é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

SlimArchive: A Lightweight Architecture
for Ethereum Archive Nodes

Hang Feng, Yufeng Hu, and Yinghan Kou, Zhejiang University;
Runhuai Li and Jianfeng Zhu, BlockSec; Lei Wu and Yajin Zhou, Zhejiang University

https://www.usenix.org/conference/atc24/presentation/feng-hang

This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.
July 10-12, 2024 - Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference
is sponsored by

alllasc Ellall deala

) g
\= King Abdullah University of

Science and Technology

+ ——
R W E » Ny

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

REPRODUCED

SlimArchive: A Lightweight Architecture for Ethereum Archive Nodes

Hang Feng
Zhejiang University
h_feng @zju.edu.cn

Yufeng Hu
Zhejiang University
yufenghu@zju.edu.cn

Jianfeng Zhu
BlockSec
Jfzhu@blocksec.com

Abstract

With the rapid development of Ethereum, archive nodes that
record all historical states have become a critical component
of the infrastructure. However, current archive nodes suffer
enormous storage requirements and poor performance due to
the inefficient authenticated Merkle Patricia Trie and coarse-
grained state granularity.

This paper presents a lightweight and high-performance
architecture for Ethereum archive nodes to address the two
limitations mentioned earlier. The core idea of our approach
is to maintain compacted, flattened, and fine-grained (i.e.,
transaction-level) historical states by flattening the minimum
state changes of each transaction required for the world state.
Our method maintains an archive node with minimum stor-
age requirements while providing high-performance state
access. We have implemented a prototype system named SLI-
MARCHIVE for Ethereum. The evaluation results demonstrate
that our approach reduces storage requirements by 98.1%,
improves state access throughput by 19.0x, and speeds up
transaction execution by an average of 1112.5x, compared
to vanilla Geth.

1 Introduction

Since its inception in 2015, Ethereum has emerged as one
of the most prominent public blockchains. Its capability to
execute smart contracts has considerably facilitated the de-
velopment of Decentralized Applications (DApps), including
Cryptocurrency [21], Decentralized Finance (DeFi) [53], Non-
Fungible Token (NFT) [26], and more.

Ethereum functions as a transaction-driven finite state ma-
chine [54]. Each time a block is mined, Ethereum nodes use
the Ethereum Virtual Machine (EVM) to execute transactions
in the block and advance the world state, i.e., the granularity
of the state transition is block-level. Ethereum nodes are cat-
egorized as non-archive (light or full) and archive nodes [4].
Non-archive nodes prune historical states as the blockchain

*Corresponding author

yinghan_kou@ zju.edu.cn
Lei Wu

Zhejiang University

lei_wu@zju.edu.cn

Runhuai Li
BlockSec
rhli@blocksec.com

Yinghan Kou
Zhejiang University

Yajin Zhou"
Zhejiang University
yajin_zhou@zju.edu.cn

progresses, whereas archive nodes persist the world state snap-
shot at each block, thereby maintaining all historical states.

Archive nodes, which maintain billions of historical transac-
tions and their resulting states, have become a vital infrastruc-
ture component in both academia and industry. They can be
used in multiple scenarios, e.g., smart contract and transaction
testing. For example, archive nodes offer multiple JSON-RPC
APIs [5,12,13] for analyzing historical transactions and states.
Security researchers can analyze the execution traces of histor-
ical transactions, which depend on historical states, to identify
suspicious behaviors and attack patterns [35,44,55, 64]. De-
velopers can employ fuzz testing on smart contracts under
historical states to uncover vulnerabilities [59]. Arbitrage re-
searchers can enhance their trading strategies by back-testing
them through simulations of transactions based on historical
states [39,51]. Besides, historical states enable temporal anal-
ysis [65], such as analyzing the historical balance changes of
a particular account. Additionally, certain Extract-Transform-
Load (ETL) works [19-21,34,55,63,66] collect and analyze
historical data on Ethereum to gain insightful knowledge.

Unfortunately, current archive nodes suffer enormous stor-
age requirements and poor performance [31,40,47,52,56].
The storage consumption of an archive node implemented
by Go-Ethereum (Geth, [11]), the official and most popular
Ethereum execution client, has reached over 16 TB. The syn-
chronization of an archive node also takes up a considerable
amount of time (Table 2 in Section 5.1). Additionally, the
performance of state access is extremely low [29,55]. Several
works [23, 32, 33] point out that state access consumes the
majority of the transaction execution time.

These problems arise from the inefficient authenticated
Merkle Patricia Trie (MPT) and coarse-grained state gran-
ularity (Section 3). First, Ethereum employs the authenti-
cated MPT to maintain a world state that enables untrusted
nodes to generate Merkle proofs to convince users of query
results [33]. However, MPTs also introduce excessive inter-
mediate data (non-leaf nodes) that consume extra storage.
Besides, since data are stored in leaf nodes, each state access
requires searching the MPT from root to leaf, i.e., MPTs suffer

USENIX Association

2024 USENIX Annual Technical Conference 1257

from read/write amplification. Furthermore, the granularity
of historical states is a block. However, this coarse-grained
block-level granularity introduces much computation over-
head when accessing the state at a transaction with a high
position in the block.

Key Insights. While most works [23,33,43,50,57,61,62]
focus on optimizing the authenticated structure of blockchain
data, we observe that the authentication (Merkle proofs) of
historical states is not required in most real-world usage sce-
narios (Section 3.1). Therefore, under these circumstances,
we can replace the complicated MPT with a compacted and
flattened data model for historical states to reduce intermedi-
ate data and simplify state access. Moreover, we observe that
the Ethereum state transition is composed of the sequential
execution of transactions by the EVM, i.e., the state transition
granularity is a transaction at a lower layer (Section 3.2). This
mechanism allows refining the granularity of historical states
to the transaction level, thus avoiding overhead introduced by
the coarse-grained state granularity.

Our Method. Consequently, we propose SLIMARCHIVE, a
lightweight and high-performance architecture for Ethereum
archive nodes (Section 4). Based on the basic principle that
state changes alone are sufficient to recover the state at any
particular time point, the core idea of SLIMARCHIVE is to
maintain compacted, flattened, and fine-grained historical
states by flattening the minimum state changes of each trans-
action required for the world state. Our approach maintains
historical states with minimum storage while providing high
performance. Specifically, the high-level system design in-
cludes the following three perspectives:

* Minimizing recorded data. The EVM produces massive
data during transaction execution, but not all are required
for an archive node. To minimize unnecessary data storage,
we scrutinize the operations that mutate the Ethereum world
state and collect the minimum changed states required for
maintaining historical states. Specifically, we ignore the
authentication data and EVM’s runtime states (e.g., stack
and memory). For each transaction, we only preserve the
post-state of account and storage (see Section 2.2) changes.

» Extracting transaction-level state changes. Since
Ethereum performs block-level state transition, we cannot
directly obtain transactions’ state changes. To address this
challenge, we first hook each transaction execution. Except
for transaction execution, some consensus procedures [28]
also mutate the world state. To ensure completeness, we
formalize consensus procedures as virtual transactions. We
instrument the EVM and collect (virtual) transactions’ state
changes. Ultimately, we break down a block-level state
transition into a series of transaction-level state changes.

* Flattening state changes to benefit from the key-value
store. As state changes are multidimensional, they cannot
be stored directly in a key-value store. To address this issue,

we propose a flattened data structure called state-temporal
archive. Each key-value pair contains the minimum but
complete data of one state change. Our novel data structure
effectively minimizes the intermediate data. Additionally,
the transaction-level state changes are arranged chronolog-
ically. We convert querying the historical state to seeking
the last state change that occurred before the specified time,
which is ultra-efficient in key-value stores.

Trade-offs and Practical Significance. SLIMARCHIVE
trades off data authentication for better performance and
improved cost-effectiveness (Section 6). Unlike standard
Ethereum nodes that provide cryptographic proofs for data,
SLIMARCHIVE necessitates users’ trust in its responses. Al-
though this approach has potential limitations, it offers an ef-
ficient alternative for most real-world scenarios where authen-
tication for historical states is unnecessary, or where archive
nodes are considered trustworthy. Furthermore, it contributes
to the diversity of the Ethereum client ecosystem, providing
users with an additional option for utilizing archive nodes.
We have implemented a prototype based on Geth for
Ethereum. We evaluate SLIMARCHIVE from various per-
spectives (Section 5). Compared to the baseline (Geth), SLI-
MARCHIVE reduces storage requirements by 98.1%, im-
proves state access throughput by 19.0x, and speeds up trans-
action execution by an average of 1112.5x. We also con-
duct additional experiments showing that SLIMARCHIVE con-
sumes fewer resources (memory and disk) to access historical
states. The evaluation results demonstrate that our approach
efficiently reduces storage requirements and improves per-
formance compared to state-of-the-art solutions. Finally, it
is worth noting that our idea could also be applied to other
EVM-compatible blockchains.
Contributions. In summary, we make the following main
contributions in this paper.

