns the execution plan with the
ordinal number plan_ordinal. We re-execute the queries with different
plan_ordinal until all query plans have been executed.

have been successfully assigned values that collectively satisfy the full
set of constraints.
Contribution Summary Context-sensitive instantiation introduces a
novel analysis approach to extract static semantic constraints from SQL
statements. Unlike prior approaches that rely on manually predefined
rules, it infers variable constraints based on the contextual structure
of SQL clauses. This effectively addresses the issues of inaccurate
and incomplete constraints in type-sensitive instantiation. By capturing
more precise and comprehensive constraints, it significantly improves
the validity of generated SQL test cases.

Context-sensitive instantiation is generalizable across different
DBMSs. First, it resolves structural differences in parse trees generated
by different DBMSs for the same SQL statement by normalizing them
into a unified semantic tree. All dialect-specific clauses are preserved
within the semantic tree to support further semantic analysis. Besides,
it adopts a hybrid granularity strategy to guarantee both scalability and
compatibility with diverse SQL dialects. More specifically, it combines
8
coarse-grained analysis for compatibility with fine-grained analysis
for precise constraint inference. Developers can gradually implement
fine-grained analysis for dialect clauses to progressively improve the
accuracy of constraints.

Context-sensitive instantiation is practically applicable to industrial
DBMS. To the best of our knowledge, PostgreSQL and MySQL are
among the most complex open-source DBMSs, with approximately 1.05
million and 3.25 million lines of code (LOC), respectively. Our system
prototype has been successfully applied to both of them, illustrating the
practical applicability of our approach.

4.5. Multi-plan execution

MPE focuses on detecting logic bugs in the planner and executor be-
cause these components are the most complex ones and have not been
well-tested. Our system hooks the query optimization process to execute
all the query plans for a SELECT statement to detect the incorrect one(s) that
may cause incorrect results. Aligned with the previous works (Rigger and
Su, 2020a,b,c; Liang et al., 2022; Tang et al., 2023), we choose SELECT
statements to demonstrate MPE. MPE can also be used to detect logic
bugs in other statements (e.g., INSERT, UPDATE, etc.), which will be
explored as part of future work.

Adopting MPE to DBMSs is not straightforward. The main chal-
lenge is how to make a DBMS execute all query plans with minor
modifications. Our key observation is that DBMS typically employs a
plan choose function to compare the estimated cost of different query
plans and choose the best one. Therefore, by hooking into the plan
choose function (as shown in Listing 1), we can execute any query plan
generated by the DBMS. Additionally, we added a loop before the entry
function for query processing to continuously execute the statement
with different query plans until all plans are executed. Specifically,
we record the total number of query plans generated by the DBMS
during query plan generation phase. An iterator is then employed to
specify the query plan to be executed in each iteration, incrementing
sequentially until all plans have been processed. Furthermore, some
DBMSs perform pruning during the generation of query plans to discard
plans that are deemed inefficient based on cost estimates. This pruning
is typically implemented through a dedicated pruning function. By
hooking into this pruning function, we can retain execution plans that
would otherwise be discarded.

Such modifications have two advantages. First, they do not break
the functionality of DBMS, such as generating incorrect query plans, as
they only intervene in the query plan selection and pruning process.
Second, they require little implementation effort.
Runtime Overhead Executing all valid query plans for a given SQL
statement can reduce the number of SQL statements executed within
a fixed time budget. However, different SQL statements may compile
into the same underlying query plan, resulting in redundant execu-
tions. Therefore, fuzzing efficiency is more accurately measured by the
number of distinct query plans exercised or by overall path coverage.

From this perspective, the additional plans executed by MPE do not
necessarily incur overhead. The actual overhead depends on whether
executing multiple plans per statement introduces more redundant
execution than only executing the optimal plan. Our ablation study
in Section 5.4 demonstrates that enabling MPE slightly improves code
coverage and results in the detection of more bugs. These findings
suggest that MPE maintains, and potentially enhances, overall fuzzing
efficiency despite its increased per-statement cost.

To further improve fuzzing efficiency, we plan to reduce redun-
dant executions by selectively executing query plans in future work.
Specifically, each query plan will be uniquely identified via hashing and
tracked with an execution count. Previously untested plans will always
be executed, whereas previously tested plans will be executed less
frequently as their execution count increases. This selective execution

J. Li et al. Computers & Security 157 (2025) 104564
Table 2
The lines of code of different components.
 Component Language Lines of code
 Parser generator Python 1917
 Parse-tree mutator C++ 849
 Context-sensitive instantiation C++ 12,476
 Result comparison C++ 909
 Fuzzer C 5241
 Other – 798
 Total – 22,190

strategy preserves the benefits of MPE while mitigating unnecessary
redundant executions.
Contribution Summary We present MPE, a novel test oracle for de-
tecting logic bugs in SQL statements that contain multiple query plans.
Similar to existing oracles such as NoREC and TQS, which detect bugs
by comparing different query plans, MPE is not applicable to queries
that yield only a single plan.

MPE introduces a new methodology for comparing query plans.
Rather than rewriting queries (NoREC) or toggling DBMS optimization
settings (TQS), MPE modifies the DBMS by hooking into its plan se-
lection function. This approach enables the comparison of results from
all valid query plans for a given statement. MPE offers the following
improvements:

Broader SQL feature coverage: Unlike NoREC and TQS, MPE imposes
no restrictions on the SQL grammar, allowing it to support a wider
range of SQL features. In contrast, NoREC is limited to queries that can
be rewritten into a non-optimizable form, and TQS is confined to join
queries, primarily targeting join-related optimization bugs.

Improve plan coverage and reduce false negatives: MPE explores a
larger set of query plans per statement, enhancing code coverage and
increasing the likelihood of exposing bugs hidden in rarely executed
plans. Moreover, by comparing results across more valid query plans,
MPE mitigates false negatives that occur when the same incorrect result
arises in multiple plans due to shared erroneous logic.

4.6. Prototype implementation

We have implemented a prototype system called Kangaroo and ap-
plied it to three widely-used DBMSs: SQLite, PostgreSQL, and MySQL.
Our system is built on top of AFL 2.56b (Anon, 2022c). It consists of
21.9k lines of code (LoC) in total. Table 2 summarizes each of the
components.

The SQL language comprises over 100 distinct types of clauses.
Some clauses are standard SQL clauses, and some are dialects. Each
clause typically has multiple syntactic patterns, each associated with
distinct semantics. For example, the ColumnConstraint clause defines
the attribute of a column, which contains nine different patterns,
e.g., PRIMARY KEY and FOREIGN KEY.

Due to engineering constraints, our prototype currently supports
fine-grained semantic constraint inference for the primary patterns of
the 45 most frequently used SQL clauses. Among these, 42 are shared
by the three target DBMSs, while the remaining 3 are DBMS-specific.
To normalize clause names and facilitate constraint inference, our
prototype defines 65 mapping rules for PostgreSQL, 79 for MySQL, and
59 for SQLite in the semantic configuration. Table 3 summarizes the
types of semantic constraints extracted from supported clauses.

For unsupported patterns and clauses, as discussed in Section 4.4,
our system adopts a coarse-grained but general schema to infer approx-
imate constraints. Although these constraints may be incomplete, the
overall semantic constraints captured by our system are always more
accurate and comprehensive than those of existing methods.
9
Table 3
Constraint types supported by our prototype.
 Constraint types Explains
 Semantic Type Semantic types of identifiers and constants
 Dependency Dependencies between identifiers

ColumnAttributes

Name Column names
 DataType Data types of columns, such as INT, TEXT
 DataValue Constraints on column values
 Others UNIQUE, PRIMARY_KEY, FOREIGN_KEY,
 GENERATED, NOT_NULL, etc.

