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Abstract

Transient execution vulnerabilities have emerged as a critical
threat to modern processors. Hardware fuzzing testing tech-
niques have recently shown promising results in discovering
transient execution bugs in large-scale out-of-order proces-
sor designs. However, their poor microarchitectural control-
lability and observability prevent them from effectively and
efficiently detecting transient execution vulnerabilities.
This paper proposes DejaVuzz, a novel pre-silicon stage
processor transient execution bug fuzzer. DejaVuzz utilizes
two innovative operating primitives: dynamic swappable
memory and differential information flow tracking, enabling
more effective and efficient transient execution vulnerabil-
ity detection. The dynamic swappable memory enables the
isolation of different instruction streams within the same
address space. Leveraging this capability, DejaVuzz gener-
ates targeted training for arbitrary transient windows and
eliminates ineffective training, enabling efficient triggering
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of diverse transient windows. The differential information
flow tracking aids in observing the propagation of sensitive
data across the microarchitecture. Based on taints, DejaVuzz
designs the taint coverage matrix to guide mutation and
uses taint liveness annotations to identify exploitable leak-
ages. Our evaluation shows that DejaVuzz outperforms the
state-of-the-art fuzzer SPECDOCTOR, triggering more com-
prehensive transient windows with lower training overhead
and achieving a 4.7X coverage improvement. And DejaVuzz
also mitigates control flow over-tainting with acceptable
overhead and identifies 5 previously undiscovered transient
execution vulnerabilities (with 6 CVEs assigned) on BOOM
and XiangShan.

CCS Concepts: « Security and privacy — Side-channel
analysis and countermeasures.
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cessor fuzzing; information flow tracking
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1 Introduction

The recent discovery of transient execution vulnerabilities
has unveiled a significant threat to modern processors. These
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vulnerabilities, such as Spectre [21] and Meltdown [25], ex-
ploit speculative execution, a key performance optimization
feature, to leak sensitive data through side channels. The
ongoing battle between attackers and defenders resembles
a continuous cat-and-mouse game. For example, Spectre-
V2 [21] promoted the privilege-isolated branch prediction
deployment, but follow-up research soon discovered bugs (3,
44,50] in other speculation components. Similarly, after Fore-
shadow [45] was patched, Microarchitectural Data Sampling
(MDS) [4, 46] attacks emerged. This arms race not only chal-
lenges the effectiveness of existing defense mechanisms but
also underscores the necessity of a proactive approach to
automated transient execution bug detection.

Some efforts [27, 28, 51] have been applied to commodity
processors. However, due to the black-box nature of off-the-
shelf processors, these approaches rely heavily on template-
based generation and fixed side channels, which makes it
difficult for them to uncover new vulnerabilities. On the con-
trary, detection approaches at the pre-silicon stage have yet
to be extensively studied. Detecting these vulnerabilities dur-
ing the Register Transfer Level (RTL) development phase is
crucial, as hardware bugs are usually difficult to fix once the
design is manufactured. Early detection allows for timely re-
mediation, preventing these bugs from being integrated into
production hardware. Therefore, proactive testing and veri-
fication at the pre-silicon stage are imperative for ensuring
processor microarchitecture security.

Formal verification and fuzzing are commonly used meth-
ods for existing processor RTL transient execution bug detec-
tion. Although formal approaches can prove security prop-
erties exhaustively, limited by the state explosion problem,
existing methods [9, 39, 43, 55] solve the scalability prob-
lem by modeling processor transient execution behavior at
a higher level of abstraction. However, given the complex-
ity of the out-of-order processor design, the microarchitec-
ture implementation details ignored by the model are highly
error-prone [18, 53]. Furthermore, the complicated design
pre-knowledge and heavy manual efforts required for hard-
ware modeling and security property definition also impede
the application of formal methods to complex designs.

Recently, processor fuzzing has demonstrated promising
results in verifying large-scale complex processor designs [5,
19, 20, 36, 53], and researchers also have begun applying
fuzzing to detect transient execution vulnerabilities [11, 12,
18]. INTROSPECTRE [12] and TEESEc [11] use gadget tem-
plates to trigger Meltdown-type transient execution vulnera-
bilities and identify leakage by searching for secret values in
the microarchitecture logs. SPECDocTOR [18], on the other
hand, employs a multi-phase random instruction generation
process and utilizes differential testing to detect sensitive
data leakage. However, due to the complexity of the transient
execution vulnerabilities, current fuzzing methods are either
too limited [11, 12], only capable of identifying specific leak-
age patterns, or too inefficient [18], taking days to complete
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the verification, thereby limiting their practical adoption. To
effectively and efficiently fuzz transient execution bugs, the
following two challenges need to be addressed.

First, only transiently executed instructions are considered
effective fuzzing payloads, so the fuzzer needs to efficiently
trigger diverse transient windows for fuzzing. However, trig-
gering these transient windows requires deliberate microar-
chitecture training. Due to significant differences in training
patterns among various microarchitecture components, ex-
isting approaches generate limited transient windows with
high training overhead (§6.2). The inability to generate vari-
ous transient windows means the microarchitecture cannot
be fully explored. Additionally, ineffective training instruc-
tions waste simulation time, increasing training overhead
and reducing the fuzzing throughput.

Second, the fuzzer needs to perceive the propagation of
sensitive data during transient execution to guide mutation
and detect leakages. Information flow tracking is a promising
solution, but it suffers from the control flow over-tainting
problem in complex designs [37]. Due to the lack of effective
methods to trace sensitive data, existing fuzzers cannot mea-
sure coverage or identify exploitable leakages (§6.3). Lacking
coverage metrics means that the quality of stimuli cannot
be assessed, leading to inefficient input mutation. Passing
unexploitable leakages to subsequent stages not only results
in false positives but also makes later phases futile, further
misguiding the fuzzing process.

To address the challenges mentioned, we propose De-
jaVuzz, an effective and efficient pre-silicon processor fuzzer
for transient execution vulnerabilities, powered by two novel
operating primitives: dynamic swappable memory and dif-
ferential information flow tracking. Dynamic swappable
memory serves as an isolation primitive, responsible for
transparently switching instruction sequences to control the
microarchitecture to trigger desired transient execution be-
haviors. This primitive resolves conflicts between instruction
sequences by time-sharing the address space. To increase
the diversity of triggered transient windows, DejaVuzz iso-
lates training and transient instruction sequences to generate
arbitrary transient windows, and uses the training deriva-
tion strategy to derive targeted training based on transient
execution information. To reduce the training overhead, De-
jaVuzz isolates each training instruction sequence to explore
different training effects, and eliminates ineffective training
through the training reduction strategy. Differential informa-
tion flow tracking acts as the tracing primitive that is respon-
sible for observing microarchitectural state changes caused
by sensitive data. This primitive eliminates the control flow
over-tainting problem by comparing whether different se-
crets can produce different selections on the same control
signal. With the help of taints, DejaVuzz designs a taint cover-
age matrix to evaluate how sensitive data propagates during
the transient execution, effectively guiding exploration. Fur-
thermore, DejaVuzz introduces taint liveness annotations
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to bind state registers to related taint registers. By using
annotated state registers as liveness signals, DejaVuzz filters
out unexploitable taints to reduce false positives.

Overall, this paper makes the following contributions:

e We summarize the challenges of transient execution bug
fuzzing in terms of microarchitectural controllability and
microarchitectural observability and propose two novel
operating primitives: a dynamic swappable memory model
to resolve address space conflicts for better microarchitec-
tural control, and a differential information flow tracking
technique to mitigate control flow over-tainting for im-
proved microarchitectural observation.

o Utilizing these two operating primitives, we develop a new
processor fuzzing framework named DejaVuzz, which can
effectively and efficiently detect transient execution bugs.
DejaVuzz designs training derivation and training reduc-
tion strategies atop dynamically swappable memory to
efficiently trigger diverse transient windows, and utilizes
taints generated by differential information flow tracking
to guide fuzzing and identify leakage.

e We evaluate DejaVuzz on two well-known RISC-V out-of-
order processors [54, 57]. Compared to the SOTA fuzzer
SpecDocToRr [18], DejaVuzz achieves a 4.7X improvement
in coverage with more comprehensive transient windows
and lower training overhead. DejaVuzz mitigates control
flow over-tainting with acceptable overhead and identifies
5 previously unknown transient execution vulnerabilities,
all of which are assigned CVE numbers.

To facilitate the community and future research, we pub-
lish the source code and experiments of DejaVuzz at https:
//github.com/sycuricon/DejaVuzz.