* Systematic Investigation. We thoroughly investigate cur-
rent Ethereum archive node implementations and empiri-
cally study their limitations. Our observations motivate the
design of our approach.

* New Architecture. We propose SLIMARCHIVE, a
lightweight and high-performance architecture for
Ethereum. To the best of our knowledge, SLIMARCHIVE
is the first implementation of archive nodes that maintain
transaction-level historical states.

¢ Efficient Data Structure. We introduce a novel flattened
data structure called state-temporal archive that benefits
from the key-value store for historical states. It minimizes
storage requirements and accelerates state access.

¢ Comprehensive Evaluation. We evaluate SLIMARCHIVE
from various perspectives. The results demonstrate that our
approach achieves significant resource savings and perfor-
mance improvements.

1258 2024 USENIX Annual Technical Conference

USENIX Association

Block header
StateRoot " ---- _>| Root
Address[0] ccount [Key[0]
Internal Internal : Internal Internal
node node Nonce : node node
Address[1 :40]! CodeHash (|1 Key[1 :64]!
1 1 1
Internal|[[nternal| | Leaf Storage ||t|Internal||Internal| (Storage
node || node node [Root] node || node value

Figure 1: The Ethereum World State Tree.

2 Background
2.1 Ethereum Blockchain

Ethereum represents a chain of blocks. A block contains an
ordered sequence of transactions sent by users. Each time a
new block is constructed by the miner and broadcasted to the
network, it will be processed and validated by all the nodes
in the P2P network. An Ethereum node is made up of two
layers: the consensus layer and the execution layer [7, 8].
Consensus Layer. The consensus layer handles the mining
and syncing progresses of the blockchain. It determines the
valid miner and synchronizes blocks from peers to ensure the
blockchain’s growth and consistency among all peers.
Execution Layer. The execution layer is responsible for
blockchain state transition. It handles block processing and
world state management. The block processing is the sequen-
tial execution of transactions. A transaction is instructions
signed using a user’s private key. The execution of transac-
tions will transform the Ethereum world state. Transactions
are executed in the EVM [54]. Except for the world state,
the EVM maintains four runtime data regions: stack, mem-
ory, call data, and return data. Stack and memory are used
for intermediate data. Call data is the input payload of the
transaction. Return data is the output of the execution result.
Note that these data regions are volatile and will be cleared
after the execution of each transaction. This paper focuses on
state management optimization for the execution layer.

2.2 Ethereum State

Account-based Model. Ethereum maintains an account-
based world state. There are two types of accounts in
Ethereum: Externally-Owned Accounts (EOAs) and contract
accounts. EOAs are controlled by users’ private keys. Con-
tract accounts are controlled by their smart contract byte-
code. Each account is identified by a unique address. An ac-
count consists of four properties: Balance, Nonce, CodeHash,
StorageRoot. Balance represents the amount of asset (Ether)
owned in the account. Nonce refers to the number of transac-
tions issued by the account so far. CodeHash and StorageRoot
are only used for contract accounts. CodeHash represents the
hash of the contract bytecode. A contract account also has

private and persistent storage, a mapping between 256-bit
bytes. Thus, each contract account has up to 22°° storage slots.
Each contract’s storage is encoded as an MPT. StorageRoot
refers to the root of the storage tree.

Merkle Patricia Trie. Ethereum uses the MPT [14,54] (a
variant of the Merkle tree) to maintain the world state. The
MPT is a radix tree (trie) that provides cryptographic ver-
ification. Data are stored in leaf nodes. Hash-pointers link
parents and children nodes. The MPT allows efficient proof
generation and verification. Ethereum nodes can provide the
leaf node’s Merkle proof, which includes all nodes on the
path from the leaf node to the root node, along with their sib-
lings. Users can compute the corresponding state root using
the Merkle proof and compare it with the state root recorded
locally, thereby verifying the integrity of the leaf node data.

Ethereum World State Tree. As Figure | depicts, Ethereum
maintains two types of MPTs: the state trie (left part) and the
storage trie (right part). Each block maintains the StateRoot
of the state trie that records the account states; Each contract
account maintains the StorageRoot of the storage trie that
records the contract’s storage states. Accounts and storage
are stored in the leaf nodes (the gray rects in Figure 1). The
MPT is a 16-radix trie. The path is a sequence of hex digits
representing the address or slot key. To save disk space, The
MPT merges a node with its child if the node has only one
child. Thus, the MPT in reality has a lower depth than a full
MPT. In Ethereum, state access requires searching the MPT
from root to leaf (the red line in Figure 1).

Each time a block is processed, the dirty states are flushed
to the leaf nodes, and the MPT updates from dirty leaf nodes
to the root to construct a new MPT. Since the state transi-
tion is performed at each block, the granularity of historical
states is at the block level. There are two modes according
to the garbage collection (GC) policy for historical states in
Ethereum: archive mode and non-archive mode. Non-archive
mode only preserves recent (latest 128 blocks) MPTs, while
historical MPTs are pruned. Archive mode persists the MPT
at each block. Most blockchain systems use key-value stores
for persistent data. In Ethereum MPTs, the key is the node
hash; the value is the serialized node data.

3 Limitations and Solutions

In this section, we investigate Geth, the standard and most
widely used Ethereum execution client. We first synchronize
an archive node with the initial 14M blocks and a full node at
block height 18M (August 2023). Then, we identify and em-
pirically study two limitations, i.e., inefficient authenticated
MPT and coarse-grained state granularity, that contribute to
the storage and performance problems. Finally, we propose
our solutions based on our insights.

USENIX Association

2024 USENIX Annual Technical Conference 1259

8.5

Depth

6.5

55

2 4 6 8 10 12 14 16 18
Block Height (Million)

Figure 2: The average leaf node depth of MPTs at different
block heights.

3.1 Inefficient Authenticated MPT

Current Ethereum nodes employ MPTs to maintain histori-
cal states. This design originates from the data authentica-
tion requirements [33], i.e., the nodes could provide Merkle
proofs of query results to convince users. However, the au-
thenticated MPT suffers inherited excessive intermediate data
reducing effective storage utilization, and read/write amplifi-
cation slowing state access.

Excessive Intermediate Data. Recall the MPT described in
Section 2.2. Only leaf nodes store states, while the intermedi-
ate data (internal nodes) that serve as proofs do not contribute
to the world state. We analyze the state trie at block 18M. The
MPT has 217.9M leaf nodes, but the count of intermediate
nodes reaches 293.8M. The states with a size of 14.9 GB
produce an MPT with a total size of 40.6 GB. In other words,
The storage consumed by the intermediate data is 1.72 times
the size of the world state. The storage utilization (state size /
MPT size) is only 36.7%.

Read/Write Amplification. Since states are stored in leaf
nodes, state access requires searching the MPT from the root
to the leaf node. Thus, each state access is amplified to d
database operations, where d in the order of O(logn) is the
depth of the leaf node. To empirically study how the MPT
amplifies state access, we measure the average depth of leaf
nodes of current Ethereum state tries at different block heights.
Figure 2 demonstrates that the depth increases as Ethereum
progresses. As of block 18M, the average leaf node depth
reaches 8.6, which implies each state access will be amplified
to an average of 8.6 database operations.

Our Finding. In summary, data authentication introduces
significant storage overhead and performance loss in archive
nodes. We argue that this authentication mechanism is unnec-
essary across many scenarios, particularly for archive nodes.
As discussed in Section 1, historical states are primarily used
for testing and analytical purposes, where performance is crit-
ical. However, generating and verifying Merkle proofs carries
a high price (e.g., network overhead and multiple hash opera-
tions) for nodes and users. Thus, in many cases, users will not

Archive — T i
State N-1 race tx i
Node |__inblock N User
I Tracing > Client
i—' EVM 2
Txsy_; result

Figure 3: An example of tracing transaction i in block N.
The execution from transaction O to i — 1 is pre-processing.
Only the execution of transaction i is effective.

ask archive nodes to provide Merkle proofs of historical states.
For example, a researcher conducting large-scale historical
transaction profiling would likely deploy a local archive node
for enhanced performance rather than authentication. Infura,
one of the largest blockchain service providers in the industry,
states that the most commonly used RPC methods are those
that do not require Merkle proofs,' e.g., eth_getBalance and
eth_call, indicating that the authentication of blockchain
states is rarely used in the current Ethereum ecosystem. Luo
et al. [37] also point out that two of the most frequent trust
models for users to read data from the blockchain, in reality,
are trusting third-party nodes and deploying self-owned nodes.
In these trust models, data authentication is also unnecessary.

Insight 1. Data authentication of historical states is not
required in most real-world usage scenarios.

Our Solution. Consequently, to achieve a more efficient and
cost-effective archive node when data authentication is not
required, we could employ a compacted and flattened data
model instead of the complicated MPT for historical states to
minimize intermediate data and simplify state access.