TableAttributes

Name Table names
 StorageEngine Storage engine of the table
 Collation Table collation, which affects compression,
 sorting, and storage of text columns
 Others TEMPORARY, INSERT,
 AUTO_INC, MAX_ROWS, etc.

IndexAttributes

Name Index names
 IndexType Types of indexes (e.g., B-tree, full-text indexes)
 Others TEMPORARY
 ConstantAttributes DataValue Constraints on constant values

5. Evaluation

In this section, we answer the following research questions to show
the advantages and effectiveness of Kangaroo.

• Effectiveness of detecting bugs in real-world DBMSs. How
effective is Kangaroo in discovering new bugs in real-world
production-level DBMSs (Section 5.1)?

• Generating valid queries. How effective is context-sensitive in-
stantiation in generating valid queries (Section 5.2)?

• Comparison with existing techniques. How effective are our
two techniques in detecting bugs (Section 5.3)?

• Benefits of the proposed two key techniques. How do our two
techniques help detect bugs (Section 5.4)?

Experimental Setup We perform all the experiments on a computer
with Ubuntu 18.04 system, Intel Core i7-7700, and 32 GB RAM. We
enlarge the bitmap size to 512K bytes to mitigate path collisions (Gan
et al., 2018). Since SQLancer requires the particular SQLite version
3.34.0, we use this version for comparison. For other DBMSs, we use the
latest version, i.e., PostgreSQL version 14.2 and MySQL version 8.0.29.

We compare Kangaroo with three state-of-the-art and open-source
DBMS testing tools: Squirrel (Zhong et al., 2020), SQLancer (Rigger
and Su, 2020a,b,c), and SQLRight (Liang et al., 2022). Squirrel is a
coverage-guided fuzzer that focuses on crash-related bug detection. To
eliminate the impact of inconsistent SQL grammars supported, we ex-
tend its features to align with Kangaroo’s to build Squirrel+. SQLRight
is a coverage-guided fuzzer embedded with two test oracles, NoREC
and TLP, to detect logic bugs. SQLancer is a generation-based fuzzer
for logic bug detection. It supports one more oracle, PQS, compared to
SQLRight. We feed the same test cases to all fuzzing systems (except
SQLancer) as the initial corpus and provide the same queries to initial-
ize their mutation libraries. SQLancer is a generate-based tool that does
not require any initial inputs. We launch five fuzzing instances for each
system and run each instance for 24 h. We report the average result
except for the bug number. We collect all bug reports from the five
fuzzing instances as the final result and then count their first occurrence
time for each unique bug.

5.1. Detecting bugs in real-world DBMSs

As shown in Table 4, across intermittent runs during a 20-month
period of development, Kangaroo successfully discovered 54 unique

J. Li et al. Computers & Security 157 (2025) 104564
bugs, including 41 crash-related bugs and 13 logic bugs. At the time
of writing, all bugs have been confirmed, and 34 of them have been
fixed with 11 CVEs assigned. The SQLite developers responded that many
of the bugs we reported have been in the code for many years and no fuzzers
have ever run across it, despite SQLite being heavily tested (Anon, 2022e)
and used in literally millions of applications.

We manually investigate the bug-triggering queries and find that
31 out of 54 bugs are first detected in non-optimal query plans. Our
observation is that some query plans are rarely executed by DBMS and
therefore are less tested. MPE can execute these less-tested query plans
to find more bugs, demonstrating the effectiveness of MPE.

Another noteworthy observation is that Kangaroo detects more
crash-related bugs than logic bugs, which aligns with the findings of
previous studies on logic bug detection (Rigger and Su, 2020a,b,c).
This is primarily because crash-related bugs are generally easier to
detect, for two key reasons. First, logic bug detection typically relies on
specialized oracles that are inherently limited in scope. For instance,
our prototype employs MPE, which is designed to detect logic bugs
in SELECT queries involving multiple query plans. In contrast, crash
bugs can be detected across a wider range of SQL statements, including
INSERT, CREATE, and others, thereby increasing the likelihood of their
discovery. Second, detecting logic bugs requires high-quality inputs
that are both semantically valid and capable of producing comparable
results. Crash bugs, on the other hand, may be triggered even by invalid
inputs, making them more likely to be uncovered during fuzzing.

5.2. Generating valid queries

As aforementioned, query generation consists of two phases: query
structure generation and variable instantiation. The difficulty of vari-
able instantiation can vary substantially across different SQL state-
ments. To fairly evaluate the effectiveness of different variable instan-
tiation approaches, we construct a benchmark that consists of a set
of predefined SQL skeletons (i.e., SQL statements with all variables
stripped). Each approach is evaluated by instantiating these skeletons
and verifying the validity of the resulting statements through execu-
tion on the target DBMS. To ensure broad coverage of SQL grammar
features, we extract source SQL statements from the official unit tests
of the target DBMSs. The benchmark is then constructed by replacing
all variables in the source statements with representative placeholders
(e.g., ‘‘v’’ for identifiers and 1 for integer constants), according to their
respective data types.

We compare the performance of generating valid queries across
Kangaroo, Squirrel+, and SQLRight. Both Squirrel+ and SQLRight em-
ploy type-sensitive instantiation to concretize variables, whereas Kan-
garoo adopts a context-sensitive instantiation strategy. SQLancer is also
a well-known DBMS testing tool. However, it primarily focuses on
oracle design rather than input generation. Therefore, its generator
is tailored to produce queries that conform to the specific models
required by its oracles, rather than to maximize input diversity and
semantic validity. Furthermore, SQLancer adopts a fundamentally dif-
ferent generation strategy which incrementally builds queries clause
by clause and assigning values during the generation of each clause.
As a result, SQLancer is not capable of instantiating variables within
predefined SQL skeletons, making it incompatible with this evaluation
setup. Additionally, SQLancer supports only a limited subset of SQL
grammar, making it easier to generate valid queries but limiting their
variety. Owing to these differences, it is not feasible to conduct a fair
standalone comparison of SQLancer’s variable instantiation strategy.
Following previous works (Liang et al., 2022; Tang et al., 2023), we
treat SQLancer’s query generator as a whole component and include it
only in the overall comparison presented in Section 5.3.