2 Background
2.1 Transient Execution Vulnerabilities

As shown in Figure 1, the process of exploiting a transient
execution bug can be divided into the following 4 attack
steps: (D training the target microarchitecture, ) triggering
a transient window through the trained state, (3) accessing
sensitive data and encoding it into a side channel, and @
subsequently decoding the secret from the side channel.
However, different types of transient windows exhibit
highly varied training patterns. For Spectre-V1, the train-
ing section (blue stripe) and the transient execution section
(yellow stripe) are independent, which means these two sec-
tions can be generated independently as long as the branch
instructions have the same address offset. However, this is
not always true for other transient execution bugs such as
Spectre-V2 and Spectre-RSB [22, 26]. The Spectre-V2 attack
requires different arguments (a@) to switch between train-
ing and exploiting the Branch Target Buffer (BTB) with the
same code. And the Spectre-RSB attack requires tempting
the processor to speculatively return to a corrupt address
by training the Return Stack Buffer (RSB). As seen in the
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trainin trainin ¢ |training: ,
bne a0, ga@ foo @ trans1egt @ % |call transient @ ;
#with diff a0 _ _ |2 |{window: "~~~ "3}
transtent: _ __ _ [ |3alr a1, e(ae) @[ [ilate, secret =ik
ibeq a0, 20, bar @)\ |- - -2 -=- = ALr T
window: ~ " T (3 : window:” ~ T ) : % [1add 8, to, <o :;
11a t@, secret 11a t@, secret ¢ 'ld to, e( 9) 1%
11d s0, a(te) Il [11d se) e(te) g | ————
i1a to, leak il |'1a te, leak i[6 [transient:
ladd t0, to, S0 | |add te, te, s [ ladd ra, se, a0 (2,
|ld te, (té) __ 1| [ildte,e(t) __f |ret 7 < '
Spectre-V1 Spectre-V2 Spectre -RSB

Figure 1. Training and transient execution sections of
Spectre-V1, Spectre-V2 and Spectre-RSB. The secret decod-
ing step (@ is omitted.

last two types, complex transient windows are mixed with
the training section. Triggering such complex transient win-
dows is challenging, as the stimulus generator must carefully
handle the semantics of training and transient execution to
ensure the window section is executed transiently as expected.
Otherwise, non-speculative execution of the window section
during training could lead to false positives.

2.2 Hardware Dynamic Information Flow Tracking

Information Flow Tracking (IFT) has been widely deployed
at all levels of hardware abstraction to understand how in-
formation flows through a system [15, 24, 41, 48]. Hardware
dynamic IFT, known as taint tracking, can dynamically ver-
ify information flow properties at runtime. This is achieved
by marking sensitive state elements with taints at the circuit
level and propagating the taints based on the operations on
sensitive data. There are three instrumentation levels for
the hardware dynamic IFT mechanism: gate level [42], RTL
level [2], and cell level [37]. Figure 2 shows how hardware
dynamic IFT is implemented in hardware. The dynamic IFT
instrumentation generates a shadow circuit based on the
original circuit, all registers in the original circuit are copied
to store taints, and the combinational logic gates are replaced
with the corresponding taint propagation policy implementa-
tion. The taint propagation policies are a set of rules that are
responsible for tainting outputs that are affected by tainted
inputs. Policies 1 and 2 are the state-of-the-art taint propaga-
tion policies [2, 37] for the AND and MUX cells, respectively.
By using shadow circuits, dynamic IFT provides the ability to
observe the information flow of the design without affecting
the original functionality.

Ol np = (A&B')|(B&A")|(A' &BY) (1)

O4yux = (S?B':AY|(S'?(AB)|(A'|B'):0) (2)

Taints generated by the direct computation of input taints
and signals, like in Policy 1, are referred to as data taints.
In Policy 2, in addition to selecting data taints via the selec-
tion signal S, the underlined component produces control
taints due to the conditional selection semantics of the mul-

tiplexer. Unlike data taints, which are only impacted by the
actually executed code, control taints also consider changes
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Figure 2. Hardware dynamic information flow tracking in-
strumentation. a) is the example circuit from the BOOM RoB
module, b) is the corresponding IFT shadow circuit.

occurring on unselected branches (i.e., the A”B term). Thus,
once taints propagate to the control flow, it can easily lead to
over-tainting [35, 37]. Since taint propagation policies only
generate taints without eliminating them, more registers be-
come tainted as the circuit executes, making it increasingly
difficult to identify target information flows precisely.

According to our evaluation (§6.3), the state-of-the-art
hardware dynamic IFT mechanism CELLIFT [37] suffers from
the control flow over-tainting problem. Next, we use the Re-
order Buffer (RoB) module of BOOM [57] in Figure 2 as
an example to explain how the taint explosion occurs dur-
ing the RoB rollback. The third RoB entry updates its op-
code field register rob_3_uopc with the new opcode eng_uopc
when a valid micro-operation is enqueued (enq_valid is high)
and the tail pointer points to the third entry (rob_tail_idx
is equal to 3). Before the RoB rollback, instructions using
tainted sensitive data as operands in step (3) write back
and taint the RoB state register. When the RoB rolls back,
the movement of the tail pointer causes rob_tail_idx to be
tainted. Since the frontend also uses the RoB index to main-
tain state, eng_valid is tainted. According to Policy 1, both
inputs are tainted (the comparison result of the Equal cell
is also tainted due to the tainted rob_tail_idx), causing the
MUX selection signals to be marked as tainted. Furthermore,
based on Policy 2, the register rob_3_uopc is also marked as
tainted due to the different input data. All 736 RoB entry
field registers have a similar update logic. Therefore, they
are all suddenly tainted when the RoB rolls back.

2.3 Processor Fuzzing for Transient Execution Bugs

Processor fuzzing has been employed to detect various bugs,
including functional bugs [19, 20, 36, 53], transient execu-
tion bugs [11, 12, 18], and side channel bugs [33]. Although
bugs are characterized differently, existing fuzzers generally
follow a similar workflow consisting of three main steps.
First, the input generator generates instruction sequences
as stimuli either based on constraints [36, 53] or through
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random generation [19, 20, 33]. As discussed in §2.1, a tran-
sient execution attack involves multiple steps. Thus, exist-
ing fuzzers strategically divide the generation into multi-
ple phases. For instance, INTROSPECTRE and TEESEC insert
helper gadgets before the main gadget to satisfy the re-
quired memory access paths in the software execution model.
SpeEcDoCTOR sequentially progresses through the transient-
trigger, secret-transmit, and secret-receive phases to gen-
erate a complete stimulus. During each phase, additional
instructions are randomly appended to those generated in
the previous phase until specific goals are met. The goals of
each phase are to trigger a RoB rollback, generate microar-
chitectural differences, and cause timing differences.

Second, the fuzzer uses an RTL simulator to convert the De-
sign Under Test (DUT) into a software model and then uses
the model to execute the generated instruction sequences.
During simulation, the fuzzer leverages instrumentation to
measure coverage to guide mutations. Existing fuzzers de-
fine several coverage metrics to reflect the general processor
behavior, such as mux toggle coverage [23], control regis-
ter coverage [19, 53], and hardware behavior coverage [20].
However, transient execution bug fuzzers focus solely on
microarchitectural state changes caused by sensitive data.
Therefore, existing general processor behavior coverage met-
rics are unsuitable for transient execution bugs, as they are
unaware of the propagation of sensitive data.

Third, the fuzzer analyzes the microarchitecture to deter-
mine if any bug exists. Unlike the functional bugs that can
be detected using co-simulation [19, 53], transient execution
vulnerabilities require detailed microarchitecture analysis.
For example, INTROSPECTRE and TEESEC dump the microar-
chitecture at each cycle and then assess whether leakage has
occurred based on the presence of the secret values in the
log. SPECDOCTOR observes execution behavior by hashing
the final state of the timing components after transient exe-
cution and evaluates leakage by comparing the consistency
of the hash values between different variants.

3 Operating Primitives

In this section, we first analyze the challenges of transient
execution fuzzing based on the key capabilities required by
a fuzzer and identify their root causes. Next, we present
the design of two novel operating primitives and explain
how they address the root causes. For the challenges, we use
designs based on the primitives to address them in §4.