3.2 Coarse-Grained State Granularity

The Ethereum protocol defines that the world state updates
at the end of each block. Thus, the granularity of Ethereum’s
historical states is a block. However, the block-level historical
states fail to provide the intra-block state, i.e., the histori-
cal state at a transaction. To retrieve the state at a specific
transaction, it is necessary to re-execute all the transactions
before the target transaction in the block to recover the world
state. We define the execution of these transactions as pre-
processing. Figure 3 shows an example of this inefficient
historical state access. To trace transaction i in block N, all
precedent transactions (index ranges from O to i — 1) in the
block must be executed as the pre-processing. Only the ex-
ecution of transaction i is effective and outputs the tracing
result. This substantially increases the system overhead as
many unnecessary transactions are executed [29, 55].

"https://www.infura.io/blog/post/ethereum-rpcs-methods.

1260 2024 USENIX Annual Technical Conference

USENIX Association

https://www.infura.io/blog/post/ethereum-rpcs-methods

100

21000 S
B 80 <

o
) =i
§ 750 60 &
= >
g 500 40 2
2 3
é 250 Pre-proc. time 120 3=
A 0 Efficiency ratio M

0 50 100 150 200 0
Transaction index

Figure 4: The pre-processing time and efficiency ratio of
transaction tracing with Geth.

To better understand the overhead incurred by the block-

level historical states, we sample 10K blocks with block num-
bers ranging from 13M to 14M and process approximately
1.76M transactions. We define the efficiency ratio as the ratio
of the effective execution time to the total (pre-processing
and effective execution) time. The effective execution time is
3.4 hours, while the pre-processing cost reaches 297.0 hours.
Consequently, the efficiency ratio is only 1.1%, indicating
that 98.9% of the total execution time is spent on the pre-
processing. Furthermore, we analyze the pre-processing time
and efficiency ratio under different transaction indexes. Fig-
ure 4 illustrates that as the transaction index reaches 200, the
pre-processing cost exceeds 1 second, and the efficiency ratio
approaches near zero.
Our Finding. The coarse-grained block-level historical states
drastically undermine the efficiency of archive nodes. Fortu-
nately, we observe that the processing of a block is composed
of the sequential execution of transactions by the EVM.

Insight 2. Thus, while Ethereum appears to have block-
level state transition externally, at the low-level execution
layer (EVM), the basic unit causing state transition is
the transaction, i.e., the granularity of state transition at
the execution layer is a transaction.

Our Solution. Consequently, we could refine the granularity
of historical states to a transaction at the execution layer to
eliminate the overhead caused by the pre-processing.

4 SLIMARCHIVE

4.1 Overview

Objectives. SLIMARCHIVE is a novel architecture for
Ethereum archive nodes, designed to address the issues dis-
cussed in Section 3. It aims to achieve the following three
objectives. First, SLIMARCHIVE is designed to be lightweight,
requiring minimal computation and storage resources. Sec-

Blockchain

/ Tx-level /
1 1

Recorder [— State

/__Changes

o

Temporal /4—— Encoder
Archive /

Raw

Database

| State | JSON-RPC !
Generator I AP

LA

EVM

Tx @) L | Vl Execution
inputs Q results

Figure 5: Components and workflow of SLIMARCHIVE.

ond, SLIMARCHIVE is designed to be flexible, providing ac-
cess to historical states at the transaction-level granularity.
Third, SLIMARCHIVE is designed to be high-performance,
providing performant state access and transaction execution.

Figure 5 shows the components and workflow of SLI-
MARCHIVE. SLIMARCHIVE consists of three key compo-
nents: The recorder is an instrumented EVM that collects
state changes of each transaction when synchronizing new
blocks. The encoder encodes the state changes into the state-
temporal archive, which is the flattened representation of
historical states at the transaction-level granularity. The state-
temporal archive is persisted in the key-value store. The state
generator loads the state-temporal archive and recovers the
world state specified by the address, storage key, and transac-
tion position (block number and transaction index). The EVM
retrieves states from the state generator and executes input
transactions. External users can also query historical states by
the JSON-RPC APIs [5].

4.2 Recorder

The recorder is an instrumented EVM that collects
transaction-level state changes during block processing. To
minimize recorded data, the recorder collects only the neces-
sary changed states to be updated to the world state. To reduce
the redundancy, the recorder records only the post-state (write
value) of each transaction. Except for transaction execution,
there exist other actions that also mutate the world state. To
ensure the completeness of historical states, we propose the
concept of the virtual transaction: All actions that mutate the
world state outside the transaction execution are considered
virtual transactions. The recorder also collects state changes
of virtual transactions. In brief, the recorder collects each
transaction’s minimum and complete state changes.

USENIX Association

2024 USENIX Annual Technical Conference 1261

Transaction-Level State Changes. Specifically, the recorder
collects four types of changed states after executing each trans-
action, i.e., account, storage, code, and deleted states. First,
the account state is in the format of the 2-tuple: (Address,
SlimAccount). The SlimAccount is a struct consisting of
three fields, i.e., Balance, Nonce, and CodeHash, characteriz-
ing the account state. Second, the storage state is in the for-
mat of the 3-tuple: (Address, SlotKey, SlotValue), which
represents the slot value specified by the address and slot
key. Third, the code state is in the format of the 2-tuple:
(CodeHash, Bytecode), which represents the bytecode with
the corresponding CodeHash of the created contract account.
Finally, the deleted state is a set of addresses indicating the
deleted contract accounts after the transaction. The contract
account could self-destruct and clear its account and storage
states. The deleted state is used to help recover the storage
state in Section 4.4. The transaction metadata, including block
number, hash, and transaction index, is also recorded to main-
tain the temporal information. The authentication data (e.g.,
StorageRoot) is not maintained. Besides, EVM’s volatile run-
time data, including memory, stack, call data, and return value,
are also discarded.

State Change Collection. The recorder leverages the state
Jjournal of Geth to collect state changes during the execution
of each transaction.The journal is a slice of operation logs
that tracks all state writing operations during transaction exe-
cution. After the execution of each transaction, the recorder
collects dirty states from the journal. Note that the writing
logs in the journal do not ensure that the state is changed after
the transaction execution. For example, two opposite writing
operations do not change the state after the transaction. But
they are tracked in the journal. Thus, the deduplication must
be performed by comparing the pre- and post-states.

Typically, A block finalization process is performed at the
end of each block (after the execution of all transactions) for
consensus purposes (e.g., mining rewards distribution [6] and
staking withdrawals [10]). As such, the block finalization
process may also mutate the world state. To maintain the
completeness and correctness of historical states, the recorder
perceives the block finalization process as a virtual transaction
at the end of the block and collects the state changes of the
block finalization process.

The genesis block (the block number is 0) is a special block
to hard-code the initial states. The above approach can not
collect the state changes of the genesis block because the
block is never processed. Thus, to collect the state changes of
the genesis block, we also perceive the initialization process
as a virtual transaction. We hook the blockchain initialization
to collect the state changes in the genesis block.

In summary, the recorder outputs four types of state changes
for each (virtual) transaction as follows:

* The account state is in the format of (Address,
SlimAccount), which represents the current account state
(except for storage) specified by the account address.

Deposit iAccounz: !

5 Ether — v (Alice, {Balance: 15 ; Nonce:2; ...} :
u—— \ (WETH, {Balance: 105; A

- Storage H

Mint ' (WETH, totalSupply, 0s)

Alice 5 WETH WETH \ (WETH, balanceOffAlice], 5) .

Figure 6: An example of transaction-level state changes.
The left part is the deposit transaction to WETH. The
right part is the consequent state changes.

* The storage state is in the format of (Address, SlotKey,
SlotValue), which represents the current slot value speci-
fied by the account address and the slot key.

¢ The code state is in the format of (CodeHash, Bytecode),
which represents the newly deployed contract bytecode
addressed by its code hash.

The deleted state is a set of addresses that represents the
deleted contract accounts.

Example State Changes. Figure 6 shows an example of
the transaction-level state changes (right part) of a deposit
transaction (left part) to WETH. WETH [16] is an ERC-20
token [2] that is pegged to Ether at a 1:1 ratio. Users can
deposit Ether to the token contract. The contract will mint
equivalent WETH tokens to users. Alice transfers five Ether to
WETH and gets five WETH tokens back in the deposit trans-
action. The transaction alters the account state of Alice and
WETH. Besides, two storage slots of WETH are modified by
the transaction: The totalSupply indicates the total number
of minted tokens. The balanceOf [Alice] indicates Alice’s
WETH balance. Note that the transaction fee is omitted in the
example for the sake of simplification.

4.3 Encoder

The encoder encodes the transaction-level state changes into
the state-temporal archive, a flattened data structure that min-
imizes intermediate data and simplifies state access. Note that
it is hard to directly store the state changes in the key-value
store for the following reasons. First, the key-value store
only supports the 2-tuple (key-value) format data, but the
state changes have more dimensions, such as the address, slot
key, block number, transaction index, and state value. Thus,
the multidimensional transaction-level state changes are not
supported by the key-value store. Besides, the limited query
functions of the key-value store undermine the accessibility
of historical states [52]. For example, the query of the cur-
rent balance of an account can be expressed in a SQL query
statement select balance from account_state where address
= [addr] order by blockNumber limit 1. However, such query
language is not supported by the key-value store. Thus, to
persist historical states while enabling efficient access, the
encoder encodes state changes so that they can be accessed

1262 2024 USENIX Annual Technical Conference

USENIX Association

Table 1: The encoding rules of state-temporal archive.