Table 5 shows our evaluation results. Compared to SQLRight and
Squirrel+, Kangaroo achieves the highest semantic correctness in all
three DBMSs. Since both Kangaroo and SQLRight support full SQL
10
Table 4
Real-world Bugs Newly Detected by Kangaroo.
 ID Type Function Status Severity Reference
 SQLite
 1 CS fts3 and snippet Fixed – cve-2020-23568
 2 CS fts3 and matchinfo Fixed – cve-2020-23569
 3 CS fts3 and ALTER Fixed – cve-2020-23570
 4 CS multi-or covering index Fixed – 376e07
 5 CS LIKE and OR optimizer Fixed – 84fe52
 6 CS UNION ALL Fixed – 2aa354
 7 LB equivalence transfer Fixed – 13976a
 8 LB IS NOT NULL AND expr Fixed – 6a1424
 9 LB GROUP BY NULL Fixed – 0094d8
 10 LB type affinity Fixed – 0c437a
 11 LB expression tree Fixed – 6a1424
 12 AF query flatten Fixed – a97bbd
 13 AF aggregate queries Fixed – d49628
 14 AF NEVER() Fixed – bfb7ce
 15 AF window function Fixed – 9d5aa9
 PostgreSQL
 1 CS empty column value Fixed – #17477
 2 AF table alias Fixed – #17480
 MySQL
 1 CS parser Fixed S1 cve-2021-2427
 2 CS parser Fixed S1 cve-2022-21303
 3 CS storage Fixed S1 cve-2022-21304
 4 CS val_int Fixed S1 cve-2022-21640
 5 CS LEX Fixed S1 cve-2022-39400
 6 CS find_item Fixed S1 cve-2022-21638
 7 CS fix_semijoin_strategies Fixed S1 cve-2022-21638
 8 CS make_active_options Fixed S1 cve-2022-39400
 9 CS table_contextualize Fixed S1 cve-2022-21528
 10 CS query_block_is_recursive Fixed S2 cve-2023-21917a
 11 CS create_tmp_table Fixed S1 107825
 12 CS WITH RECURSIVE Confirmed S1 S1649226
 13 LB materialization_lookup Confirmed S3 107576
 14 LB semi_and_left_join Confirmed S3 107585
 15 LB indexed_materialization Confirmed S3 107629
 16 LB UNION Confirmed S3 S1651202
 17 LB index Confirmed S3 112802
 18 LB hash_join Confirmed S2 112816
 19 LB cast Confirmed S2 112910
 20 LB primary_key_and_dupsweedout Confirmed S2 112911
 21 AF CREATE VIEW UNION Fixed S6 107471
 22 AF cond_bool_func Fixed S6 107578
 23 AF val_real Fixed S6 107638
 24 AF join_read_const_table Fixed S6 107681
 25 AF ft_init_boolean_search Fixed S6 107733
 26 AF tmp_table_field_type Fixed S6 107826
 27 AF optimize_aggregated_query Fixed S6 107647
 28 AF ha_index_init Confirmed S6 107636
 29 AF val_decimal Confirmed S6 107660
 30 AF select_in_like_transformer Confirmed S6 107661
 31 AF create_ref_for_key Confirmed S6 107663
 32 AF recalculate_lateral_deps Confirmed S6 107704
 33 AF fix_outer_field Confirmed S6 107719
 34 AF join_read_key_unlock_row Confirmed S6 107722
 35 AF having_as_tmp_table_cond Confirmed S6 107723
 36 AF add_key_field Confirmed S6 107768
 37 AF mdl_request_init Confirmed S6 108237
LB: Logic Bugs CS: Crashes AF: Assertion Failure
S1: Critical S2: Serious S3:Non-critical S6:Debug builds
a All bugs were submitted to DBMS developers between 2020 and 2022. MySQL
developers assign CVE numbers only after the bugs are fixed, which may take over
a year.

grammars, the results indicate that context-sensitive instantiation out-
performs previous work due to richer and more accurate semantic con-
straints rather than richer SQL grammars supported. SQLRight performs
slightly better than Squirrel+ because it considers extra inter-statement
constraints.

Another interesting observation is that all these tools achieve signif-
icantly better results in SQLite compare to other DBMSs. The primary
reason lies in the differing levels of semantic strictness enforced by

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 6. Comparison between different oracles. It shows the number of code coverage, query validity, and unique logic bugs over time. We run each fuzzing instance for 24 h,
repeat each fuzzing for five times. We exclude the results of detected bugs in PostgreSQL as none of the fuzzing instances find any bugs within 24 h.
Table 5
The percentage of semantic correctness queries.
 SQLite PostgreSQL MySQL
 Squirrel+ 24,792(60.1%) 5869(24.9%) 16,283(31.1%)
 SQLRight 28,710(61.5%) 8508(26.0%) 35,012(32.5%)
 Kangaroo 32,880(70.4%) 18,569(56.7%) 49,130(45.6%)
 Total 46,672 32,753 107,693

these DBMSs. SQLite, aligning with Postel’s Law (Postel et al., 1981),
enforces significantly more relaxed semantic constraints compared to
PostgreSQL and MySQL. For example, the query ‘‘SELECT ‘a’ + 1’’;
is accepted in SQLite but is rejected by PostgreSQL. Consequently,
SQLite requires fewer semantic constraints for the same SQL statements
and thereby exhibits a higher likelihood of generating valid test cases.
Due to the same reason, Kangaroo achieves a smaller improvement on
SQLite than other DBMSs.

Kangaroo cannot achieve full semantic validity for two reasons.
First, context-sensitive instantiation does not consider dynamic con-
straints. Second, the static constraints are incomplete since our pro-
totype only implements analysis for primary patterns of major SQL
clauses (Section 4.6).

5.3. Comparisons with other techniques

Effectiveness of MPE. To ensure a fair comparison between the logic
test oracles, we port MPE to SQLRight to build SQLRight𝑀𝑃𝐸 and
compare it to SQLRight using different logic test oracles, including
NoREC, TLP, and MPE. Doing a fair comparison between MPE and PQS
is difficult. PQS requires a generation method to produce the ground-
truth result for each SELECT statement during test case generation,
making it incompatible with mutation-based fuzzers. Additionally, it
demands significant implementation effort and introduces considerable
runtime overhead in test case generation. Considering that the support
test case generation method is one of the evaluation metrics, we
directly use SQLancer𝑃𝑄𝑆 as the comparison target. In summary, the
effectiveness of logic test oracles is assessed by comparing SQLRight
with various oracles and SQLancer𝑃𝑄𝑆 . As aforementioned, we perform
the evaluation on each fuzzer for 24 h, repeat for 5 times.
11
As shown in Fig. 6, SQLRight𝑀𝑃𝐸 outperforms other oracles on all
three DBMSs. Specifically, MPE covers slightly more edges (2.24%–
12.27%) than other test oracles also used by SQLRight. More impor-
tantly, compared to PQS, NoREC, and TLP, MPE finds 7, 3, and 5 more
logic bugs, respectively. The main reason for MPE’s improvement in
bug detection and edge coverage is that it does not put any limitations
on queries within test cases. This enables MPE to test a broader range
of DBMS functionalities.

Table 6 presents the distribution of detected logic bugs, where all
logic bugs found by NoREC are covered by MPE. This demonstrates that
MPE can cover the query plans used by queries transformed by NoREC,
enabling it to detect more bugs. MPE does not find the only logic bug
detected by TLP. This is because TLP is not an oracle that compares
different query plans for the same query. TLP transforms the query into
a union of three queries and compares the results before and after the
transformation. The query plan for the transformed query differs from
all query plans of the original query.
Effectiveness of Context-sensitive Instantiation. The comparison
between Kangaroo𝑀𝑃𝐸 , SQLRight𝑀𝑃𝐸 , and SQLancer𝑀𝑃𝐸 shows the
overall effectiveness of their query generators. As expected,
SQLancer𝑀𝑃𝐸 achieves the highest query validity. This is primarily due
to its adherence to a simplified version of SQL grammar. However, this
design also constrains the diversity and complexity of the generated
queries. For instance, SQLancer does not support the generation of
subqueries, which allows it to bypass the complex constraints intro-
duced by multi-level nested subqueries. That makes it easier to generate
valid statements but limits the diversity. That explains why it explores
the fewest paths among these three fuzzing systems. In contrast, both
Kangaroo𝑀𝑃𝐸 and SQLRight𝑀𝑃𝐸 produce more diverse queries, leading
to better path coverage and bug detection. Benefiting from the richer
semantic constraints, Kangaroo𝑀𝑃𝐸 achieves significantly higher query
validity than SQLRight𝑀𝑃𝐸 .