3.1 Challenges and Root Causes

The task of a transient execution bug fuzzer is to generate
instruction sequences that trigger transient windows and en-
code secrets into the microarchitecture, and then determine
whether the encoded states can leak the secrets. To achieve
this, a competent fuzzer must possess two key capabilities.
First, it must effectively train the microarchitecture to trigger
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conflict with the

mul x18, x19, x20 1
sltu x22, x23, x20__-7
la x23, data2

addi x21, x18, 0x3

la x25, secret
1b x24, 0(x25)
add x23, x22, x24
1d x25, 0(x23)

0x0010 || bne x20, x20, L1 <, WI?‘Q—' branch training
/] ... \
i la x21, datae  __1W2! conflict with the
11w 19, 4(x21) N trigger condition
/] ... ;)

0x1010| bne x20, x21, L? -ﬁ::

w3

Figure 3. Assuming the branch instruction at 0x1010 can
trigger transient windows at different addresses by using
different branch targets L?, only transient windows that do
not conflict with training instructions can be exploited.

diverse transient windows, since we are only interested in
transiently executed behaviors. Second, it must accurately
track the propagation of sensitive data, as we only focus on
microarchitectural state changes caused by secrets. Based on
this observation, we define these two capabilities as microar-
chitectural controllability and observability, respectively.
Microarchitectural Controllability [8, 30, 49] refers
to the ability of a fuzzer to efficiently manipulate microar-
chitecture to trigger desired transient execution behaviors.
Existing fuzzers generate transient windows using template-
based [11, 12] or random-based [18] methods. While they can
successfully trigger transient windows, they fail to address
the following two challenges.
C1-1. Limited Window Types. Template-based methods
are limited to specific transient window templates, while
random-based methods also fail to generate arbitrary tran-
sient windows. As shown by W3 in Figure 3, SPECDOCTOR
randomly generates training instructions and replaces the
RoB squashed instructions with the secret encoding instruc-
tions to exploit. However, when the RoB squashed instruc-
tions are mixed with the training instructions (i.e., complex
transient windows in §2.1), replacing them may invalidate
transient execution. For example, replacing branch training
can prevent the predictor from reaching the desired pre-
diction state (W1), while replacing the assignment to the
condition comparison register x21 could change the branch
outcome (W2). For this reason, SPEcDocToR discards all
transient windows containing backward jumps. As a result,
existing fuzzers are limited to exploring only a restricted
subset of transient window types.
C1-2.Inefficient Training. Making the fuzzer recognize the
microarchitectural state changes caused by randomly gener-
ated instructions and subsequently exploit them is exception-
ally challenging. INTROSPECTRE and TEESEC use a manual
software execution model to assist in setting up the required
microarchitecture but cannot train states beyond the model.
SpecDocToRr also has difficulty assembling matched training-
exploitation instruction pairs because meaningless random
training instructions often occupy the required addresses.
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Unutilized microarchitecture training instructions not only
reduce the fuzzing throughput but also diminish the training
effectiveness due to potential conflicts.

The root cause of the above challenges is the address space
conflict. Since the fuzzer cannot predict training effective-
ness or transient window locations, instructions are hardly
placed at the desired address. For example, training instruc-
tions may occupy addresses needed for transient windows,
and different training instructions cannot be tested at the
same address. This makes it difficult for existing fuzzers to
arrange instructions linearly to trigger the desired transient
execution behaviors.

Microarchitectural Observability [14, 29, 56] concerns
the ability of a fuzzer to monitor and measure the effects
of sensitive data on the microarchitecture. Despite having
complete access to the processor’s internal states, existing
fuzzers fail to track how sensitive data propagates through
the microarchitecture, leading to two challenges.

C2-1. Feedback Gap. Prior work ignores the coverage ma-
trix and thus fails to provide feedback for input mutation,
leading to blind and random input mutation. This problem
is caused by the lack of ability to track the propagation pro-
cess of sensitive data. INTROSPECTRE and TEESEC cannot
capture secrets after arithmetic operations due to the use of
value matching. SPEcCDocTOR only computes the hash of the
final state, and the compressed execution process prevents
capturing the different propagation paths during execution.
The missing coverage matrix leaves a gap between input
mutation and execution, making it difficult for the fuzzer to
explore all possible transient behaviors efficiently.

C2-2. Imprecise Oracle. Caches and buffers are extensively
used in processor microarchitecture to improve performance
and typically include state registers to indicate the validity
of the current data. For example, the Line Fill Buffer (LFB)
in BOOM is managed by the Miss Status Holding Regis-
ter (MSHR). Once the cache line refill is completed, MSHR
switches its state register to invalid to indicate that the data
in the LFB is outdated instead of clearing the LFB. Existing
work has incorrectly considered this scenario as vulnerable,
as INTROSPECTRE and TEESEc would match the sensitive
data remaining in the LFB. It would also cause SPECDOCTOR
to generate different hashes. Due to the imprecise oracles,
existing fuzzers pass these false positives to subsequent steps,
resulting in meaningless execution.

The root cause of the above challenges is the lack of a
mechanism to track state changes caused by sensitive data.
Without the ability to observe the information flow of sen-
sitive data, existing fuzzers are unable to measure coverage
based on the distribution of encoded sensitive data or query
state registers to identify exploitable leakages.

3.2 Dynamic Swappable Memory

Instead of using scalability-limited templates to solve the
address space conflict, the core insight of DejaVuzz is that
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Memory Layout v

 firmware : data:
# trap handler |# secret
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Shared Dedicated

# swap packets
# at runtime

Swappable

Figure 4. Using swapMem to trigger transient execution.

address space can be time-shared by different semantics. Fig-
ure 4 shows how scheduling instruction sequences within
the same address space enables triggering complex transient
windows that could not be generated in Figure 3. During
simulation, we first load the training instruction sequence
(1) or (2) into memory to train the predictor. After training,
we flush the memory and load the transient instruction se-
quence (3) to trigger the backward transient window. For the
training instruction sequence, since the full address space
is available, we do not need to use similar addresses like
0x0010 to train the predictor. Instead, we can directly place
a branch training instruction at 0x1010. Additionally, we can
explore different training effects, such as using sequence (1)
to train the prediction as untaken or sequence (2) to train it
as taken. For the transient instruction sequence, since train-
ing instructions are not in the current sequence, W1 type
conflicts are avoided, and conflicted register assignments can
be moved to other available addresses (e.g., 9x0) to resolve
W2 type conflicts. As shown in sequence (3), after setting up
the registers, DUT can directly jump to 0x1010 to trigger the
transient window without any conflicts. Besides generating
arbitrary transient windows, we can also identify effective
training by trying different training instruction sequences.
For example, by trying combinations (1)(3) and (2)(3), we
can find that only (2) contributes to triggering the transient
window. Thus, switching instruction sequences on demand
at different stages effectively resolves address space conflicts,
allowing the fuzzer to effectively control the microarchitec-
ture to trigger desired transient execution behaviors.
However, implementing the above switching process with
assembly instructions can pollute memory-related training
states. To address this, we propose the dynamic swappable
memory (swapMem), enabling transparent instruction se-
quence switching. Since side channel bugs require multiple
DUT instances with different secrets to detect behavioral
differences, the swapMem is specifically designed for this
scenario. As shown at the bottom of Figure 4, the swapMem
consists of three regions. The shared region is shared across
multiple DUT instances and contains the essential execution
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environment, including state initialization, trap handling,
and runtime instruction sequence scheduling. To facilitate
modifying secrets, each DUT has a dedicated region for stor-
ing sensitive data and mutable operands. The swappable
region is used to hold instruction sequences with different
semantics. Each DUT can load the required instruction se-
quence into the swappable region at runtime according to the
swap schedule. Typically, DejaVuzz first executes all training
instruction sequences on the DUT, then updates sensitive
data permissions, and finally executes the transient instruc-
tion sequence. Once a sequence is completed, an exception
is triggered, and then the trap handler flushes the instruc-
tion cache and loads the next sequence into the swappable
region. After swapping the new sequence, the DUT jumps
to its entry and continues execution.

The swapMem enhances microarchitectural controllability
as the isolation primitive, resolving address space conflicts.
In §4.1, we will discuss how to design instruction sequence
generation strategies based on swapMem to trigger diverse
windows and optimize training overhead.

3.3 Differential Information Flow Tracking

DejaVuzz intends to employ the information flow tracking
technique to identify state changes caused by secrets. How-
ever, as discussed in §2.2, the control flow over-tainting prob-
lem makes it impossible to identify the propagation of sen-
sitive data. Thus, we propose differential information flow
tracking (diffIFT) to mitigate the over-tainting problem.
When fuzzing transient execution vulnerabilities, we con-
sider leakage to occur only if executing the same instruction
sequence with different secrets results in different behav-
iors. However, Policy 2 considers arbitrary input differences
rather than differences caused by secrets. Therefore, a core
insight of DejaVuzz is that if no secret can influence the
value of a control signal, then even if it is tainted, it should
be ignored, as it cannot select another path. However, it is ex-
tremely expensive to precisely compute all potential values
of each control signal in the out-of-order processor for all
input secrets at each cycle [16]. Inspired by the multi-variant
execution [7, 31, 34], DejaVuzz approximates the solution
with concrete values from multiple variants. To be specific,
DejaVuzz creates a differential testing testbench to determine
if sensitive data can produce different values on a control
signal by executing the same instructions on two identical
DUTs with different secrets. Table 1 lists the updated control
taint propagation rules for all supported control flow cells.
The overall policies are similar to CELLIFT, except the control
taints only propagate when cross-instance comparison sig-
nals are high. The highlighted signals with the diff subscript
represent cross-instance comparison signals. Take the multi-
plexer as an example, when diff[FT encounters a multiplexer
whose selection signal S is tainted, diffIFT checks whether
the selection signals are consistent between the variants (i.e.,
Saif = Sput, “Sput,)- If there is a difference, it indicates that
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Table 1. The control taint propagation policies of diffIFT.