Key
State Type State Key \ Temporal Key Value
Account Account Flag Address RLP(SlimAccount)
Deleted Deleted Flag Block Number Tx Index Empty String
Storage Storage Flag Address \ Slot Key Slot Value
Code Code Flag Code Hash N/A Contract Bytecode
from the key-value store. Specifically, the.encoder flattens State key Temporal key State valno
state changes and arranges them chronologically. Compared | -~ [ShmAccount']
to the standard MPT, the flattened structure eliminates inter- g _
. . . = [Address t,, | -+ [SlimAccount"|
mediate data; the chronological order enables efficient state 2| Account #2
access. We propose a new data structure named state-temporal || Account #1 | - | |

archive for historical states to achieve the above goals.
State-Temporal Archive. We first define two operations. The
append () is the concatenation for multiple byte strings, and
the RLPEncode () means the Recursive Length Prefix [54]
encoding that serializes a struct (e.g., the SlimAccount) to the
corresponding byte string.

To facilitate the encoding, we divide each state change into
three parts: state key, temporal key, and state value. The first
part is the state key that represents which state is changed.
The state key is defined in Equation 1. A state flag is inserted
at the head of the state key to distinguish different types of
state changes. The state ID for account and deleted states
is the address. For storage and code states, the state ID is
append (Address, SlotKey) and CodeHash, respectively.

StateKey = Append(StateFlag,Statel D) (1)

The second part is the temporal key. It represents when the
state change occurred. We use the big-endian block number
and transaction index to represent the timestamp. The tem-
poral key is defined in Equation 2, where NumberBytes and
IndexBytes represent the 6-byte block number and 2-byte
transaction index, respectively.

TemporalKey = Append(NumberBytes,IndexBytes) (2)

The last part is the state value. It represents what the state
is after the transaction. The state value for the account, stor-
age, and code is RLPEncode (SlimAccount), SlotValue, and
Bytecode, respectively. The deleted state is a set of addresses
to mark the deleted accounts. We define an empty string as
the state value of the deleted state.

Given the 3-part formalization, the encoder encodes each
state change into the state-temporal archive in the format of
key-value pairs. The mapping relations are as follows:

* For the types of account, deleted and storage:

Append(StateKey, TemporalKey) — StateValue

* For the type of code:

StateKey — StateValue

Figure 7: An example of state-temporal archive. The his-
torical accounts are sorted in the chronological order.

The state-temporal key, consisting of two parts, is sufficient to
locate the historical state. The prefix is the state key. The suffix
is the temporal key. Note that since the bytecode is addressed
only by the code hash, the temporal key is unnecessary for the
code type. Table | shows the detailed encoding rules of the
state-temporal archive. Note that both state key and temporal
key are fixed-length for each type of state.

Flattened Historical States. The state-temporal archive is
a flattened data structure for the transaction-level historical
states. Each key-value pair contains the minimum but com-
plete data (which, when, and what) to describe one state
change of an entity. Since the key-value store arranges keys
in lexicographic order, the dual-part, aligned state-temporal
key maintains a partially chronological order of the state
changes. The prefix state key clusters the state changes for
each entity. Meanwhile, the suffix temporal key guarantees
the chronological order within the clustered state changes.
Given a time point, searching for the most recent state change
of an entity becomes straightforward.

Figure 7 shows an example of state-temporal archive for
account states. No intermediate key-value pairs unrelated to
the historical states are produced. It is possible to scan an
entity’s state changes based on chronological order.

4.4 State Generator

The state generator recovers historical states from the flat-
tened state-temporal archive. Specifically, it takes the state
key and temporal key as inputs and returns the correspond-
ing historical state. The code state is only addressed by the
state key (CodeHash). For account and storage states, the state
key represents the entity for which the state is to be queried,
whereas the temporal key represents the specific time at which
the state is to be queried. To be compatible with the stan-

USENIX Association

2024 USENIX Annual Technical Conference 1263

Algorithm 1: Historical State Query Algorithm

Input: State key: stateKey;
Temporal key: temporalKey.
Output: The historical state and modification time.
1 Function StateAt (stateKey, temporalKey) :
lower < stateKey
upper < Rppend (stateKey, temporalKey)
iter <— NewIterator (db, lower, upper)
SeekLast (iter)
if Isvalid (iter) then
modifyTime < ExtractTemporal (iter.Key)
return (iter.Value,modifyTime)
else
| return (null, null)
end

e e NN N R W

[y
=)

-
=

end

[
N

dard Ethereum archive node, the block-level historical state
is represented as the state at the block’s first transaction (the
transaction index is 0). The EVM reads states from the state
generator when executing transactions. Besides, users can
also access historical states directly via the JSON-RPCs.

As the state-temporal archive stores all state changes,
querying the state at a specified time point equals querying
the last state change that occurred before the time point. Since
state changes are in chronological order, searching the target
state change is feasible by seeking the greatest key smaller
than the corresponding state-temporal key, which can be com-
pleted by a single database range scan operation. Note that
the search scope is constrained by the state key as the prefix.
The range scan of the key-value store is highly efficient [18].

Algorithm 1 describes the core function StateAt utilized
for querying historical states. SeekLast means moving the
iterator to the last key-value pair. ExtractTemporal means ex-
tracting the temporal part from the key via string slicing. The
StateAt function takes the state and temporal keys as input
parameters. The outputs are the last state change and corre-
sponding modification time (in the format of the temporal
key). The function initializes an iterator with the lower bound
as the state key and the upper bound as the state-temporal
key for iteration. Then, seeking the last key-value pair will
retrieve the target state and corresponding modification time.
Account Query. Given the address and timestamp (block
number and transaction index), the state generator constructs
the corresponding state key and temporal key for the account.
Then, searching the last account change via the StateAt func-
tion will retrieve the target account state.

Storage Query. Since the self-destruct operation will clear
the storage of the contract account, searching only the storage
changes is insufficient to fetch the historical storage state.
For example, if a contract self-destructs after the slot write,
searching storage changes will get the writing value. However,

the real state of the slot is the empty value. Thus, to fetch the
correct historical storage state, the state generator searches
both the latest storage change and the latest deleted time.
Only the storage change after the delete operation is the valid
storage state. Otherwise, the storage state is the empty value.

4.5 Implementation Details

State Validation. It is necessary to validate states during
synchronization since the peers in the network are untrusted.
This involves comparing the state root of the local world state
tree with that recorded in the received block. To facilitate this
validation process, SLIMARCHIVE maintains the latest MPTs
to compute state roots during synchronization.

Chain Reorganization. Chain reorganization (reorg or roll-
back) is performed when the local chain diverges from the
canonical chain, i.e., chain forks [46,48,54]. When this hap-
pens, the forked blocks (and their corresponding states) are
discarded. The blocks from the fork point to the latest block
in the canonical chain are processed to re-establish the world
state. Typically, a reorg involves only a few blocks. To prepare
for potential reorgs, a Geth full node [9] maintains the MPTs
of the most recent 128 blocks, thereby enabling a reorg of up
to 128 blocks. SLIMARCHIVE employs a similar strategy to
Geth to tackle chain reorgs, i.e., buffering the state-temporal
archive of the latest 128 blocks in memory. Should a reorg
occur, we discard the outdated data and re-generate the corre-
sponding canonical state-temporal archive. States that exceed
the most recent 128 blocks could be considered immutable
and are persisted to disk. Besides, SLIMARCHIVE also main-
tains the most recent 128 MPTs to enable state validation
when chain reorg occurs.

Storage Engine. We employ Pebble [15], a Log-Structured
Merge-Tree (LSM-Tree, [41])-based key-value store, as our
storage engine for several reasons. First, the state-temporal
archive is straightforward and aligned. Simple query inter-
faces (i.e., get and scan) could fulfill the requirements in the
Ethereum context. Thus, key-value stores are well-suited for
these scenarios and generally outperform other storage en-
gines like relational databases. Second, key-value stores like
Pebble can be embedded in progress without external software
dependencies. This integration reduces the system’s complex-
ity. Lastly, by choosing Pebble—a decision also made by
Geth—we avoid additional complexity and overhead.

We have implemented a prototype of SLIMARCHIVE based
on the Geth v1.15.5. It is worth noting that although the
implementation is for Ethereum, the concepts and technical
solutions of SLIMARCHIVE can be applied to other EVM-
compatible blockchains, e.g., Binance Smart Chain and Poly-
gon, since they employ similar mechanisms to maintain the
world state and execute transactions as Ethereum.

1264 2024 USENIX Annual Technical Conference

USENIX Association

Table 2: Comparison of the time (hours) spent on the
historical state generation. Geth does not have the aggre-
gation stage.