To evaluate the contribution of context-sensitive instantiation to
logic bug detection, we compare Kangaroo𝑀𝑃𝐸 to SQLRight𝑀𝑃𝐸 be-
cause the only difference between these two fuzzers is the variable
instantiation strategy used. As shown in Fig. 7, Kangaroo𝑀𝑃𝐸 out-
performs SQLRight𝑀𝑃𝐸 on all three DBMSs. The results confirm that
context-sensitive instantiation can significantly improve the perfor-
mance of logic bug detection compared to type-sensitive instantiation.

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 7. Comparison between different query generators. It illustrates the contributions of context-sensitive instantiation for bug detection. Table 7 presents the distribution of logic
bugs and crash-related bugs. We exclude the results of detected bugs in PostgreSQL as only Kangaroo𝑀𝑃𝐸 found one crash.
Table 6
Distribution of logic bugs found in DBMS within 24 h by different oracles.
 ID DBMS MPE NoREC TLP PQS
 1 SQLite 3 5 5 5
 2 SQLite 3 3 5 5
 3 SQLite 3 5 5 5
 4 SQLite 3 3 5 5
 5 MySQL 3 3 5 5
 6 MySQL 3 3 5 5
 7 MySQL 3 5 5 5
 8 MySQL 5 5 3 5

Specifically, it achieves around 55%, 23%, and 33% validity for three
tested DBMSs, which is significantly higher than SQLRight𝑀𝑃𝐸 . This
proves that context-sensitive instantiation is helpful in improving query
validity. Due to the higher query validity, Kangaroo𝑀𝑃𝐸 wastes less
time in testing invalid queries and explores more edges, thereby find-
ing more logic bugs than SQLRight𝑀𝑃𝐸 . Specifically, compared to
SQLRight𝑀𝑃𝐸 , Kangaroo𝑀𝑃𝐸 explores 14% more edges on average and
discovers 4 more logic bugs in total.

To evaluate the contribution of context-sensitive instantiation to
crash-related bug detection, we disable the MPE in Kangaroo to build
Kangaroo!𝑀𝑃𝐸 and compare it to Squirrel+. Without logic bug test
oracles, these two fuzzer settings focus on crash-related bug detec-
tion and utilize different variable instantiation strategies. Because
Kangaroo!𝑀𝑃𝐸 has a higher probability of generating valid queries, it
can better explore the deep logic of DBMS and find more bugs. Specif-
ically, Kangaroo!𝑀𝑃𝐸 explores 39.91% more edges on average and
finds 8 more bugs than Squirrel+ with the help of context-sensitive in-
stantiation. These results confirm the effectiveness of context-sensitive
instantiation in bug discovery.

5.4. Benefits of the two key techniques

We conduct an ablation study to evaluate the individual contribu-
tions of the two key techniques. Fig. 7 shows the evaluation results.
Context-Sensitive Instantiation As shown in Fig. 7def, tools that em-
ploy context-sensitive instantiation achieve significantly higher semantic
12
Table 7
Number of bugs detected in three DBMSs within 24 h. Value in brackets indicates the
number of bugs detected in SQLite, PostgreSQL, and MySQL, respectively.
 Fuzzer Crash-related bugs Logic bugs Total
 SQLRight𝑀𝑃𝐸 8(4/0/4) 7(4/0/3) 15(8/0/7)
 Kangaroo𝑀𝑃𝐸 16(8/1/7) 11(5/0/6) 27(13/1/13)
 Squirrel+ 5(1/0/4) – 5(1/0/4)
 Kangaroo!𝑀𝑃𝐸 13(7/0/6) – 13(7/0/6)

correctness than other tools. Consequently, it significantly improves
the discovery of edges and crash-related bugs (from 5 to 13). More
importantly, Kangaroo𝑀𝑃𝐸 discovers 5 additional logic bugs that were
missed by SQLRight𝑀𝑃𝐸 with the help of context-sensitive instantia-
tion.. This result confirms that query validity plays an important role
in effectively detecting logic bugs. This is reasonable because an invalid
query cannot return results used for logic bug checking. In conclusion,
context-sensitive instantiation can significantly improve the efficiency
of bug detection, especially for logic bugs, by enhancing the validity of
generated test cases.
Multi-Plan Execution The comparison between Kangaroo and
Kangaroo!𝑀𝑃𝐸 reveals the effect of MPE. First, MPE enables logic bug
detection in SELECT statements that contain multiple query plans. Such
statements are prevalent in practice. In our experiments, the SELECT
statements generated by the system produce an average of 12.3, 15.7,
and 16.1 query plans in SQLite, PostgreSQL, and MySQL, respectively.
Interestingly, MPE also shows a slight improvement in detecting crash-
related bugs. Kangaroo captures four more crash-related bugs than
Kangaroo!𝑀𝑃𝐸 in total, which is attributed to the exploration of rarely
executed query plans.

6. Discussion and limitations

6.1. Limitations of context-sensitive instantiation

Our context-sensitive instantiation strategy is theoretically capable
of inferring both complete and sound semantic constraints. However,
similar to existing work (Zhong et al., 2020; Liang et al., 2022, 2024),
we currently enforce only static constraints. This restriction reduces

J. Li et al. Computers & Security 157 (2025) 104564
the validity of generated queries involving dynamic behavior. This
limitation arises from the practical challenges associated with dy-
namic constraints, which significantly increase the complexity of con-
straint reasoning. Furthermore, enforcing dynamic constraints would
introduce considerable overhead during test case generation, poten-
tially lowering system efficiency. Thus, we restrict our enforcement to
static constraints, which capture the majority of semantically invalid
cases while maintaining efficiency. We consider supporting dynamic
constraint enforcement as part of future work.

The theoretical completeness and soundness of context-sensitive
constraint inference depend on the precise fine-grained semantic analy-
sis of SQL clauses. In practice, there are two main sources that may lead
to constraint inaccuracies: (1) implementation errors in the semantic
analysis for certain SQL clauses, and (2) lack of fine-grained constraint
analysis for some clauses due to limited engineering effort. We do not
view these issues as essential limitations of the approach itself. Instead,
they reflect practical limitations of the current prototype and can be
addressed through further development.

6.2. Limitations of MPE

Similar to existing oracles for detecting logic bugs in DBMSs, MPE
also suffers from false positives (FP) and false negatives (FN). Below,
we discuss these limitations and the strategies we employ to mitigate
them in practice.
False Negatives Due to Shared Incorrect Results MPE may fail to
detect certain logic bugs (i.e., false negatives) when all query plans for
a given SQL statement yield the same incorrect result. This limitation is
inherent to oracles that rely on differential behavior across alternative
execution paths, such as PQS, TLP, and TQS. However, in comparison
to these oracles, MPE reduces the likelihood of such false negatives by
exploring a larger set of query plans. Furthermore, bugs that manifest
consistently across all query plans typically stem from low-level compo-
nents. These components are often well covered by existing unit testing
frameworks (Anon, 2023b).
False Positives from Non-Deterministic Queries SQL queries can be
ambiguous due to the non-deterministic behavior in DBMSs. Therefore,
inconsistencies between the results of different query plans for non-
deterministic queries do not necessarily indicate bugs. Such queries are
common and can significantly reduce the effectiveness of test oracles,
which also pose challenges to previous works (Rigger and Su, 2020b,a;
Liang et al., 2022, 2024). To better understand and mitigate this
issue, we evaluate a wide range of features in each tested DBMS. Our
evaluation identifies four primary sources of non-determinism.