Cell Type Propagation Policy
Multiplexer (S7B:AN|(S' &S 47 2 (A'B)|(AT[BY):0)
Comparison Cell Ogir & |(A*|B)
Register with En | (En?D":Q")[(En’ &Eng;? (D"Q)|(D'|Q"):0)
Memory Read mem' [addr][{ WIDTH{addr' & addryz}}
. Wen? Wdata' :mem' [addr])|{ WIDTH
Memory Write I/(V'en’&Wendmr) | (addr’[& ad(}iiL,{ﬁ‘& Wen){}(}

sensitive data can generate different selections, and diffIFT,
therefore, performs control taint propagation. Otherwise,
diffIFT only considers data taint propagation. We instrument
the DUT at the RTL IR level and thus support word-level
cells and non-flattened memories. Additionally, the data taint
propagation policies for data flow cells in diffIFT are consis-
tent with CELLIFT.

It is worth noting that diffIFT is an underapproximation of
information flow since it uses concrete values. If a secret pair
happens to produce the same value on a secret dependent
control signal, a false negative will occur. When this hap-
pens, data taints still propagate accurately, but control taints
are suppressed due to identical control signals. Therefore,
DejaVuzz generates secrets for the variant DUT by flipping
each bit of the original secret to avoid using identical values.
Besides, by leveraging the dedicated region in swapMem,
DejaVuzz can directly load different secret pairs to mitigate
false negatives without regenerating the input.

The diffIFT serves as the tracing primitive to enhance
microarchitectural observability. With the help of taints, De-
jaVuzz is able to observe sensitive data and its derived values
across the microarchitecture. In §4.2 and §4.3, we will explain
how to use taint to compute coverage and identify leakages.

4 The DejaVuzz Framework

In this section, we demonstrate how DejaVuzz builds on op-
erating primitives to address the challenges in §3.1, enabling
effective and efficient transient execution bug fuzzing.

Overview. As shown in Figure 5, the workflow of DejaVuzz
consists of three phases. The first two phases focus on trig-
gering and exploring transient execution, while the final
phase is responsible for detecting leakage. DejaVuzz lever-
ages swapMem to isolate different instruction sequences
within the same address space. In Phase 1, DejaVuzz derives
targeted training for diverse transient windows and evalu-
ates each training to eliminate ineffective training. In Phase
2, DejaVuzz completes the transient window and attempts
to encode sensitive data into the microarchitecture. During
simulation, DejaVuzz uses diffIFT to track sensitive data
propagation and collects taint as coverage to guide explo-
ration. In Phase 3, DejaVuzz first checks transient window
constant time execution violations. If no timing differences
are detected, it further uses taint liveness annotations to
check whether secrets encoded into the microarchitecture
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can be exploited. Finally, DejaVuzz reports test cases that
violate transient window constant time execution or contain
exploitable taints as potential bugs.

4.1 Phase 1: Transient Window Triggering

Phase 1 focuses on triggering diverse transient windows
with minimal overhead. For challenge C1-1, DejaVuzz uses
swapMem to isolate transient execution from training to gen-
erate arbitrary transient windows, and employs the training
derivation strategy (§4.1.1) to generate targeted training. For
challenge C1-2, DejaVuzz further isolates each training and
applies the training reduction strategy (§4.1.2) to identify
and eliminate ineffective training.

4.1.1 Step 1.1: Trigger Generation. While swapMem re-
solves address space conflicts, allowing DejaVuzz to gen-
erate arbitrary transient windows, effective training is still
required to trigger them. To train the required microarchitec-
ture components for triggering transient windows, DejaVuzz
employs the training derivation strategy. It first randomly
generates a transient window and then derives targeted train-
ing based on the expected transient window.

Trigger Instruction Generation. In this step, DejaVuzz
only generates the trigger section of the transient packet
(@). The transient packet refers to the instruction sequence
that triggers a transient window and transiently accesses and
encodes sensitive data (i.e., transient instruction sequence
(3) in Figure 4). DejaVuzz first randomly generates trigger
instructions based on the trigger type encoded in the seed.
The trigger instructions supported by DejaVuzz cover the
entire basic instruction set, including sequential execution
instructions (e.g., integer or floating-point arithmetic opera-
tions, valid memory accesses), control transfer instructions
(e.g., branches, indirect jumps, and returns), and instructions
that may trigger architectural exceptions (e.g., illegal instruc-
tions, memory access violations). In the example shown in
Figure 5, suppose DejaVuzz plans to trigger a transient win-
dow caused by a return address misprediction. Next, De-
jaVuzz generates a dummy transient window filled with nop
instructions (@). For sequential execution instructions and
exceptions, the transient window is placed immediately af-
ter the trigger instruction by default. For control transfer
instructions, DejaVuzz randomly selects whether to place
the transient window after the trigger instruction. Finally,
DejaVuzz uses an ISA simulator to compute the operands
required to trigger the transient window and generate the re-
lated register initialization instructions. Therefore, DejaVuzz
covers transient windows triggered by all instruction types,
effectively enhancing transient window diversity.

Trigger Training Derivation. DejaVuzz uses the transient
execution information in transient packets to randomly gen-
erate multiple trigger training packets (@)). The trigger train-
ing packet refers to the instruction sequence used for train-
ing microarchitecture to trigger the transient window (i.e.,
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Corpus trigger: o \trigger: | fmop T | itrigger: | |mop -
19x8,add ra, s6, a@ window: | | [EEUeSieen iwindow: | [icall swap_done
e oo — |'1a to, secret :|i| 'la t0, secret | —————>==
window (2] &d %g’ el(t?() I window_train: 11d <0, 0(t0) il rndow Fratn:
+0x8|'nop la t@, lea L ekl {nop | |mmem= e e e .
. |'nop ,add te, te, se|iif __, |;1a a@, secret G inop |@ 1| |i1a a@, secret
Bin. s linep 1d to, e(te) | ! i1d al, 0(a@) DGR D o [11d 2l,_e(=e) _ i
: [
RTL Sim. trigger_train @: :
y +oxelinop ~ T T 77T Feedback to i
+0x4||call swap_done ||  Phase1/2 53.1 Constant Time
 ewa p_done: Generation Execution Analysis _
Trace Lo # exdt w/o ret RTL Sim. - Bug RTL Sim.
& @ [trigger train_1: w/ diffIFT K Report w/ diff[FT
1add 0, 1, s2_|
i 7 TR S2.2 Coverage |, |f-z2 .2 Tain ink
$1.2 Trigger Erigger_train_2: S g S3.2 Tainted Sink |_[ -
Optimization isub ti1, te, se | Measurement Liveness Analysis L=

Trace Log Taint Log

Sanitized Taint Log

Figure 5. DejaVuzz fuzzing workflow for finding transient execution vulnerabilities, taking Spectre-RSB for example.

training instruction sequences (1) and (2) in Figure 4). For
each trigger training packet, DejaVuzz first generates a ran-
dom training instruction, and then inserts nop instructions
to align it with the trigger instruction in the transient packet.
In the example, we generate three trigger training packets,
with the training instructions all placed at the same address
(i-e., 0x4) as the trigger instruction ret. Next, DejaVuzz fur-
ther adjusts the control flow of the training instruction if
the training instruction is a control transfer instruction. To
be specific, DejaVuzz adjusts the control flow of the train-
ing instruction to match the control flow of the generated
transient window, enhancing the training effectiveness for
control flow prediction. For example, DejaVuzz avoids using
a ret instruction to exit the packet trigger_train_e, ensur-
ing that the predicted return address in the RSB matches the
start address of the transient window (i.e., 0x8). By deriving
training from transient execution information, DejaVuzz not
only generates diverse transient windows but also produces
targeted training, ensuring the fuzzer can more effectively
control the microarchitecture to trigger desired transient
execution behaviors.

4.1.2 Step 1.2: Trigger Optimization. After generating
the trigger training packets, DejaVuzz evaluates which pack-
ets are helpful in triggering transient windows. Leveraging
swapMem, DejaVuzz employs the training reduction strategy
that identifies and discards ineffective trigger training pack-
ets without affecting transient window triggering, thereby
reducing training overhead.