Blocks Agg. Persisting Total
Geth 0-14M N/A 9619 961.9
Erigon 0-18M 15.7 299 45.6
SLIMARCHIVE 0-18M 11.0 3.7 14.7

5 Evaluation

We first evaluate the performance of SLIMARCHIVE from
various perspectives, including archive node synchroniza-
tion, historical state access, and transaction execution. Then,
we evaluate the storage overhead introduced by refining the
state granularity. Finally, we validate the correctness of SLI-
MARCHIVE. We also evaluate Geth and Erigon [3] for com-
parison. All experiments are carried out using real-world
Ethereum workloads.

Environment Setup. We conduct experiments using a phys-
ical machine equipped with the CPUs of Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz with 24 cores x 2 sockets,
377 GB memory, 4 x 3.84 TB SAMSUNG PM893 SATA-6.0
SSDs. The operating system is Ubuntu 22.04.2 LTS.

5.1 Archive Node Synchronization

First, we investigate the time and storage consumption re-
quired for archive node synchronization. Since the archive
node records all historical states, it is necessary to synchronize
the blockchain from the genesis block. We perform the syn-
chronization of the initial 18M blocks as of August 26, 2023,
for both SLIMARCHIVE and Erigon. Due to the extensive
computational and disk requirements, Geth’s synchroniza-
tion process can only proceed up to block height 14M as of
January 13, 2022.

Time Cost. The synchronization of archive nodes involves
many steps, such as transaction execution, result verification,
and state update. However, we only focus on state updates that
generate historical states since the others are outside the scope
of this work. We break down the state update into two stages.
The first is the in-memory data aggregation, which collects
and encodes the dirty states in memory. The second is data
persisting that writes the new world state to disk. Note that
maintaining the latest MPTs should not be included in com-
parison since all Ethereum implementations must perform
this step. Thus, Geth does not have the aggregation stage as it
directly persists the MPT to disk without extra transformation
like SLIMARCHIVE and Erigon. Table 2 shows the time spent
on generating the historical states. SLIMARCHIVE outper-
forms Geth and Erigon in both data aggregation and persist-
ing stages. Geth spent 961.9 hours on the initial 14M blocks.
SLIMARCHIVE and Erigon used 14.7 and 45.6 hours for the

Table 3: Comparison of the storage usage for the historical
states. The block number ranges from 0 to 18M.

SLIMARCHIVE
267.6

Geth Erigon
14,041.5 7915

Storage (GB)

initial 18M blocks, respectively. SLIMARCHIVE exceeds a
65.4x speedup and achieves a 3.1x speedup compared with
Geth and Erigon, respectively.

Storage Usage. Similar to the calculation of time cost, we
only consider the storage used for historical states, while oth-
ers, like blocks, transactions, and logs, are not included. Ta-
ble 3 shows the comparison of the storage usage of historical
states. Geth and Erigon consume 14,041.5 GB and 791.5
GB storage to save all historical states, respectively.” How-
ever, SLIMARCHIVE only needs 267.6 GB storage to store
the transaction-level state-temporal archive. SLIMARCHIVE
reduces the storage requirements by 98.1% and 66.2% com-
pared with Geth and Erigon, respectively.

Summary. The time cost and storage usage demonstrate that
SLIMARCHIVE effectively reduces the computation and stor-
age resources required for historical states. Unlike Geth and
Erigon, SLIMARCHIVE saves only the changed states using a
compacted data structure, thus economizing on computation
and storage by minimizing the intermediate data.

5.2 Historical State Access

Archive nodes provide the fundamental function of access-
ing historical states. Users can query historical Balance,
Nonce, Code, and Storage of accounts via JSON-RPC
APIs. Therefore, we examine the access performance
of these four types of historical states. It is worth not-
ing that SLIMARCHIVE, along with Geth and Erigon, en-
codes Balance, Nonce, and CodeHash into a single account
object using the RLP serialization. Thus, we evaluate
two query interfaces: GetAccountAt (address, number) and
GetStorageAt (address, key, number) for accessing histor-
ical accounts and storage. Specifically, we measure the
throughput and system overhead (memory usage and disk
reading) of the two query interfaces. The metrics for the
throughput, memory overhead, and disk overhead are the
Query Per Second (QPS), the maximum Resident Memory
Size (RES), and the read_bytes field of the I/O description
file of the process, respectively.

Workload. We randomly select 10M addresses and 10M (ad-
dress, storage key) pairs, each of which represents a state ac-
cessed during the processing of the initial 14M blocks. Then,
we generate a random block number ranging from O to 14M
for each state. These are the inputs for the query processes.

2Geth storage is estimated by subtracting full node size from archive node
size, based on data from Etherscan: https://etherscan.io/charts.

USENIX Association

2024 USENIX Annual Technical Conference 1265

https://etherscan.io/charts

x10° x10” x10°
7.5 {MEm Geth 70726 e BN Geth 1.008.3
I Erigon V| B Erigon 1.01 ™@8 Erigon —
—_ B SlimArchive a B SlimArchive 253.0 I SlimArchive
6.0 O)
9 Q241 271 M08
&/ 4,626, o © 6602
é 4.5 s 206
= - S
z? z =
230 3 % 0.4
£ : a
1.5 = 0.2
0.0 0.0-
Account Storage Account Storage Account Storage
State Type State Type State Type
(a) Access throughput. (b) Memory overhead. (c) Disk overhead.
Figure 8: Comparison of the throughput and system overhead of historical state access.
C T T T T T T T T Compared éo_n;;;a;ea """" 1 Table 4: Transaction execution speedups (x) over Geth
! 0 .
! with Geth with Eigon \ and Erigon achieved by SLIMARCHIVE.
___ J
\ Frontend [Geth EVM | [Erigon EVM] !

Figure 9: The methodology of evaluating transaction exe-
cution: controlling the frontend for each comparison.

Figure 8 shows the throughput and the system overhead
when querying the historical states of the 10M accounts and
the 10M storage slots.

Throughput. SLIMARCHIVE improves the account query
throughput by 15.3x and 1.5x compared with Geth and
Erigon, respectively. For the storage type, the improvements
are 22.6x and 2.8 x, respectively. SLIMARCHIVE achieves
a total (account and storage) throughput of 7,024.1 QPS and
is 19.0x and 2.2x higher than Geth and Erigon, respectively.
SLIMARCHIVE achieves higher throughput.

Memory Overhead. For the account query, SLIMARCHIVE
utilizes only 24.0% and 75.7% of the memory compared with
Geth and Erigon, respectively. For the storage query, the per-
centages are even less, i.e., 15.9% and 31.7%. SLIMARCHIVE
utilizes less memory.

Disk Overhead. When querying accounts, SLIMARCHIVE
reduces the I/O size to 5.5% and 54.4% compared with Geth
and Erigon, respectively. While for the storage query, the
percentages are 4.1% and 33.4%. SLIMARCHIVE requires
less I/O operations.

Summary. SLIMARCHIVE outperforms Geth and Erigon in
all metrics, as it requires less system overhead and delivers
higher throughput. The reasons are as follows. To retrieve the
state, Geth needs to traverse the state tree from the root to the
leaf. The traversals of MPTs demand substantial disk lookups
and lead to lower throughput and higher system overhead.

Speedup over Mean Median
Geth 11125 672.2
Erigon 109.4 60.9

Although Erigon optimizes the processing, it still requires
multiple disk lookups. In contrast, SLIMARCHIVE employs a
flattened data structure for historical states. Compared with
Geth and Erigon, SLIMARCHIVE performs minimum disk
lookups when retrieving the historical state.

5.3 Transaction Execution

To highlight the effectiveness and efficiency of our transaction-
level archive node, we evaluate the performance of transaction
execution based on historical states. Specifically, we measure
the time spent on executing historical transactions.

We formalize transaction execution as a frontend-backend
scheme, where the frontend is the EVM that executes instruc-
tions, and the backend is the state management component
that provides states for the EVM. Because Erigon and Geth
employ different designs and implementations of the EVM,
our comparison experiments should use the same EVMs as
those in Geth and Erigon to control variables. Figure 9 il-
lustrates our methodology: we control the frontend (EVM)
during each comparison. We have also implemented the query
interfaces for the Erigon EVM to access states from SLI-
MARCHIVE. We sample 10K blocks from the 13M-th block
to the 14M-th block as the workloads and execute a total of
1,762,188 transactions.

Table 4 presents the overall transaction execution speedups.
The mean and median speedups achieved by SLIMARCHIVE
over Geth are 1112.5x and 672.2x, respectively. Compared

1266 2024 USENIX Annual Technical Conference

USENIX Association

17%

11%

Percentage

6%

0%

800 1200 1600
Speedup (X)

2000 oo

(a) Speedup over Geth.

17%
[
&
2 11%
S
5
&~ 6%

0,
0% 80 120 160
Speedup (X)
(b) Speedup over Erigon.

Figure 10: Transaction execution speedup distribution.
The y-axis is the percentage of transactions.

to Erigon, the speedups are 109.4x and 60.9 x, respectively.
We also present the speedup distribution in Figure 10. Com-
pared to Geth, 85.3% and 14.4% of the transactions are accel-
erated exceeding 200x and 2,000 x, respectively. In compar-
ison to Erigon, the proportions are 82.3% and 13.9% for the
speedups of 20x and 200, respectively.