The first source of non-determinism comes from undefined data ac-
cess order. In most cases, it only impacts the row order in results, which
can be eliminated by sorting the results. However, the non-determinism
cannot be resolved if the statement contains certain SQL features. For
instance, the LIMIT clause results in only part of the records being
fetched. In such cases, the final output may vary, depending on the
data access order during query execution. The second source is the non-
deterministic functions or variables such as random() and CURRENT_TIME.
The third source is the loss of precision, which is common in DBMSs’
built-in statistical analysis functions. Finally, some non-deterministic
behaviors depend on the dynamic execution context. For example,
SQLite assigns an affinity type to each column and uses different
comparison algorithms for different affinity types. The statement CREATE
VIEW v1(c1) AS SELECT c0 FROM t1 UNION SELECT c0=10 FROM t1; involves two
SELECT statements. SQLite is free to choose the execution order of the
two SELECT statements, and the affinity type of column c1 depends on
this order. This can lead to inconsistent results in subsequent queries,
such as SELECT * FROM v1 NATURAL JOIN v1;.

To mitigate false positives caused by such non-determinism, we
perform feature-aware analysis during context-sensitive instantiation.
Specifically, we identify queries containing non-deterministic features
13
(e.g., the LIMIT clause), and exclude them from result comparison.
Importantly, this strategy does not compromise our ability to detect
memory-related bugs in these queries, as it only omits the result
comparison step.
False Positives from Non-Triggerable Plans MPE requires modifying
DBMSs, which might generate non-triggerable query plans and cause
false positives. However, this rarely occurs since our intervention is
limited to selecting among query plans generated by the DBMS, without
altering the plan generation process. In practice, we encountered only
one such instance, where a query plan consistently incurred higher
costs compared to an alternative query plan. Specifically, the query
plan attempted to perform a parallel table scan with only a single
worker, which proved to be less efficient than a non-parallel scan. Con-
sequently, this query plan would never be chosen for execution by the
original DBMS. However, this case can also be viewed as a performance
bug since the DBMS wastes efforts on generating meaningless query
plans.

6.3. Threats to validity

External validity A potential external validity threat is that the DBMSs
selected for our experiment are all C/C++-based. This is because our
system prototype is built on AFL, which can only statically instrument
C/C++ programs to collect coverage information. However, the two
techniques we propose are not limited by this constraint. Both of them
can be applied to other fuzzing tools to detect bugs in non-C/C++-based
DBMS.

Internal validity Minimizing systematic errors in the evaluation pro-
cess is essential. Since fuzzing involves inherent randomness, we miti-
gate this threat by repeating each experiment five times and reporting
the average results. To ensure consistent and comparable coverage
measurements, we evaluate the coverage achieved by all fuzzers on
the same instrumented binary To avoid selection bias, we utilize the
same set of initial seeds for all fuzzers, except SQLancer, which does
not require any seeds.
Conclusion validity Evaluation metrics may introduce potential
threats to the results. In this paper, we selected commonly used,
comprehensive indicators in previous bug detection works. To isolate
the impact of the technique, we applied a controlled variable strategy
in the comparison experiment. For example, when evaluating the
effectiveness of different test oracles, we applied the same test tools
to all oracles. The only exception is PQS, because it inherently requires
a distinct test case generation method.

6.4. Practical applicability and integration

PoC Generation A test case that triggers a bug on the modified DBMS
may fail to reproduce the bug on the original DBMS if the issue arises
only with a non-optimal query plan. Such a test case cannot directly
serve as proof-of-concept (PoC) (Anon, 2022i) that demonstrates the
bug on the original system. To save DBMS developers’ effort, we submit
DBMS diagnostic logs along with corresponding minimal PoCs

To build a minimal PoC, we first try to remove statements or
clauses in the test case and check whether the bug is still triggered.
Then, we manually adjust the minimal test cases to trigger bugs on
the unmodified DBMS. Further details on the manual adjustment are
provided in Appendix A.3. In practice, we spent about 30 h manually
constructing PoCs for all 31 bugs detected in non-optimal query plans.
Effort of Adoption Applying Kangaroo to a new DBMS requires domain
knowledge of its grammar and query plan selection implementation.
This requirement, however, aligns well with the expertise of the pri-
mary users of DBMS testing tools, i.e., DBMS developers. Developers
can adopt Kangaroo by following the steps below:

J. Li et al. Computers & Security 157 (2025) 104564
Table 8
Effort of adoption to DBMSs.
 Component(LOC) SQLite PostgreSQL MySQL
 Semantic configuration 102 109 132
 Parser 52 161 63
 Context-sensitive instantiation 106 135 259
 DBMS modification 248 271 191
 Total Person-hours 32 40 45

(1) Define semantic mappings: Define the mapping rules in the se-
mantic configuration to help identify the alias of standard SQL
clauses.

(2) Augment syntax validation: Some DBMSs perform additional syn-
tax checks beyond BNF rules, which cannot be automatically
ported. These checks must be manually ported to improve the
accuracy of generated parser.

(3) Support DBMS-specific extensions: Add semantic definitions and
constraint collection logic for DBMS-specific clauses to ensure
proper support for non-standard SQL features.

(4) Refine constraint collection: For clause patterns whose semantic
requirements deviate from general, override the default con-
straint collection logic.

(5) Enable multi-plan execution: Modify the DBMS to support the
execution of all valid query plans.

Table 8 summarizes the human effort of adopting our prototype to
specific DBMSs.
Extend to other statements MPE can also be applied to other state-
ments with multiple execution plans, such as INSERT and UPDATE.
This extension introduces two main challenges. First, non-SELECT state-
ments do not yield directly comparable results since they typically do
not return detailed information about data modifications. To address
this, a follow-up query can be issued after executing each plan to
retrieve information about the affected database objects (e.g., tables).
Second, executing one query plan may modify the database state, which
can affect the execution of subsequent plans. This can be addressed by
using the DBMS transaction rollback mechanism to restore the original
state before executing the following plans.
Integration into testing pipelines Recently, several mainstream
DBMSs have adopted fuzzing as an integral part of their official testing
frameworks. For example, SQLite integrated fuzzing into its internal
test suite in 2015 as a complementary approach to unit testing. Since
Kangaroo is also a fuzzing-based tool, it can be seamlessly integrated
into existing official DBMS fuzzing workflows.

Fuzzing is generally not well-suited for integration into main Con-
tinuous Integration (CI) pipelines due to its non-deterministic behavior,
substantial computational overhead, and long execution times. Instead,
it is typically employed as a complementary testing technique to un-
cover vulnerabilities that may be missed by conventional methods. In
practice, fuzzing is often executed as a separate nightly or scheduled
job. Although these jobs fall outside the core CI pipeline, they constitute
an essential part of the broader testing framework. This asynchronous
execution enables developers to leverage the fuzzing’s strengths in
exploring execution paths without impacting the performance or re-
sponsiveness of the CI pipeline. Moreover, these jobs can be integrated
within the Continuous Delivery (CD) process to provide deeper verifica-
tion of software robustness and security before release. Listing 2 in the
Appendix illustrates a sample configuration for running nightly fuzzing
jobs with GitHub Actions.

By default, our system interacts with the target DBMS through
its native API (e.g., libpq, libmysqlclient) to ensure efficient query
execution and result retrieval. It also supports communication via
standardized interfaces such as Open Database Connectivity (ODBC)
and command-line interfaces (CLI). This interface flexibility facilitates
integration of Kangaroo into existing testing pipelines.
14
7. Related work

Oracles for detecting DBMS semantic bugs. DBMS semantic bug
detection relies on test oracles to identify unexpected behavior, such as
performance regressions and incorrect results. We can classify semantic
bug detection approaches into three categories.