Transient Execution Recognition. DejaVuzz packages all
these packets together with a swap schedule, which defines
their execution order. The schedule specifies that the trigger
training packets are executed first, followed by the transient
packet. After RTL simulation, DejaVuzz analyzes the RoB
port events recorded in the trace log. If the number of en-
queued instructions within the transient window exceeds
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the number of its committed instructions, it indicates that
the transient window has been successfully triggered.
Training Reduction. Although trigger training packets
are derived from the transient packet for targeted training,
not all training contributes to triggering the transient win-
dow. Fortunately, since each training instruction is isolated
in its packet, DejaVuzz can identify ineffective packets by
removing one at a time and re-simulating the remaining
packets to see if the transient window still triggers (@). If
removing a trigger training packet does not affect transient
window triggering, it will be permanently discarded from
the swap schedule. Otherwise, the packet is necessary, and
DejaVuzz will keep it in the swap schedule. DejaVuzz eval-
uates each trigger training packet in the order of the swap
schedule. This process repeats until only necessary trigger
training packets remain or none are available. It is obvious
that integer arithmetic operations do not contribute to re-
turn address prediction. Therefore, in the example, DejaVuzz
finds that discarding trigger_train_1 and trigger_train_2
does not affect the triggering of the transient window, and
finally removes them. By discarding ineffective trigger train-
ing packets, DejaVuzz is able to trigger transient windows
with minimal training overhead.

4.2 Phase 2: Transient Execution Exploration

DejaVuzz explores which microarchitectures can be used
to encode secrets during this phase. DejaVuzz uses taints
as the coverage to guide the exploration (§4.2.2), effectively
addressing challenge C2-1.

4.2.1 Step 2.1: Window Completion. DejaVuzz replaces
the dummy transient window with real payloads and gener-
ates a complete test case.

Transient Window Completion. DejaVuzz generates two
blocks in the window section (@): (i) the secret access block
and (ii) the secret encoding block. In the secret access block,
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besides fixed instructions to access sensitive data, it also ran-
domly masks the high-order bits of the address to attempt to
cover MDS-type bugs. In the secret encoding block, DejaVuzz
randomly generates instructions that depend on secrets in
order to propagate secrets across the microarchitecture.
Window Training Derivation. Similar to trigger training
packets, DejaVuzz also derives window training packets for
the secret access block (@). The window training packet
is the training instruction sequence used to train memory-
related states used by the transient window. In the example,
DejaVuzz attempts to warm up sensitive data into the pro-
cessor’s internal buffers in advance, such as the data cache
and the load buffer. The generated window training packets
are scheduled before the trigger training packets in the swap
schedule to avoid invalidating the transient window.

4.2.2 Step 2.2: Coverage Measurement. DejaVuzz per-
forms RTL simulation using the diffIFT instrumented DUTs
and measures coverage from the taint log to guide subse-
quent stimulus generation.

Taint Coverage. DejaVuzz introduces the first secret sensi-
tive coverage matrix designed for transient execution vulner-
ability fuzzing. The taint coverage treats the total number of
taints within a local range as an independent coverage point.
To be specific, DejaVuzz inserts a new register array bitmap
into each RTL module. During each clock cycle, DejaVuzz
uses the number of tainted registers within the module as the
index and writes 1 to the corresponding slot in the bitmap.
After the transient execution, DejaVuzz checks the value
of each slot in the bitmap. If a slot’s value is 1, it indicates
that the corresponding number of taints has been explored
within the module, and DejaVuzz records the index of such a
slot and its module name as a tuple. Finally, DejaVuzz evalu-
ates input exploration based on the total number of collected
(module, index) tuples.

The taint coverage has two key properties. The first is lo-
cality, as coverage is measured at the module level, reflecting
the propagation of sensitive data across different hierarchies.
The second is position-insensitive, which helps filter out
redundant encoding. For example, when sensitive data is en-
coded in different slots of the cache data array, the coverage
points generated by the cache module remain identical.
Coverage Feedback. Once all packets are ready, DejaVuzz
duplicates them with different secrets to generate two swap-
pable stimuli for diffI[FT. After RTL simulation, DejaVuzz
first identifies the cycle range of the transient window by an-
alyzing RoB port events in the trace log, and then examines
taint changes within this range from the taint log. If taints
increase, it indicates that sensitive data has been successfully
propagated, and DejaVuzz subsequently measures taint cov-
erage based on the taint log. If the coverage increase is less
than the average increase or sensitive data is not success-
fully propagated, DejaVuzz mutates the seed to regenerate
the window section. If the results after multiple attempts still
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show low coverage growth, DejaVuzz will discard the seed
and return to Phase 1.

4.3 Phase 3: Transient Leakage Analysis

In this phase, DejaVuzz analyzes whether the final state can
leak sensitive data. For challenge C2-2, DejaVuzz uses taint
liveness annotations to filter out unexploitable taints in the
final analysis phase (§4.3.2).

4.3.1 Step 3.1: Constant Time Execution Analysis. For
test cases that successfully access and propagate sensitive
data, DejaVuzz further analyzes whether leakage occurred.
It first compares the execution time of the transient window
between the variants. If results are inconsistent, it indicates
that sensitive data has caused timing side channels, such
as port contention, during the transient window. DejaVuzz
directly reports these test cases as potential vulnerabilities.
Encode Sanitization. Although test cases with transient
window constant time execution cannot directly leak secrets
through the timing side channel, the encoded sensitive data
may still be leaked via other side channels. Since accessing
sensitive data during training also generates taints, we need
to distinguish the taints caused by the secret encoding block
before further analyzing whether the encoded sensitive data
can be exploited. Therefore, DejaVuzz replaces the secret
encoding block in the transient packet with nop instructions
(@) and re-runs the simulation. By comparing the sanitized
taint log with the original taint log, DejaVuzz can identify
the taints generated by the secret encoding block.

4.3.2 Step 3.2: Tainted Sink Liveness Analysis. The
taints produced by diffIFT only indicate reachability. As the
LFB example in §3.1, not all encoded secrets are exploitable.
Therefore, DejaVuzz further analyzes taint liveness to deter-
mine whether the tainted sinks can be exploited.

Taint Liveness Annotation. Inspired by selective data pro-
tection [1, 32, 52], DejaVuzz uses annotations to bind taint
registers to their corresponding state registers. Developers
can annotate the registers with the liveness_mask custom
attribute [6, 40] to declare their state registers. Taking LFB as
an example, the mshr_valid_vec signal comes from the state
register in MSHR, and the 1b register is the data buffer in
LFB. Line 4 shows the annotation. During diffIFT instrumen-
tation, DejaVuzz automatically connects the liveness signal
mshr_valid_vec to the taint register of 1b.

wire mshrs_0_valid, mshrs_1_valid;
wire [15:0] mshr_valid_vec =
{8{mshrs_1_valid}, 8{mshrs_0_valid}};
(* liveness_mask = "mshr_valid_vec" %)
reg [63:0] 1b [15:0];

BoomMSHR mshrs_@ (.io_mshr_valid(mshrs_0_valid));
BoomMSHR mshrs_1 (.io_mshr_valid(mshrs_1_valid));
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However, since the implementation of the state registers
is coupled with the microarchitecture, developers may be
unable to reference them directly. To accommodate various
implementation, we design the liveness signal interface as a
generic vector, with each bit representing whether the corre-
sponding slot in the taint register array is valid. For example,
the lower 8 entries of 1b are managed by mshrs_o, while the
upper 8 entries are managed by mshrs_1. We can construct
the liveness signal as shown in lines 2-3. DejaVuzz currently
requires developers to manually convert state registers into
liveness signal vectors. Table 2 shows the manual effort re-
quired for annotation and patching. By default, DejaVuzz
treats all register arrays (including those registers generated
by Chisel Vec constructor) as potential sinks, and developers
can customize sinks as needed. Finally, DejaVuzz identifies
the target sinks from the filtered taint log and reports those
with valid liveness signals as potential vulnerabilities.

5 Implementation

The implementation consists of 1) a testharness generator
responsible for instrumenting RTL source code and integrat-
ing swapMem and two DUT instances into a testbench, and
2) the fuzzing pipeline illustrated in Figure 5.

Testharness Generator. We implement the swapMem atop
the Starship SoC generator [38], with ~300 LoC Python for
swapMem RTL model generation and ~500 LoC DPI-C for
swapMem runtime. The diffIFT instrumentation adds new
passes in the Yosys synthesizer to insert taint cells for taint
propagation, involving ~1KLoC C++. The taint cell library of
diffIFT is implemented in Verilog, which also uses ~1KLoC.
Fuzzing Pipeline. The fuzzing pipeline consists of ~6500
LoC Python and ~180 LoC RISC-V assembly code, which
includes stimulus generation and fuzzing management. De-
jaVuzz uses seeds to generate stimuli, which contain con-
figurations for trigger instructions and transient windows,
as well as entropy for the random instruction generator.
The generator supports the RV64GC instruction set and cov-
ers common transient window types. The fuzzing manager
employs a multi-threaded design, allowing multiple RTL
simulation instances to run in parallel.