Furthermore, we analyze the correlation between the trans-
action index and the execution speedup achieved by SLI-
MARCHIVE. As shown in Figure | 1, SLIMARCHIVE achieves
higher speedups as the transaction index increases. When the
transaction index reaches 300, the average speedups over Geth
and Erigon reach about 3,100 and 300x, respectively.
Summary. Thanks to the transaction-level historical states,
executing transactions no longer requires the extremely time-
consuming pre-processing stage, as in Geth and Erigon. SLI-
MARCHIVE remarkably increases the speed of transaction
execution by several orders of magnitude, demonstrating the
effectiveness and efficiency of the fine-grained, transaction-
level historical states.

5.4 Storage Overhead

Refining the granularity of historical states from block level
to transaction level introduces two types of storage overhead.
The first is the 2-byte transaction index in the temporal key;
The second lies in the intra-block state changes. For instance,
consider an account changed by n transactions in a block.

x10° %10

o 321 —e— Compared with Geth 4 g
g —=— Compared with Erigon é")
) 8

= 2.4 32
g =
2

BL6 2
s g
& g
£08 1 £
© 3

0.0 0

0 100 200 300
Transaction index

Figure 11: The positive correlation between transaction
index and execution speedup. The y-axes are the aver-
age execution speedups over baselines achieved by SLI-
MARCHIVE.

The block-level archive node produces only one state change,
while the transaction-level archive node produces n state
changes. We also evaluate the storage consumption of SLI-
MARCHIVE under block-level granularity. The block-level
state-temporal archive consumes 194.3 GB storage, revealing
that refining the granularity carries a storage overhead of 73.3
GB. Since the transaction-level historical states remarkably
improve transaction execution performance (by 1112.5x),
and the compacted and flattened data structure significantly
reduces the overall storage (by 98.1%), we believe the storage
overhead is acceptable.

5.5 Correctness Validation

We first validate the correctness of block-level historical states
by performing a run-time state consistency check during syn-
chronization. The EVM will track all state modifications dur-
ing the block processing. The dirty states will be updated to
the Ethereum MPT at the end of each block. We compare the
updated states with that generated by SLIMARCHIVE before
block commitment. No inconsistent state exception is raised
during the synchronization of the initial 18M blocks. Addi-
tionally, Experiment 5.2 also validates the correctness. We
compare the outputs of SLIMARCHIVE, Geth, and Erigon. All
the query results are identical.

We also validate the correctness of our transaction-level
historical states by re-executing historical transactions. We
compare the execution results (e.g., outputs, gas usage, and
logs) of re-executed transactions and real-world transactions.
If our transaction-level historical states are misrecorded, the
re-execution will produce different results. We re-execute all
(2.07B) transactions of the 18M blocks. All the results are
identical to those of the real-world transactions, demonstrating
the correctness of SLIMARCHIVE.

USENIX Association

2024 USENIX Annual Technical Conference 1267

6 Discussion

The Intention of Data Authentication in Ethereum. The
authenticated MPT allows users who maintain the state roots
to verify the integrity of states retrieved from untrusted
blockchain nodes [33]. This mechanism is primarily utilized
by light nodes, which store only the state roots and retrieve
state data from untrusted full or archive nodes that maintain
the standard MPT structure. When a light node distrusts ex-
ternal nodes, it requests the state along with corresponding
Merkle proof and validates the response using the self-owned
state root. In summary, the MPT enables light nodes to verify
the integrity of data retrieved from untrusted nodes.
Trade-offs, Limitations, and Trust Model. SLIMARCHIVE
simplifies blockchain archive nodes. Our method aims to
meet the requirements for more efficient archive nodes in
most real-world usage scenarios where data authentication is
not required. Thus, SLIMARCHIVE sacrifices the authentica-
tion data (MPTs) to reduce storage and improve performance.
Our system is not appropriate for scenarios that require au-
thentication of historical states, such as when light nodes,
distrusting SLIMARCHIVE, request historical states. Unlike
the standard Ethereum execution client, Geth, SLIMARCHIVE
requires users’ trust when accessing historical states.
Practical Significance. Despite the loss of authentication
functionality, SLIMARCHIVE still holds practical significance
for the following reasons. Within the current Ethereum ecosys-
tem, different types of nodes (such as light, full, and archive
nodes) exist to serve various tasks. Nevertheless, there are few
solutions tailored for scenarios in which the authentication for
historical states is unnecessary, yet these scenarios constitute
the majority of real-world applications. To address this gap,
we propose our cost-efficient and high-performance solution.
SLIMARCHIVE is not intended to replace existing systems. In-
stead, our system could complement existing solutions. For in-
stance, service providers like Infura could maintain both types
of archive nodes to balance common proof-unrelated and rare
proof-related queries, thereby improving overall service effi-
ciency. Additionally, users who wish to deploy cost-effective
local archive nodes could employ our method. Therefore, we
believe that the trade-offs made by SLIMARCHIVE are rea-
sonable considering practical demands.

Security and Data Integrity. As introduced in Section 4.5,
SLIMARCHIVE adopts a strategy similar to that of a Geth
full node [9] for state validation and chain reorganization
during synchronization. Thus, SLIMARCHIVE could operate
independently (i.e., without trusted third parties) within the
blockchain network, providing the same level of security as
a standard Ethereum full node has. Compared with a stan-
dard archive node, SLIMARCHIVE only prunes the MPTs
of historical states, while other blockchain data, e.g., blocks,
transactions, and logs, are preserved. The only data loss is
the authentication information of historical states, which, as
discussed earlier, is not required in many scenarios.

7 Related Work

Blockchain Storage Optimization. Many works optimize
the blockchain storage layer as Ethereum scales up.

Erigon [3] optimizes Ethereum’s historical states by main-
taining three distinct tables: the read set that records the initial
states required for processing each block, the read set’s in-
verted index that maps from the address (or slot key) to a list
of block numbers where the corresponding state is loaded
to execute transactions, and the map that records the current
states of accounts and storage. State access in Erigon involves
two or three steps: First, locate the state by the inverted index.
Second, retrieve the state by the location from the read set.
Third, read the current state if the state is not recorded in the
read set. Although Erigon simplifies the data model of histori-
cal states, it still introduces significant intermediate data (e.g.,
the inverted index). Besides, each state access is amplified to
two table lookups. Moreover, Erigon also suffers from coarse-
grained block-level granularity. In contrast, SLIMARCHIVE
produces no intermediate data and requires only one database
operation to retrieve the transaction-level historical state.

Some works focus on optimizing the authenticated layer for
blockchain full nodes. Li et al. [33] propose LVMT, a novel
storage framework designed to overcome the performance
bottlenecks caused by the standard MPT. LVMT uses a multi-
layer Authenticated Multipoint evaluation Tree (AMT, a vec-
tor commitment protocol) to compute the commitment (a.k.a
state root). In contrast to the standard Ethereum MPT, where
updating state root has a time complexity of O(logn), LVMT
achieves a constant time for generating commitments. How-
ever, LVMT is incompatible with current EVM-compatible
blockchains due to the fundamental difference in state com-
mitments’ computations. Zhang et al. [61] propose COLE, a
column-based learned method to address the limitations inher-
ent in the MPT. By storing each entity’s historical states in a
column and indexing these states using learned models, COLE
enhances both the efficiency of data storage and the speed of
query processing within blockchain systems. Choi et al. [23]
use three-layer MPTs to maintain the world state, i.e., one on-
disk MPT maintaining the world state at a checkpoint and two
in-memory MPTs holding dirty states. The in-memory MPTs
serve as caches that record recently visited data, thus reducing
I/O operations when executing transactions. The in-memory
MPTs are periodically (e.g., every 1,000 blocks) merged into
the on-disk MPT. However, this approach is unsuitable for
archive nodes, as archive nodes require persisting the world
state at each block rather than periodically.

Chen et al. [22] propose Block-LSM, an Ethereum-oriented
key-value store leveraging the ordered nature of Ethereum
(i.e., block sequence) to improve the synchronization perfor-
mance. Block-LSM uses a shared prefix scheme and several
semantic-orientated memory buffers specifically for Ethereum
data to reduce the write amplification [45] and improve the
access throughput of the key-value store.

1268 2024 USENIX Annual Technical Conference

USENIX Association

Many works [17,24,36,42,58, 67] attempt to compress
or prune the blockchain data to reduce the storage require-
ments. However, these methods also have limitations, such as
incomplete blockchain states and inefficient data process-
ing, which compromise the usability and applicability of
blockchain [27, 52]. Sharding [25, 30, 38, 43,49, 60] is an-
other popular method utilized to scale blockchain. It partitions
blockchain data and transaction tasks into multiple entities
to alleviate the pressure on a single node and increase the
system throughput. However, this approach introduces extra
system overhead, e.g., network and storage [27,52].