The first approach is based on differential testing which executes
a given input with different DBMSs. Slutz proposed RAGE (Slutz,
1998) for finding logic bugs by running the same queries on different
DBMSs and comparing their results. Jinho et al. developed APOLLO
(Jung et al., 2019) to find performance regression bugs by executing the
same query on the DBMSs with different versions. However, RAGE can
only be applied to common features of different DBMSs, and APOLLO
can only detect bugs introduced or fixed by newer versions.

Another approach is based on metamorphic testing which identifies
bugs by running two queries with known relationships between their
results. If their results do not conform to the expected relationships,
a potential logic bug is detected. However, all of them (Sutton et al.,
2007; Tang et al., 2023; Rigger and Su, 2020a,b,c; Ba and Rigger, 2024)
are limited to the queries that can be converted.

The last approach tries to build the test case along with the corre-
sponding ground-truth result. ADUSA (Khalek et al., 2008) generates
all data and the full expected result for a query. However, generating
full expected results can be expensive which inhibits it from finding
more bugs. To simplify the ground truth generation, Pivoted Query
Synthesis(PQS) (Rigger and Su, 2020c) only partly validates a query’s
result. It synthesizes a query expected to fetch a single, randomly-
selected row and detects logic bugs by checking whether this row is
fetched. Similar to NoREC, PQS is also mostly limited to finding bugs
in WHERE clauses.
DBMS test cases generation. DBMS requires structural inputs to ma-
nipulate data in the database. Structural input generation mainly falls
into two categories: generate-based approaches and mutation-based
approaches.

The generation-based approach (Rigger and Su, 2020a,c,b; Slutz,
1998; Andreas Seltenreich, 2022; Binnig et al., 2007; Khalek et al.,
2008; Tang et al., 2023) is effective in generating syntax-correct test
cases since it typically follows a grammar model. However, these
grammar rules are helpless in improving the semantic correctness of
the test case. For example, SQLsmith (Andreas Seltenreich, 2022) can
generate syntax-correct test cases from abstract syntax trees. It achieves
quite a low accuracy on semantics which might inhibit it from finding
bugs hidden in the deep logic. QAGen (Binnig et al., 2007) proves
that generating a completely valid query is NP-complete. It improves
semantic correctness by combining traditional query processing and
symbolic execution. Previous works also try to improve query genera-
tion by generating queries that satisfy certain constraints (Khalek et al.,
2008). They reduce the query generation into the SAT problem, which
is subsequently solved by a solver (e.g., Alloy (Anon, 2022b)).

The mutation-based approach incorporates execution feedback to
explore the deep logic of tested programs. The general fuzzers
(Stephens et al., 2016; Yun et al., 2018; Chen and Chen, 2018; Chen
et al., 2020; Gan et al., 2020) unaware of the input structure. They
can hardly reach the deep logic of DBMSs even incorporating advanced
techniques such as taint analysis or symbolic execution. Blazytko
et al. (2019) utilizes grammar-like combinations to synthesize highly
structured inputs without the need for explicit grammar, but most of
the generated test cases are still syntax invalid. Recent works manually
provide grammar specifications to guide mutation as they guarantee
that the generated queries have correct grammar. For example, Bati
et al. (2007) propose a genetic approach to mutate SQL by inserting, re-
placing, or removing grammar with the guidance of execution feedback
such as query results and query plans.

J. Li et al.

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3

3
3
3

3
3
3
3
3
4
4

4
4
4
4
4
4
4
4

Computers & Security 157 (2025) 104564
8. Conclusion

This paper presents Kangaroo, a mutation-based system for detect-
ing both logic and crash-related bugs in DBMS. It proposed two key
techniques, i.e., context-sensitive instantiation to generate semantically
valid SQL queries during mutation and multi-plan execution that can
detect logic bugs in the DBMS execution engine. We developed a proto-
type system and applied it to three widely used DBMSs. It successfully
identified 54 unique bugs. The further evaluation shows that Kangaroo
outperforms existing tools.

CRediT authorship contribution statement

Jiaqi Li: Writing – review & editing, Writing – original draft,
Validation, Supervision, Software, Project administration, Methodol-
ogy, Conceptualization. Ke Wang: Software, Investigation. Yaoguang
Chen: Software. Yajin Zhou: Writing – review & editing, Supervision,
Resources, Funding acquisition. Lei Wu: Writing – review & editing.
Jiashui Wang: Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jiaqi Li, Yajin Zhou, Lei Wu has patent pending to 2025100223417.
If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
helpful comments and feedback. This work was supported by the Na-
tional Key R&D Program of China (No. 2022YFE0113200), the National
Natural Science Foundation of China (NSFC) under Grant U21A20464.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of funding agencies.

Appendix

1 name: Nightly Fuzzing
2
3 on:
4 schedule:
5 - cron: ’0 1 * * *’ # Run daily at 1:00 AM UTC
6 workflow_dispatch: # Allow manual trigger
7
8 jobs:
9 fuzz:
0 runs-on: ubuntu-latest
1 steps:
2 - name: Checkout repository
3 uses: actions/checkout@v3
4
5 - name: Set up dependencies
6 run: |
7
8
9 - name: Build fuzzer toolchain
0 run: |
1 cd /path/to/Kangaroo
2 make # build fuzzer
3 cd AFL
4 make # Build compiler for instrumentation
5
6 - name: Build instrumented DBMS
7 run: |
8 # Specify the compiler for instrumentation
9 export CC= /path/to/afl-gcc
0 export CXX= /path/to/afl-g++
1 # Build instrumented DBMS
15
2 mkdir build
3 cd build
4 cmake -DENABLE_MPE=ON .. # Assume MPE has been

integrated
5 make fuzz_target
6
7 - name: Run fuzzing
8 run: |
9 cd /path/to/fuzz/dir
0 # Run the fuzzing script
1 # It first sets up the DBMS, and then launches

the fuzzer to test it.
2 ./run_kangaroo.sh
3
4 - name: Upload crash artifacts (if any)
5 if: always()
6 uses: actions/upload-artifact@v3
7 with:
8 name: fuzz-crashes
9 path: /path/to/fuzz/dir/output/crash

Listing 2 Example Nightly Fuzzing Workflow Configuration for GitHub
Actions

A.1. Implementation detail of constraint collection

Kangaroo implements a GetConstraint function for each clause pat-
tern. Fig. 8 illustrates the GetConstraint functions for several SQL clause
patterns. For example, in Fig. 8(a), the GetConstraint function for the
first pattern in JoinedTabled can infer, based on the context of the
current pattern, that the scope of the TableRef identifiers, i.e., columns
of this joined table can be referenced by ColumnRef identifiers within
JoinConstraints. In Fig. 8(b), the GetConstraint functions can capture
the attributes of a ColumnDef identifier when defined and infer the
attribute requirements for identifiers.

The semantic constraints of the same clause pattern may vary across
different DBMSs. For example, the pattern Expression ‘+’ Expression
generally requires both operands to be numeric; however, SQLite per-
mits addition operations between operands of any type. To address
this, when a DBMS enforces semantic constraints that differ from the
general behavior, we implement a new GetConstraint function to over-
ride the original one. Furthermore, some DBMSs have their own SQL
dialect. As aforementioned, the semantic tree grammar also contains
the SQL dialect of the tested DBMS. Therefore, we can implement the
GetConstraint function for the patterns of these dialects. In addition,
we provide a set of APIs to capture semantic information and insert
various semantic constraints, significantly simplifying the engineering
effort required to implement the GetConstraint function. These design
choices facilitate the adaptation of our methodology to other DBMSs
with minimal engineering effort.