6 Evaluation
We evaluate DejaVuzz by answering the following questions:

e RQ 1. How effective and efficient is DejaVuzz in triggering
diverse transient windows? (§6.2)

e RQ 2. How well does DejaVuzz trace sensitive data, im-
prove coverage, and identify leakages? (§6.3)

e RQ 3. Can DejaVuzz uncover previously unknown tran-
sient execution bugs in real-world processors? (§6.4)

6.1 Experimental Setup

All experiments are conducted on a machine with dual AMD
EPYC 9334 processors featuring 64 cores and 512GB of RAM.
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Table 2. Summary of the cores used for evaluation.

Feature BOOM XiangShan
Configuration SmallBOOM MinimalConfig
ISA RV64GC RV64GC
Issue Width 1 2
Commit Width 1 2
Verilog LoC 171K 893K

IFT Netlist LoC 1130K 8979K
Annotation LoC 212 592

We use the industry-standard RTL simulator Synopsys VCS
for RTL simulation. Limited by the number of licenses, we
only used a maximum of 16 threads in the experiments.

We evaluate DejaVuzz on BOOM [57] and XiangShan [54],
two well-known out-of-order processors that are actively
maintained in the RISC-V community. BOOM is the third gen-
eration of the Berkeley out-of-order machine and is widely
evaluated in related academic work [9, 11, 12, 18, 37, 39].
XiangShan is currently the most high-performance open-
source RISC-V core and thus has a more complex architecture.
Their configurations are summarized in Table 2.

Since INTROSPECTRE and TEESEC only focus on Meltdown-
type vulnerabilities and their released artifacts do not include
a complete fuzzing framework, we only compare DejaVuzz
with SPEcDocTOR. Due to the complex manual patching of
the DUT required by SpEcDocTOR, we only compare the
BOOM supported by both.

6.2 Microarchitectural Controllability Evaluation

We collect 2,500 transient windows separately and summa-
rize their types and training overhead in Table 3. The Train-
ing Overhead (TO) refers to the number of training instruc-
tions generated to trigger transient windows. Since DejaVuzz
uses nop instructions to align training instructions with trig-
ger instructions, we also compute the Effective Training
Overhead (ETO) by excluding the padding nop instructions.
For misprediction-type transient windows, since predictors
have default prediction states, we exclude transient windows
that require no training to trigger.

The results show that SPEcCDocTOR can only cover 4 types
of transient windows on BOOM and requires about 125 in-
structions for training. Instead, DejaVuzz can trigger all
types of transient windows with minimal overhead. No-
tably, the training reduction strategy successfully identi-
fies the necessary training packets for triggering the tran-
sient window. Therefore, DejaVuzz can trigger exception-
type transient windows with zero overhead and use a few
training instructions (excluding nop instructions) to trigger
misprediction-type windows. To show the effectiveness of
the training derivation strategy, we introduce the DejaVuzz*
variant. DejaVuzz” still uses swapMem, but its training pack-
ets consist of random instructions instead of deriving from
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Table 3. Training overhead for different types of transient windows.

Load/Store | Load/Store | Load/Store Tllegal Memory Branch Indirect Jump | Return Address
Processor Fuzzer Access Fault | Page Fault | Misalign | Instruction | Disambiguation | Misprediction | Misprediction | Misprediction
TO (ETO) | TO (ETO) | TO (ETO) | TO (ETO) TO (ETO) TO (ETO) TO (ETO) TO (ETO)
DejaVuzz 0.0 (0.0) 0.0(0.0) | 0.0(0.0) x 0.0 (0.0) 36.4 (3.8) 85.7 (2.8) 85.6 (2.7)
BOOM DejaVuzz* 1.3 0.1 1.6 x 0.2 102.2 169.5 89.5
SpECDOCTOR X 126.6 X x 113.5 125.5 122.5 x
i DejaVuzz 0.1 (0.0) 0.0(0.0) | 0.0(0.0) 0.0 (0.0) 0.0 (0.0) 83.9 (2.8) 90.1 (2.9) 88.7 (2.9)
XiangShan b o Vg 0.0 0.0 0.0 0.0 0.4 101.0 x 97.0
X indicates that the corresponding type of transient window failed to trigger.
Table 4. Overhead of differential information flow tracking. £ 60 - r/ £ 60 -
@ 401 @ 40
- BOOM XiangShan £ 20+ . 5 20 %- . N
Time(s) [ Base CeuIFT GiffiFT | Base CruuIFT  difflFT N . diffIFT | &7 Jg | ] diffIeT
Compile 122 2856 268 638 1781 0.6k 0.8k 1.0k 1.2k 0.6k 0.8k 1.0k 1.2k
= Spectre-V1 2.0 152.2 4.8 4.0 17.5 Cycle Cycle
£ Spectre-V2 | 2.1 152.4 5.7 4.5 Timeout 19.8 c 400k T Spectrev1
< -
=  Meltdown 2.1 152.6 5.6 4.7  after 8h 19.9 2 Spectre-V2
.(% Spectre-V4 2.0 152.2 4.9 4.3 17.9 + 200k 1 —— Meltdown
- ‘S —— Spectre-V4
Spectre-RSB | 2.0 152.0 4.8 43 17.9 © o '.— CelllIFT Spectre-RSB
0.6k 0.8k 1.0k 1.2k
Cycle

transient execution information. Due to the training reduc-
tion strategy, both DejaVuzz* and DejaVuzz have zero train-
ing overhead for exception-type transient windows. How-
ever, since random training fails to align trigger instruc-
tions and match transient execution flows, DejaVuzz* can-
not trigger indirect jump misprediction on XiangShan. For
the other misprediction-type transient window, DejaVuzz*
incurs higher training overhead due to the lack of targeted
training. These results demonstrate that DejaVuzz can effec-
tively and efficiently trigger more diverse transient windows.

6.3 Microarchitectural Observability Evaluation

Micro-benchmark. We first evaluate the overhead of diffIFT
instrumentation at compile and runtime, using the state-of-
the-art information flow tracking technique CELLIFT as a
reference. The compilation duration includes Chisel elabora-
tion, Yosys instrumentation, and VCS synthesis. For runtime
overhead, we manually implement a benchmark covering
common transient execution vulnerability test cases and
record simulation times. Table 4 shows the results, indicating
that the overhead of diffIFT is acceptable compared to CEL-
LIFT. Since CELLIFT instruments at the cell level, it requires
flattening all memory, resulting in a significantly increased
compilation time. In contrast, diffIFT instruments at the RTL
IR level, achieving faster instrumentation. Figure 6 further
shows the changes in the taint sum over cycles when ex-
ecuting the benchmark on BOOM. The result proves that
CELLIFT does suffer from taint explosion. Once all registers
are tainted, CELLIFT loses the ability to track secrets, and
the simulation speed is severely degraded. By eliminating
control taints caused by identical control signals, diffIFT ef-
fectively mitigates control flow over-tainting. Even with two
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Figure 6. Taints during executing each test case. The dotted
vertical line represents the start of the transient execution.

DUTs instantiated in the testbench, the runtime overhead of
DejaVuzz is still acceptable.

And to understand the impact of false negatives, we also
introduce the diffIFT™N variant in Figure 6. In the diffIFT™N
variant, the two DUT instances in the testbench use the same
secret to ensure all control signals are identical, representing
the worst-case scenario of false negatives. After the transient
window is triggered, the taint gradually increases as the
secret is loaded into registers. However, since all control
signals are the same, diffIFT™N fails to propagate control
taints during the process of encoding sensitive data, causing
the taints to stop increasing. Finally, the remaining taints are
data taints carried by residual secrets in multiple caches and
buffers. Therefore, when false negatives occur, data taints
still propagate accurately, but control taints are suppressed
due to identical control signals.