Although the above-mentioned systems attempt to optimize
blockchain storage from various angles, they have inherent
limitations, as discussed. Moreover, they fail to address the
issue of how to minimize the storage without compromis-
ing the Ethereum states’ availability and an archive node’s
functionalities. In contrast, SLIMARCHIVE preserves the func-
tionality of an archive node while simultaneously optimizing
the storage consumption. However, it’s worth noting that SLI-
MARCHIVE and the methods above solve the problems from
different perspectives and complement each other.

Transaction Re-execution. Kim et al. [29] propose an off-the-
chain execution environment that records the initial context
(i.e., substate) of each historical transaction before it is ex-
ecuted, allowing historical transactions to be re-executed in
isolation and parallel based on their substate. EthScope [55]
instruments an Ethereum full node to aggregate intermediate
data for each transaction and stores these aggregation results
in ElasticSearch [1]. It uses independent EVMs (i.e., replay
engines) to re-execute historical transactions with the interme-
diate states. The above two methods employ similar strategies,
i.e., they collect the complete initial states required for exe-
cuting each transaction and re-execute historical transactions
in isolated environments. Additionally, the prefetch of the
initial states is conducted to accelerate execution. However,
both EthScope and [29] are domain-specific, i.e., they focus
on only the re-execution of historical transactions. As they
preserve only the initial states required for each transaction
execution, they fail to serve as archive nodes, which require
additional capabilities to query blockchain historical states at
any specified time and simulate transactions.

Historical Data Exploration. Many data-centric systems
focus on extracting, loading, and transforming historical
blockchain data for various tasks. Several works [19-21,
34, 66] improve data acquisition methods, facilitating ex-
tensive Ethereum historical data exploration. EthScope [55]
and TxSpector [63] extract the intermediate data of histor-
ical transactions for locating suspicious behaviors at scale.
Zhou et al. [68] analyze historical transactions to measure
the evaluation of real-world attacks. Zhao et al. [65] investi-
gate the evolution of the Ethereum network from a temporal
perspective. As historical data provide significant insights,
SLIMARCHIVE could serve as the data source for the above
works as it records all the historical states.

8 Conclusion

This paper presents the design and implementation of SLI-
MARCHIVE, a lightweight and high-performance architecture
that addresses the storage and performance problems of cur-
rent Ethereum archive nodes. SLIMARCHIVE flattens the min-
imum state changes of each transaction required for the world
state, achieving maintaining compacted, flattened, and fine-
grained historical states. The evaluation results demonstrate
that our approach significantly reduces storage consumption
(by 98.1%) and highly improves performance (19.0x for state
access and 1112.5x for transaction execution).

Acknowledgments

We thank all anonymous reviewers for their invaluable com-
ments. This work is partially supported by the National Key
R&D Program of China (No. 2022YFE0113200), the Na-
tional Natural Science Foundation of China (NSFC) under
Grant 62172360, U21A20464. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of funding agencies.

References

[1] Elasticsearch. https://www.elastic.co/qguide/
index.html. [Online; accessed December-2023].

[2] Erc-20: Token standard. https://eips.ethereum.
org/EIPS/eip-20/. [Online; accessed December-
2023].

[3] Erigon client. https://github.com/ledgerwatch/
erigon/. [Online; accessed December-2023].

[4] Ethereum archive node. https://ethereun.
org/en/developers/docs/nodes-and-clients/
archive-nodes/. [Online; accessed December-2023].

[5] Ethereum json-rpc api. https://ethereum.org/en/
developers/docs/apis/json-rpc/. [Online; ac-
cessed December-2023].

[6] Ethereum mining rewards. https://ethereum.org/
zh-tw/developers/docs/consensus—-mechanisms/
pow/mining/. [Online; accessed December-2023].

[7] Ethereum network layers. https://ethereum.org/
en/developers/docs/networking-layer/. [On-
line; accessed December-2023].

[8] Ethereum node architecture. https://ethereum.
org/en/developers/docs/nodes-and-clients/
node-architecture/. [Online; accessed December-
2023].

USENIX Association

2024 USENIX Annual Technical Conference 1269

https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://eips.ethereum.org/EIPS/eip-20/
https://eips.ethereum.org/EIPS/eip-20/
https://github.com/ledgerwatch/erigon/
https://github.com/ledgerwatch/erigon/
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes/
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes/
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/zh-tw/developers/docs/consensus-mechanisms/pow/mining/
https://ethereum.org/zh-tw/developers/docs/consensus-mechanisms/pow/mining/
https://ethereum.org/zh-tw/developers/docs/consensus-mechanisms/pow/mining/
https://ethereum.org/en/developers/docs/networking-layer/
https://ethereum.org/en/developers/docs/networking-layer/
https://ethereum.org/en/developers/docs/nodes-and-clients/node-architecture/
https://ethereum.org/en/developers/docs/nodes-and-clients/node-architecture/
https://ethereum.org/en/developers/docs/nodes-and-clients/node-architecture/

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Ethereum nodes and clients. https://ethereum.org/
en/developers/docs/nodes-and-clients/. [On-
line; accessed December-2023].

Ethereum staking withdrawals. https://ethereum.
org/en/staking/withdrawals/. [Online; accessed
December-2023].

Go-ethereum (geth) client.
com/ethereum/go-ethereum/.
December-2023].

https://github.
[Online; accessed

Go-ethereum (geth) debug namespace. https://geth.
ethereum.org/docs/interacting-with-geth/
rpc/ns—-debug/. [Online; accessed December-2023].

Go-ethereum (geth) evm tracing. https://geth.
ethereum.org/docs/developers/evm-tracing.
[Online; accessed December-2023].

Merkle patricia trie. https://
ethereum.org/en/developers/docs/
data-structures-and-encoding/
patricia-merkle-trie/. [Online; accessed

December-2023].

Pebble key-value store. https://github.com/
cockroachdb/pebble. [Online; accessed December-
2023].

Wrapped ether (weth).
//etherscan.io/address/
0x4f26ffbe5f04ed43630fdc30a87638d53d0b0876.
[Online; accessed December-2023].

https:

JD Bruce. The mini-blockchain scheme. White paper,
1:1-10, 2014.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):1-26,
2008.

Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, Ang
Chen, Kun Yang, Bin Hu, Tong Zhu, Shifang Deng,
Teng Hu, et al. Dataether: Data exploration framework
for ethereum. In 2019 IEEFE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
1369-1380. IEEE, 2019.

Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xi-
apu Luo, John Chi-Shing Lui, Xiaodong Lin, and Xi-
aosong Zhang. Understanding ethereum via graph anal-
ysis. ACM Transactions on Internet Technology (TOIT),
20(2):1-32, 2020.

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting
Wang, Rong Cao, Xiuzhuo Xiao, and Xiaosong Zhang.
Tokenscope: Automatically detecting inconsistent be-
haviors of cryptocurrency tokens in ethereum. In Pro-
ceedings of the 2019 ACM SIGSAC conference on com-
puter and communications security, pages 1503—-1520,
2019.

Zehao Chen, Bingzhe Li, Xiaojun Cai, Zhiping Jia,
Zhaoyan Shen, Yi Wang, and Zili Shao. Block-Ism:
An ether-aware block-ordered Ism-tree based key-value
storage engine. In 2021 IEEE 39th International Confer-
ence on Computer Design (ICCD), pages 25-32. IEEE,
2021.

Jemin Andrew Choi, Sidi Mohamed Beillahi, Peilun
Li, Andreas Veneris, and Fan Long. Lmpts: Elimi-
nating storage bottlenecks for processing blockchain
transactions. In 2022 IEEFE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 1-9,
2022.

Xiaohai Dai, Jiang Xiao, Wenhui Yang, Chaofan Wang,
and Hai Jin. Jidar: A jigsaw-like data reduction ap-
proach without trust assumptions for bitcoin system.
In 2019 IEEE 39th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1317-1326.
IEEE, 2019.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-
Chien Chang, Qian Lin, and Beng Chin Ooi. Towards
scaling blockchain systems via sharding. In Proceedings
of the 2019 international conference on management of
data, pages 123-140, 2019.

Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christo-
pher Kruegel, and Giovanni Vigna. Understanding se-
curity issues in the nft ecosystem. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 667-681, 2022.

Xing Fan, Baoning Niu, and Zhenliang Liu. Scalable
blockchain storage systems: research progress and mod-
els. Computing, 104(6):1497-1524, 2022.

Arthur Gervais, Ghassan O Karame, Karl Wiist,
Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 3—16, 2016.

Yeonsoo Kim, Seongho Jeong, Kamil Jezek, Bernd
Burgstaller, and Bernhard Scholz. An off-the-chain ex-
ecution environment for scalable testing and profiling
of smart contracts. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 565-579, 2021.