A.2. Randomized backtracking algorithm example

The process of the randomized backtracking algorithm is as follows.
First, we obtain a topological order of variables based on their de-
pendencies and instantiate the variables sequentially according to this
order. During each instantiation, a value is randomly assigned to the
variable such that all constraints imposed on it are satisfied. If no valid
solution can be found for a variable, the algorithm backtracks to the
variables it depends on and re-instantiate them.

For example, in Fig. 2, x2, x3, and x6 only depend on previously
declared tables t0 and t1, so we first instantiate them in turn by
randomly selecting a referenced table. Next, we instantiate x1, x4, and
x5, as all their dependencies have already been instantiated. Suppose
we concretize both x2 and x3 with table t1, the joined table will have
two columns with conflicting names. When concretizing identifier x4,
the column dependency requires that x4 should be a column with
a unique name in the joined table, but no dependencies satisfy this
constraint. In this case, we will re-instantiate x3, x4, and all variables
that depend on them.

J. Li et al. Computers & Security 157 (2025) 104564
Fig. 8. An example to show some GetConstraint functions. We provide a set of APIs
to simplify the implementation of GetConstraint function. The figure only lists the
three APIs used to insert different types of constraints.

A.3. PoC generation strategies

MPE can only conduct the PoC on modified DBMSs. To build PoC
on unmodified DBMSs, our goal is to make the buggy query plan to
be optimal. The ways to achieve this goal can be classified into three
categories.

First, force a query plan to be chosen by using a hint to give DBMS
an explicit optimization instruction. For example, in MySQL, the hint
FORCE INDEX forces a table scan to use the specified index if possible.
If the buggy query plan scans a table with an index and others do not,
this hint could force the plan to be chosen.

Second, eliminate more efficient query plans. That can be achieved
by turning off certain optimizations, which is feasible since DBMSs
typically provide a configuration to switch on/off some optimization
strategies. Sometimes, using hints (e.g. IGNORE INDEX) can also elim-
inate some query plans. Besides, rewriting test cases can achieve this
goal as well. For example, by removing the CREATE INDEX statement,
query plans that use this index will be eliminated.

Third, modify the cost of query plans by adjusting either action
count or action cost. A query plan is composed of a series of operations,
and the cost of an operation can be simplified as action count * action
cost. action count is the amount of data to process/access, and action
16
cost is the overhead of processing one unit of data. In some DBMS,
e.g. PostgreSQL, the action cost is a serial of parameters that can be set
by the user. To change the action count, we can modify expressions in
the statement, change the DBMS status, or provide hints for SELECT
statements. For example, we found a buggy query plan that sequence
scans a table perform worse than another use index search performed
better because the SELECT statement had a condition filter ‘‘𝑎 < 10’’.
Suppose the table has 100 rows and only 10 of the rows satisfy this
condition, the index search will perform better since it requires less data
access. If we set the condition to ‘‘𝑎 < 100’’ such that all rows satisfy
this condition, the sequence scan will perform better because the index
search operation requires the same action count as the sequence scan
operation but extra action cost to search the index. Modifying the data
in the query table to make more data satisfy the expression can achieve
the same purpose. Some DBMS allow us to use hints to intervene in the
probability that a logical expression is true. For example, we can use
hints ‘‘𝑙𝑖𝑘𝑒𝑙𝑦(𝑎 < 10)’’ to tell SQLite that this condition is likely to be
true to increase the action count of the index search operation.

Data availability

Data Availability. The artifact associated with this article, including
experimental data, scripts, and instructions is available at: https://
github.com/anonymous44117/Kangaroo.

References

Andreas Seltenreich, S.M., 2022. SQLsmith. https://github.com/anse1/sqlsmith/.
Anon, 2022a. AddressSanitizer. https://github.com/google/sanitizers/.
Anon, 2022b. Alloy. https://alloytools.org/.
Anon, 2022c. American Fuzzy Lop (2.56b). https://lcamtuf.coredump.cx/afl/.
Anon, 2022d. Common vulnerabilities and exposures. https://en.wikipedia.org/wiki/

Common_Vulnerabilities_and_Exposures.
Anon, 2022e. How SQLite is tested. https://www.sqlite.org/testing.html.
Anon, 2022f. MySQL customers. https://www.mysql.com/customers/.
Anon, 2022g. MySQL homepage. https://www.mysql.com/.
Anon, 2022h. PostgreSQL homepage. https://www.postgresql.org/.
Anon, 2022i. Proof of concept. https://en.wikipedia.org/wiki/Proof_of_concept#

Security.
Anon, 2022j. SQLite homepage. https://www.sqlite.org/.
Anon, 2022k. Well-known users of SQLite. https://www.sqlite.org/famous.html.
Anon, 2023a. Randomized depth-first search. https://en.wikipedia.org/wiki/Maze_

generation_algorithm.
Anon, 2023b. Unit testing. https://en.wikipedia.org/wiki/Unit_testing.
Ba, J., Rigger, M., 2024. Keep it simple: Testing databases via differential query plans.

Proc. the ACM Manag. Data 2 (3), 1–26.
Bannister, A., 2021. SQLite patches use-after-free bug that left apps open to code exe-

cution, denial-of-service exploits. https://portswigger.net/daily-swig/sqlite-patches-
use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits.

Bati, H., Giakoumakis, L., Herbert, S., Surna, A., 2007. A genetic approach for random
testing of database systems. In: Proceedings of the 33rd International Conference
on Very Large Data Bases. pp. 1243–1251.

Binnig, C., Kossmann, D., Lo, E., Özsu, M.T., 2007. QAGen: generating query-aware
test databases. In: Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data. pp. 341–352.

Blazytko, T., Bishop, M., Aschermann, C., Cappos, J., Schlögel, M., Korshun, N.,
Abbasi, A., Schweighauser, M., Schinzel, S., Schumilo, S., et al., 2019. {GrimoiRE}:
Synthesizing structure while fuzzing. In: 28th USENIX Security Symposium (USENIX
Security 19). pp. 1985–2002.

Chamberlin, D.D., Boyce, R.F., 1974. SEQUEL: A structured english query language.
In: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control. pp. 249–264.

Chen, P., Chen, H., 2018. Angora: Efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy. SP, IEEE, pp. 711–725.

Chen, Y., Li, P., Xu, J., Guo, S., Zhou, R., Zhang, Y., Wei, T., Lu, L., 2020. Savior:
Towards bug-driven hybrid testing. In: 2020 IEEE Symposium on Security and
Privacy. SP, IEEE, pp. 1580–1596.

Chen, Y., Zhong, R., Hu, H., Zhang, H., Yang, Y., Wu, D., Lee, W., 2021. One engine to
fuzz’em all: Generic language processor testing with semantic validation. In: 2021
IEEE Symposium on Security and Privacy. SP, IEEE, pp. 642–658.

Cimpanu, C., 2019. Google Chrome impacted by new Magellan 2.0 vulnera-
bilities. https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-
2-0-vulnerabilities/.

https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anonymous44117/Kangaroo
https://github.com/anse1/sqlsmith/
https://github.com/google/sanitizers/
https://alloytools.org/
https://lcamtuf.coredump.cx/afl/
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.sqlite.org/testing.html
https://www.mysql.com/customers/
https://www.mysql.com/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Proof_of_concept#Security
https://en.wikipedia.org/wiki/Proof_of_concept#Security
https://en.wikipedia.org/wiki/Proof_of_concept#Security
https://www.sqlite.org/
https://www.sqlite.org/famous.html
https://en.wikipedia.org/wiki/Maze_generation_algorithm
https://en.wikipedia.org/wiki/Maze_generation_algorithm
https://en.wikipedia.org/wiki/Maze_generation_algorithm
https://en.wikipedia.org/wiki/Unit_testing
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb15
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb15
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb15
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb17
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb17
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb17
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb17
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb17
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb18
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb18
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb18
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb18
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb18
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb19
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb20
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb20
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb20
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb20
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb20
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb21
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb21
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb21
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb22
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb22
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb22
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb22
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb22
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb23
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb23
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb23
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb23
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb23
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/

J. Li et al. Computers & Security 157 (2025) 104564
Dutra, R., Bachrach, J., Sen, K., 2018. SMTSampler: Efficient stimulus generation
from complex SMT constraints. In: 2018 IEEE/ACM International Conference on
Computer-Aided Design. ICCAD, IEEE, pp. 1–8.