Coverage Evaluation. Next, we evaluate the efficiency of
microarchitecture exploration. Figure 7 illustrates the growth
trend of taint coverage on BOOM. Each experiment is re-
peated 5 times, and the shaded area represents the 95% con-
fidence interval. To avoid the impact of simulation perfor-
mance differences between different RTL simulators, we re-
play the phase 3 test cases generated by SPECDOCTOR in
our environment to obtain comparable results and use the
number of iterations as the x-axis. The y-axis represents
the number of taint coverage points defined in §4.2.2. Due
to the lack of feedback on the sensitive data propagation
process, SPECDOCTOR only performs random mutations on
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Figure 7. Taint coverage for 5 trials over 20,000 iterations.

test cases that can produce different state hashes, limiting its
ability to effectively guide fuzzing. With the help of taints,
DejaVuzz can guide mutation more effectively, ultimately
exploring 4.7X more coverage than SPECDOCTOR. Moreover,
DejaVuzz achieves the same saturation coverage as SPEcDoc-
TOR in just 118 iterations. DejaVuzz™~ is used to demonstrate
the effectiveness of using diffIFT as coverage. Instead of
using taint coverage, it randomly updates the secret encod-
ing block or regenerates a new transient window for each
round. The result shows that DejaVuzz achieves a 22% cov-
erage improvement over DejaVuzz™~ and achieves the same
coverage in 7,200 iterations that DejaVuzz™~ requires 20,000
iterations to reach. The coverage difference between them
demonstrates that using taints as coverage enables more
efficient microarchitecture exploration.

Liveness Evaluation. We also found an interesting phe-
nomenon that SpEcDocToRr did not report any vulnerabilities
during the coverage evaluation. According to SPECDOCTOR’s
design, its phase 3 identified a total of 75 test cases that could
encode sensitive data into the timing components and gen-
erate different state hashes. And in its phase 4, SPECDOCTOR
attempts to generate random instructions to decode secrets
from those timing components. Unfortunately, SPECDocTOR
spent nearly a week executing 100,000 iterations without
finding any vulnerabilities. We use taint liveness annotations
to analyze all 75 test cases, and find that only 17 of them are
real leakages, while the rest are false positives. Most false
positives are caused by secrets that fail to be encoded into
the microarchitecture but still remain in the data cache. An
exception is an invalid test case that executes the transient
window during the training. Limited by poor microarchitec-
tural observability, SPECDOCTOR spends a significant amount
of time futilely generating random instructions to decode
unexploitable false positives. To further validate the effec-
tiveness of taint liveness annotations, we re-execute the test
cases using a DejaVuzz variant without taint liveness anno-
tations. Only 21 test cases are correctly identified, while the
remaining 54 cases are misclassified due to residual invalid
taints in physical registers or RoB. This highlights the effec-
tiveness of taint liveness annotations. With the help of the
liveness signals, DejaVuzz can identify exploitable leakages
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Table 5. Summary of discovered transient execution bugs.

—
Processor Attack Transient Window! Encoded Timing
Type Component
mem-excp i/dcache, (12)tlb, Isu
Meltdown mispred, i/dcache, (12)tlb
mem-disamb
BOOM i/dcache, (fau)btb,
mem-excp ) lsu. f
Spectre ras, loop, Isu, fpu
P mispred, i/dcache, ras,
mem-disamb loop, Isu, fpu
mem-exp,
Meltdown  mispred, illegal, i/dcache
XiangShan mem-disamb
mem-excp, .
Spect . 4. illegal i/dcache,
pectre mispred, illegal, Isu, fpu

mem-disamb

! mem-excp: load/store misalign, load/store access/page fault ex-
ceptions; mispredict: control-flow misprediction; illegal: illegal
instruction exception; mem-disamb: memory disambiguation.

2 1su: load unit contention; fpu: floating-point unit contention;
faubtb: first level branch target buffer; ras: return address stack;
loop: loop branch predictor.

without resorting to inefficient and nondeterministic random
decode instruction generation.

6.4 Bugs Found in Real-World Processors

Note that the coverage is only used to evaluate exploration,
higher coverage does not guarantee more bugs. Therefore,
we also compare the bugs found during the evaluation. Ta-
ble 5 categorizes all transient execution vulnerabilities dis-
covered by DejaVuzz based on the attack type, transient
window type, and exploited timing component. In compar-
ison, SPECDOCTOR can only encode sensitive data into the
dcache or trigger 1su port contention. Regarding first bug
detection time, SPECDOCTOR takes several days, whereas De-
jaVuzz detects the first bug in an average of about 10 minutes
with 16 threads. Similar to existing work [9, 12, 39], DejaVuzz
can cover all trigger variations of known transient execution
vulnerabilities. For example, using an unaligned memory
access instead of a page fault to trigger the transient window
in Meltdown. Additionally, DejaVuzz discovers 5 previously
undiscovered transient execution vulnerabilities.

B1. MeltDown-Sampling (CVE-2024-44594) is a hybrid
vulnerability of Meltdown and MDS on XiangShan, allow-
ing attackers to sample controllable targets using illegal ad-
dresses within a transient window. DejaVuzz generates il-
legal addresses (e.g., 9x8000. . . 80004000) through the secret
access blocks with masks. Due to inconsistent wire widths,
when the illegal address is sent to the load unit from the
pipeline, the high-bit mask is implicitly truncated. Thus, at-
tackers can sample the secret located at 0x80004000.

B2. Phantom-RSB (CVE-2024-44591) is a vulnerability
on BOOM that allows transiently executed instructions to
update RSB. As shown in the code below, an attacker can
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corrupt the RSB based on sensitive data. Although BOOM im-
plements a mitigation that restores the Top-Of-Stack (TOS)
pointer and the return address in the top entry after mispre-
dictions (line 11), DejaVuzz discovers that BOOM does not
restore entries below the TOS pointer (line 10). After the RSB
is corrupted, the attacker can leak the secret by measuring
the execution time of the ret instruction.

beq a0, a0, foo #
la to, secret #
1d so, o(to)

Predicting the branch untaken, now TOS—X
Loading secret

andi s@, s@, o0x1 # If secret=1, ra=addr of line6, a validd
sub s@, x0, s@ # addr; else ra=0, an illegal addr

auipc ra, 0 # Following code requires ra has a validy
and ra, ra, s@ # addr, illegal addr will be blocked

jalr x@, 12(ra) # Return to next, TOS—X-1

jalr x@, 16(ra) # Return to next, TOS—X-2

jalr ra, 20(ra) # Call to next, overwrite X-1

jalr ra, 24(ra) # Call to next, overwrite X

B3. Phantom-BTB (CVE-2024-44590) is a vulnerability
similar to Boombard [18], where BOOM updates the BTB
for exceptions under certain conditions. The following code
illustrates the details. Due to a race condition bug in BOOM,
when an indirect jump misprediction coincides with an ex-
ception commit, BOOM misinterprets the exception as an
indirect jump and uses the prediction correction for the mis-
predicted indirect jump (line 12) to update the BTB entry
(line 1) of the instruction that triggered the exception.

1w to, 1(x0) #

la t@, secret #

1d s0, o(to)

andi s@, s0, ox1 #

sub s0@, x0, so #
#
#

Triggering a misalign exception
Loading secret

If secret=1, ra=addr of line6, a validy
addr; else ra=0, an illegal addr
Following code requires ra has a validy
addr, illegal addr will be blocked

auipc ra, @
and ra, ra, s@
jalr x@, 12(ra)

nop # Padding nop to make the finaly
# ... # misprediction commit with they
nop # exception in the same cycle
jalr x@, 12(ra) # Misprediction

B4. Spectre-Refetch (CVE-2024-44592, CVE-2024-44593)
is a variant of Spectre-Rewind [10] discovered on both BOOM
and XiangShan. DejaVuzz found that the instruction fetch
unit can also be a resource to cause port contention. Specifi-
cally, placing the secret dependent branch at an address that
triggers an instruction cache miss causes the processor to
preempt the fetch unit during transient execution. This al-
lows attackers to infer the secret by measuring the execution
time of the first instruction after the transient window:.

B5. Spectre-Reload (CVE-2024-44595) is another variant
of Spectre-Rewind on XiangShan. DejaVuzz found that load
queue entries contend for the load write-back port of the
memory access unit due to prioritization. By replacing the
floating-point division instructions in the secret dependent
branch with cache-missing load instructions, attackers can
detect increased latency in cache-missing loads before the
transient window.
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All of the above vulnerabilities can be exploited to leak
sensitive data. B1 can directly leak secrets across privilege
boundaries, while B2-B5 require access permission for sensi-
tive data to trigger. We disclosed identified bugs by sending
bug reports to the respective communities following the se-
curity policies listed for the associated project. According to
the maintainers, all vulnerabilities in XiangShan have been
fixed, while bugs in BOOM will be retained for future re-
search. Therefore, we recommend against using the BOOM
processor in security-critical environments.

7 Discussion and Limitation

Precision Trade-off. Implementing precise IFT is inevitably
expensive since it is an NP-complete problem [17]. Although
diffIFT can mitigate false positives caused by control flow
over-tainting, it also introduces false negatives due to the
inability to exhaustively compare all secrets. In practice, De-
jaVuzz, as a dynamic verification solution, can mitigate false
negatives by repeatedly attempting different secret pairs.
Training Preference. Some predictors may require longer
training patterns. For instance, in the case of branch mis-
predictions triggered by branch instructions, training a loop
predictor to trigger requires a much longer training instruc-
tion sequence compared to training a local branch history
table to trigger. Therefore, due to the training reduction
strategy, DejaVuzz prefers to choose the least costly training
instruction sequence.