1270 2024 USENIX Annual Technical Conference

USENIX Association

https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/staking/withdrawals/
https://ethereum.org/en/staking/withdrawals/
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug/
https://geth.ethereum.org/docs/developers/evm-tracing
https://geth.ethereum.org/docs/developers/evm-tracing
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://github.com/cockroachdb/pebble
https://github.com/cockroachdb/pebble
https://etherscan.io/address/0x4f26ffbe5f04ed43630fdc30a87638d53d0b0876
https://etherscan.io/address/0x4f26ffbe5f04ed43630fdc30a87638d53d0b0876
https://etherscan.io/address/0x4f26ffbe5f04ed43630fdc30a87638d53d0b0876

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE symposium on security and
privacy (SP), pages 583-598. IEEE, 2018.

John Kolb, Moustafa AbdelBaky, Randy H Katz, and
David E Culler. Core concepts, challenges, and future
directions in blockchain: A centralized tutorial. ACM
Computing Surveys (CSUR), 53(1):1-39, 2020.

Ao Li, Jemin Andrew Choi, and Fan Long. Securing
smart contract with runtime validation. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 438-453,
2020.

Chenxing Li, Sidi Mohamed Beillahi, Guang Yang,
Ming Wu, Wei Xu, and Fan Long. LVMT: An efficient
authenticated storage for blockchain. In /7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pages 135-153, 2023.

Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang
Zhou. Etherql: a query layer for blockchain system.
In Database Systems for Advanced Applications: 22nd
International Conference, DASFAA 2017, Suzhou, China,
March 27-30, 2017, Proceedings, Part Il 22, pages 556—
567. Springer, 2017.

Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting
Wang, Xiaoze Ni, Wenwu Yang, Xi Chen, and Ting
Chen. Demystifying defi mev activities in flashbots bun-
dle. In Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
165-179, 2023.

Yingiu Liu, Kun Wang, Yun Lin, and Wenyao Xu.
Lightchain: a lightweight blockchain system for indus-
trial internet of things. IEEE Transactions on Industrial
Informatics, 15(6):3571-3581, 2019.

Zhongtang Luo, Rohan Murukutla, and Aniket Kate.
Last mile of blockchains: Rpc and node-as-a-service.
In 2022 IEEE 4th International Conference on Trust,
Privacy and Security in Intelligent Systems, and Appli-
cations (TPS-ISA), pages 305-311, 2022.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 17-30, 2016.

Robert McLaughlin, Christopher Kruegel, and Giovanni
Vigna. A large scale study of the ethereum arbitrage
ecosystem. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 3295-3312, 2023.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Gianmaria Del Monte, Diego Pennino, and Maurizio Piz-
zonia. Scaling blockchains without giving up decentral-
ization and security: A solution to the blockchain scal-
ability trilemma. In Proceedings of the 3rd Workshop
on Cryptocurrencies and Blockchains for Distributed
Systems, pages 71-76, 2020.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (Ism-tree).
Acta Informatica, 33:351-385, 1996.

Asutosh Palai, Meet Vora, and Aashaka Shah. Empow-
ering light nodes in blockchains with block summariza-
tion. In 2018 9th IFIP international conference on new
technologies, mobility and security (NTMS), pages 1-5.
IEEE, 2018.

Soujanya Ponnapalli, Aashaka Shah, Souvik Baner-
jee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and
Michael Wei. RainBlock: Faster transaction processing
in public blockchains. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 333-347,
2021.

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest? In
2022 IEEE Symposium on Security and Privacy (SP),
pages 198-214. IEEE, 2022.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 497-514, 2017.

Fabian Ritz and Alf Zugenmaier. The impact of uncle
rewards on selfish mining in ethereum. In 2018 IEEE
European Symposium on Security and Privacy Work-
shops (EuroS&PW), pages 50-57. IEEE, 2018.

Abdurrashid Ibrahim Sanka and Ray CC Cheung. A
systematic review of blockchain scalability: Issues, solu-
tions, analysis and future research. Journal of Network
and Computer Applications, 195:103232, 2021.

Caspar Schwarz-Schilling, Joachim Neu, Barnabé Mon-
not, Aditya Asgaonkar, Ertem Nusret Tas, and David
Tse. Three attacks on proof-of-stake ethereum. In In-
ternational Conference on Financial Cryptography and
Data Security, pages 560-576. Springer, 2022.

Yuechen Tao, Bo Li, Jingjie Jiang, Hok Chu Ng, Cong
Wang, and Baochun Li. On sharding open blockchains
with smart contracts. In 2020 IEEE 36th international
conference on data engineering (ICDE), pages 1357—
1368. IEEE, 2020.

USENIX Association

2024 USENIX Annual Technical Conference 1271

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe
Peng, and Jian Pei. vchain+: Optimizing verifiable
blockchain boolean range queries. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE),
pages 1927-1940. IEEE, 2022.

Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang
Deng, and Roger Wattenhofer. Cyclic arbitrage in de-
centralized exchanges. In Companion Proceedings of
the Web Conference 2022, pages 12—-19, 2022.

Qian Wei, Bingzhe Li, Wanli Chang, Zhiping Jia,
Zhaoyan Shen, and Zili Shao. A survey of blockchain
data management systems. ACM Transactions on Em-
bedded Computing Systems (TECS), 21(3):1-28, 2022.

Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah
Klages-Mundt, Dominik Harz, and William Knotten-
belt. Sok: Decentralized finance (defi). In Proceedings
of the 4th ACM Conference on Advances in Financial
Technologies, pages 30—46, 2022.

Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1-32, 2014.

Siwei Wu, Lei Wu, Yajin Zhou, Runhuai Li, Zhi Wang,
Xiapu Luo, Cong Wang, and Kui Ren. Time-travel in-
vestigation: toward building a scalable attack detection
framework on ethereum. ACM Transactions on Software
Engineering and Methodology (TOSEM), 31(3):1-33,
2022.

Junfeng Xie, F Richard Yu, Tao Huang, Renchao Xie,
Jiang Liu, and Yunjie Liu. A survey on the scalability
of blockchain systems. IEEE network, 33(5):166—173,
2019.

Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: En-
abling verifiable boolean range queries over blockchain
databases. In Proceedings of the 2019 international con-
ference on management of data, pages 141-158, 2019.

Yibin Xu. Section-blockchain: A storage reduced
blockchain protocol, the foundation of an autotrophic
decentralized storage architecture. In 2018 23rd Interna-
tional Conference on Engineering of Complex Computer
Systems (ICECCS), pages 115-125. IEEE, 2018.

Mingxi Ye, Yuhong Nan, Zibin Zheng, Dongpeng Wu,
and Huizhong Li. Detecting state inconsistency bugs in
dapps via on-chain transaction replay and fuzzing. In
Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
298-309, 2023.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full shard-
ing. In Proceedings of the 2018 ACM SIGSAC confer-
ence on computer and communications security, pages

931-948, 2018.

Ce Zhang, Cheng Xu, Haibo Hu, and Jianliang Xu.
COLE: A column-based learned storage for blockchain
systems. In 22nd USENIX Conference on File and Stor-
age Technologies (FAST 24), pages 329-345, 2024.

Ce Zhang, Cheng Xu, Haixin Wang, Jianliang Xu, and
Byron Choi. Authenticated keyword search in scalable
hybrid-storage blockchains. In 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE), pages
996-1007, 2021.

Mengya Zhang, Xiaokuan Zhang, Yingian Zhang, and
Zhigiang Lin. Txspector: Uncovering attacks in
ethereum from transactions. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2775-2792,
2020.

Zhuo Zhang, Zhigiang Lin, Marcelo Morales, Xiangyu
Zhang, and Kaiyuan Zhang. Your exploit is mine: In-
stantly synthesizing counterattack smart contract. In
32nd USENIX Security Symposium (USENIX Security
23), pages 1757-1774, 2023.

Lin Zhao, Sourav Sen Gupta, Arijit Khan, and Robby
Luo. Temporal analysis of the entire ethereum
blockchain network. In Proceedings of the Web Confer-
ence 2021, pages 2258-2269, 2021.

Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning
Dai. Xblock-eth: Extracting and exploring blockchain
data from ethereum. IEEE Open Journal of the Com-
puter Society, 1:95-106, 2020.

Qiuhong Zheng, Yi Li, Ping Chen, and Xinghua Dong.
An innovative ipfs-based storage model for blockchain.
In 2018 IEEE/WIC/ACM international conference on
web intelligence (WI), pages 704—708. IEEE, 2018.

Shunfan Zhou, Malte Mdser, Zhemin Yang, Ben Adida,
Thorsten Holz, Jie Xiang, Steven Goldfeder, Yinzhi Cao,
Martin Plattner, Xiaojun Qin, et al. An ever-evolving
game: Evaluation of real-world attacks and defenses in
ethereum ecosystem. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2793-2810, 2020.

1272 2024 USENIX Annual Technical Conference

USENIX Association

	Introduction
	Background
	Ethereum Blockchain
	Ethereum State

	Limitations and Solutions
	Inefficient Authenticated MPT
	Coarse-Grained State Granularity

	SlimArchive
	Overview
	Recorder
	Encoder
	State Generator
	Implementation Details

	Evaluation
	Archive Node Synchronization
	Historical State Access
	Transaction Execution
	Storage Overhead
	Correctness Validation

	Discussion
	Related Work
	Conclusion