Fu, J., Liang, J., Wu, Z., Wang, M., Jiang, Y., 2022. Griffin: Grammar-free DBMS
fuzzing. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. pp. 1–12.

Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., Chen, Z., 2020. {GreyoNE}:
Data flow sensitive fuzzing. In: 29th USENIX Security Symposium (USENIX Security
20). pp. 2577–2594.

Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z., 2018. Collafl: Path sensitive
fuzzing. In: 2018 IEEE Symposium on Security and Privacy. SP, IEEE, pp. 679–696.

Ghit, B., Poggi, N., Rosen, J., Xin, R., Boncz, P., 2020. SparkFuzz: Searching correctness
regressions in modern query engines. In: Proceedings of the Workshop on Testing
Database Systems. pp. 1–6.

Hao, Z., Huang, Q., Wang, C., Wang, J., Zhang, Y., Wu, R., Zhang, C., 2023. Pinolo:
Detecting logical bugs in database management systems with approximate query
synthesis. In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). pp.
345–358.

Jiang, Z.-M., Bai, J.-J., Su, Z., 2023. {DynsQL}: Stateful fuzzing for database manage-
ment systems with complex and valid {sQL} query generation. In: 32nd USENIX
Security Symposium (USENIX Security 23). pp. 4949–4965.

Jung, J., Hu, H., Arulraj, J., Kim, T., Kang, W., 2019. APOLLO: Automatic detection and
diagnosis of performance regressions in database systems. Proc. the VLDB Endow.
13 (1), 57–70.

Khalek, S.A., Elkarablieh, B., Laleye, Y.O., Khurshid, S., 2008. Query-aware test gen-
eration using a relational constraint solver. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, pp. 238–247.

Knuth, D.E., 1964. Backus normal form vs. backus naur form. Commun. ACM 7 (12),
735–736.

Liang, J., Chen, Y., Wu, Z., Fu, J., Wang, M., Jiang, Y., Huang, X., Chen, T., Wang, J.,
Li, J., 2023. Sequence-oriented DBMS fuzzing. In: 2023 IEEE 39th International
Conference on Data Engineering. ICDE, IEEE, pp. 668–681.

Liang, Y., Liu, S., Hu, H., 2022. Detecting logical bugs of {dbMS} with coverage-
based guidance. In: 31st USENIX Security Symposium (USENIX Security 22). pp.
4309–4326.

Liang, J., Wu, Z., Fu, J., Wang, M., Sun, C., Jiang, Y., 2024. Mozi: Discovering
DBMS bugs via configuration-based equivalent transformation. In: Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. pp. 1–12.
17
Liu, X., Zhou, Q., Arulraj, J., Orso, A., 2021. Automated performance bug detection in
database systems. arXiv e-prints arXiv–2105.

Neystadt, J., 2008. Automated penetration testing with white-box fuzzing. MSDN Libr..
Postel, J., et al., 1981. Transmission control protocol. p. 13.
Rigger, M., Su, Z., 2020a. Detecting optimization bugs in database engines via non-

optimizing reference engine construction. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 1140–1152.

Rigger, M., Su, Z., 2020b. Finding bugs in database systems via query partitioning.
Proc. the ACM Program. Lang. 4 (OOPSLA), 1–30.

Rigger, M., Su, Z., 2020c. Testing database engines via pivoted query synthesis. In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). pp. 667–682.

Slutz, D.R., 1998. Massive stochastic testing of SQL. In: VLDB, vol. 98, Citeseer, pp.
618–622.

Song, J., Dou, W., Cui, Z., Dai, Q., Wang, W., Wei, J., Zhong, H., Huang, T., 2023.
Testing database systems via differential query execution. In: 2023 IEEE/ACM 45th
International Conference on Software Engineering. ICSE, IEEE, pp. 2072–2084.

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., Vigna, G., 2016. Driller: Augmenting fuzzing through selective symbolic
execution. In: NDSS, vol. 16, (2016), pp. 1–16.

Sutton, M., Greene, A., Amini, P., 2007. Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education.

Tang, X., Wu, S., Zhang, D., Li, F., Chen, G., 2023. Detecting logic bugs of join
optimizations in DBMS. Proc. the ACM Manag. Data 1 (1), 1–26.

Wang, J., Chen, B., Wei, L., Liu, Y., 2019. Superion: Grammar-aware greybox fuzzing.
In: 2019 IEEE/ACM 41st International Conference on Software Engineering. ICSE,
IEEE, pp. 724–735.

Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T., 2018. {QsYM}: A practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 745–761.

Zhang, Y., Yao, P., Wu, R., Zhang, C., 2021. Duplicate-sensitivity guided transformation
synthesis for DBMS correctness bug detection. arXiv preprint arXiv:2107.03660.

Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., Wu, D., 2020. Squirrel: Testing database
management systems with language validity and coverage feedback. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
pp. 955–970.

http://refhub.elsevier.com/S0167-4048(25)00253-6/sb25
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb25
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb25
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb25
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb25
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb26
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb26
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb26
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb26
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb26
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb27
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb27
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb27
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb27
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb27
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb28
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb28
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb28
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb29
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb29
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb29
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb29
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb29
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb30
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb31
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb31
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb31
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb31
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb31
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb32
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb32
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb32
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb32
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb32
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb33
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb33
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb33
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb33
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb33
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb34
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb34
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb34
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb35
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb35
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb35
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb35
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb35
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb36
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb36
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb36
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb36
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb36
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb37
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb37
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb37
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb37
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb37
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb38
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb38
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb38
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb39
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb40
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb41
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb42
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb42
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb42
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb43
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb43
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb43
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb43
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb43
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb44
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb44
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb44
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb45
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb45
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb45
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb45
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb45
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb46
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb46
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb46
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb46
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb46
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb47
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb47
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb47
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb48
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb48
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb48
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb49
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb49
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb49
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb49
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb49
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb50
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb50
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb50
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb50
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb50
http://arxiv.org/abs/2107.03660
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52
http://refhub.elsevier.com/S0167-4048(25)00253-6/sb52

	Detecting DBMS bugs with context-sensitive instantiation and multi-plan execution
	Introduction
	Background
	Structured Query Language
	SQL Query Processing
	Levels of DBMS Testing
	Test Case Generation
	DBMS Test Oracles

	Motivating Examples
	Context-Sensitive Instantiation
	Multi-Plan Execution
	Focus of this Paper

	Design
	Overall Design
	Parser Generation
	Parse Tree Mutation
	Context-Sensitive Instantiation
	Multi-Plan Execution
	Prototype Implementation

	Evaluation
	Detecting Bugs in Real-world DBMSs
	Generating Valid Queries
	Comparisons with Other Techniques
	Benefits of the Two Key Techniques

	Discussion and Limitations
	Limitations of Context-sensitive Instantiation
	Limitations of MPE
	Threats to Validity
	Practical Applicability and Integration

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Implementation Detail of Constraint Collection
	Randomized Backtracking Algorithm Example
	PoC Generation Strategies

	Data availability
	References