Stimulus Migration. The stimuli generated by DejaVuzz
only work on swapMem. Fortunately, developers usually
only need simulation waveform files to pinpoint bugs. If the
stimuli must be migrated to a standard memory model (e.g.,
for writing general-purpose exploitations), careful manual
packet stitching is required.

Manual Annotation. Since the state registers are coupled
to the implementation, they and their bound taints may
reside in different pipeline stages or even across modules.
Limited by the loss of semantic information during the design
synthesis to RTL, DejaVuzz currently relies on manual taint
liveness annotations. We leave the automatic taint liveness
annotation (such as using type-safe hardware description
languages or large language models) for future work.

8 Related Work

Processor Fuzzing. Encouraged by the promising results of
processor fuzzing on functional bugs [19, 20, 36, 53], several
approaches have applied processor fuzzing to transient exe-
cution vulnerabilities. INTROSPECTRE [12] and TEESEC [11]
use manually crafted gadgets to generate Meltdown-type
vulnerabilities and detect leakages by analyzing processor
runtime logs. SPECDoOCTOR [18] generates stimuli for tran-
sient execution attacks in multiple phases and determines
bugs by observing the final execution time. However, these
approaches have the following main limitations. First, they
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linearly generate transient windows or randomly combine
instructions for training, resulting in limited diversity and
efficiency in triggering transient windows. Second, they can
only analyze shallow information from the microarchitec-
ture, making it impossible to provide feedback on the prop-
agation of sensitive data or identify exploitable leakages.
To solve these limitations, DejaVuzz uses swapMem to gen-
erate and optimize training instructions to trigger diverse
transient windows efficiently, and employs differential in-
formation flow tracking to trace sensitive data to provide
coverage feedback and detect exploitable leakages.
Black-box Microarchitecture Fuzzing. Commercial pro-
cessors lack interfaces for obtaining fine-grained internal
state information, leading to limited fuzzing exploration
space. Most of the existing black-box fuzzers, such as Speech-
Miner [51] and Transynther [27], rely on domain knowledge
and can only detect vulnerability variants within a limited
template scope. Revizor [28, 29] introduces the model-based
relational testing approach that generates random instruc-
tions to trigger contract violations. However, due to the
limited microarchitectural controllability, they cannot even
cover some known vulnerabilities that require simple train-
ing. Integrating swapMem (e.g., through DMA) can provide
better control over the microarchitecture, facilitating deeper
testing of black-box processors.

Formal Verification. By rigorously defining speculative
contracts [13], ideally, formal verification can catch all tran-
sient execution bugs or prove security. However, in practice,
today’s formal verification tools usually suffer from limited
scalability and cannot be directly applied to complex out-
of-order processors. To bypass this limitation, optimized
verification schemes [9, 39, 43, 47] verify abstract models of
out-of-order processors. However, the effectiveness of such
formal checks depends on the precision of the models (e.g.,
both B2-B4 escape previous formal analyses on BOOM). De-
jaVuzz can be used as a complement to formal verification to
verify implementation details that are ignored by the models.

9 Conclusion

In this paper, we presented DejaVuzz, a novel pre-silicon
processor fuzzer designed to detect transient execution vul-
nerabilities effectively and efficiently. DejaVuzz introduces
two innovative operating primitives to enhance microarchi-
tectural controllability and observability. By leveraging dy-
namic swappable memory and differential information flow
tracking, DejaVuzz efficiently triggers diverse transient win-
dows, effectively guides mutation, and identifies exploitable
leakages. We evaluated DejaVuzz on two well-known RISC-V
out-of-order processors and achieved up to 4.7X improve-
ment in coverage compared to the state-of-the-art fuzzer
SpEcDocTOR. Moreover, DejaVuzz identified 5 new transient
execution vulnerabilities (with 6 CVEs assigned), showing
its effectiveness in detecting previously unknown bugs.
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A Artifact Appendix
A.1 Abstract

DejaVuzz is a novel pre-silicon stage processor transient
execution bug fuzzer. This artifact contains the full imple-
mentation of the DejaVuzz, as well as the datasets and scripts
to reproduce the evaluation results (i.e., Table 3, Table 4, Fig-
ure 6, Figure 7, and Table 5) in the paper.

A.2 Artifact check-list (meta-information)

e Compilation: RISC-V GNU toolchains 12.2.0.

e Data set: SPECDOCTOR testcase replay dataset, RISC-V tran-

sient execution bug dataset.

Run-time environment: Synopsys VCS Simulator 2023.12.

Hardware: Machine with >= 16 cores and >= 128 GB RAM.

Output: Terminal outputs and figures.

Experiments: Training overhead (Table 3), instrumentation

overhead (Table 4), taint comparison (Figure 6), coverage

comparison (Figure 7), and bug reproduction (Table 5).

e How much disk space required?: ~3 TB.

e How much time is needed to prepare workflow?: ~1
hour.

e How much time is needed to complete experiments?:

~1 week.

Publicly available?: https://github.com/sycuricon/DejaVuzz.

Code/Data licenses?: MIT License.

Workflow automation framework used?: phantom-make.

Archived?: https://zenodo.org/records/15861610.

A.3 Description
A.3.1 How to access. The artifact is available on GitHub.

A.3.2 Software dependencies. RISC-V toolchain 12.2.0
and VCS simulator 2023.12 are required to run the experi-
ments. The toolchain can be obtained from GitHub, while
VCS requires a commercial license purchased from Synopsys.

A.3.3 Data sets. Since evaluating SPECDOCTOR is beyond
the scope of this artifact, we provide pre-generated SPEcDoc-
TOR test cases for replaying. In addition, the artifact includes
a bug dataset containing all discovered transient execution
vulnerabilities. The datasets and the source code of other
dependent components can be downloaded from Zenodo.

A.4 Installation

Please complete the setup according to the Requirements sec-
tion in the README . md file located in the root directory. Make
sure the setup is fully completed before running any experi-
ment. Otherwise, the experiments may attempt to recompile
dependencies, which can lead to unexpected behavior.


https://doi.org/10.1109/MICRO56248.2022.00080
https://github.com/sycuricon/DejaVuzz
https://pypi.org/project/phantom-make/
https://zenodo.org/records/15861610
https://github.com/sycuricon/DejaVuzz
https://github.com/riscv-collab/riscv-gnu-toolchain/releases/tag/2023.01.03
https://www.synopsys.com/verification/simulation/vcs.html
https://zenodo.org/records/15861610/files/dep.zip
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A.5 Experiment workflow

This artifact includes experiments to reproduce Table 3, Ta-
ble 4, Figure 6, Figure 7, and Table 5. Each experiment is orga-
nized into a dedicated subdirectory under the exp/ directory.
To run an experiment, users should go to the correspond-
ing subdirectory and follow the instructions provided in its
README . md file. In most cases, users simply need to execute
the provided scripts in order and wait for the results.

A.6 Evaluation and expected results

Training Overhead (Table 3). The scripts to reproduce
Table 3 are located in exp/table3. Users should enter this
directory and execute the scripts within it. The results will be
printed on the terminal. The expected result is that DejaVuzz
can trigger more kinds of transient execution windows with
lower Training Overhead (TO) compared to SPECDOCTOR.
For DejaVuzz and DejaVuzz®, their results are similar for
exception-type transient execution windows. However, De-
jaVuzz shows lower TO for misprediction-type windows,
especially in terms of Effective Training Overhead (ETO).
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Instrumentation Overhead (Table 4) and Taint Com-
parison (Figure 6). The scripts to reproduce Table 4 and
Figure 6 are located in exp/table4_figure6. Users should
enter this directory and execute the scripts within it. The
results will be saved in several log files and a figure. The
expected outcome is that diffI[FT exhibits lower compilation
and simulation overhead compared to CELLIFT. In the taint
comparison figure, CELLIFT suffers from taint explosion, dif-
fIFT demonstrates better control and avoids taint explosion,
and difflFT™ misses some taints due to false negatives.
Coverage Comparison (Figure 7). The scripts to reproduce
Figure 7 are located in exp/figure7. Users should enter this
directory and execute the scripts within it. The results will
be saved in a figure. The expected result is that DejaVuzz
achieves ~4.7x higher coverage than SPECDOCTOR, and about
~22% higher coverage than DejaVuzz™.

Bug Reproduction (Table 5). The scripts to reproduce Ta-
ble 5 are located in exp/table5. Users should enter this di-
rectory and execute the scripts within it. The results will be
saved in log files. For expected results, please refer to the
detailed execution log analysis in the README. md file within
the same directory.
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