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ABSTRACT
Hardware memory domain primitives, such as Intel MPK and ARM
Memory Domain, have been used for efficient in-process memory
isolation. However, they can only provide a limited number of mem-
ory domains (16 domains), which cannot satisfy the compelling
need for more isolated domains inside the address space of a pro-
cess. Existing solutions to virtualize memory domains are either
intrusive (need the modification to existing hardware), or incur a
large performance overhead.

In this paper, we propose VDom, a fast and scalable memory
domain virtualization system that supports unlimited memory do-
mains. VDom leverages separate address spaces to provide an un-
limited number of virtual domains, and optimizes related memory
management operations. To map virtual domains to hardware do-
mains, we design a domain virtualization algorithm, whichmanages
address spaces and domain maps for threads to efficiently access
other domains that are unmapped in the current address space.
According to our evaluation on real Intel and ARM platforms, on
real-world server applications (httpd and MySQL), VDom incurs
less than 2.65% performance overhead, which is lower than the
overheads of the state-of-the-art software approaches (libmpk and
EPK). In random domain access tests, VDom is comparable to EPK
and has significantly higher efficiency than libmpk.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Systems security.
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1 INTRODUCTION
Applications tend to run many mutual distrust compartments in
the same address space, leading to the compromise of the whole
application if one compartment is compromised. Accordingly, in-
process memory isolation with efficient domain switch [13, 26, 33,
42, 43, 55, 67, 68] has been proposed to mitigate the issue.

Among a variety of in-process isolation software and hardware
primitives, memory domain offers user applications a domain-based
and per-thread view of memory pages, e.g., one thread can only ac-
cess a limited number of memory pages inside the process’s address
space. With the prevalence of two representative hardware memory
domain primitives, i.e., Intel Memory Protection Key (MPK) [4] and
ARMMemory Domain [1] (for 32-bit programs only), there has been
a long stream of research on leveraging domains for software com-
partmentalization [30, 37, 56, 57, 75], data vaults [19, 32, 36, 52, 59],
JIT code protection [48, 53], and data race detection [12].

Though the hardware memory domain primitives can provide
efficient in-process isolation, they can only support a limited num-
ber of memory domains. For instance, both MPK and ARMMemory
Domain only support 16 domains. Additionally, some OS kernels
reserve domains for special memory regions such as kernel and
IO, leaving even fewer domains for user-space applications. At the
same time, user applications are requiring more isolated memory
domains inside the address space (§3.1), either because more third-
party libraries can coexist in a process or parallel server applications
need a larger number of simultaneously accessible domains to pro-
tect sensitive data, such as cryptographic keys, user credentials,
and critical data spilled on stacks. Besides, the prevalence of data
plane libraries and in-memory databases that directly operate on
devices and persistent memory objects (PMO) in user space requires
scalable privilege separation as well.

To circumvent the above issue, researchers have recently pro-
posed memory domain virtualization systems that are roughly
falling into the following three categories: hardware approaches [22,
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72], hypervisor-based approaches [29, 50], and disabled-page-table-
entry-based approaches [17, 48, 57]. Hardware-based approaches
modify processor designs to support up to 1024 domains per process.
Though they are usually the most efficient solution, the intrusive
hardware modification hinders their wider adoption. Hypervisor-
based approaches (e.g., EPK [29]) combine Intel VMFUNC [5] fea-
ture with MPK. They use VMFUNC instead of MPK when more
domains are required, or utilize every 16 protection keys in each ex-
tended page table (EPT). Though VMFUNC allows virtual machine
(VM) guests to directly switch between up to 512 EPTs without
trapping, it still takes more cycles than MPK. Worse still, each VM-
FUNC switch slows down as the total number of EPTs increases.
Besides, due to nested paging, IO virtualization, and software com-
plexity, running applications in VMs incurs extra overhead [25, 60].
Disabled-page-table-entry-based approaches keep a per-process
virtual to physical domain map, or allocate each processor core a
unique domain. When more domains are required, they evict an old
domain, disable page table entries (PTE) or page middle directories
(PMD) of the evicted memory, and flush the TLB entries. This (e.g.,
libmpk [48]) can incur more than 70% overhead in server applica-
tions due to waiting for free domains and excessive process-level
TLB flushes (§3.2).

Therefore, how to provide a fast and scalable memory domain
virtualization approach is still an ongoing research effort. With such
an approach, we can provide a large number of domains with low
performance overhead so that real-world applications can enforce
finer-grained in-process isolation. In other words, we want to solve
the following research question: How to efficiently virtualize the
hardware memory domain primitives for an unlimited number of
isolation domains?

In this paper, we propose VDom, a fast and unlimited memory
domain virtualization solution. We first analyze (§3) the demand for
more domains and locate the two root causes of the performance
overhead of the slow disable-page-table-entry-based approach, i.e.,
busy waiting for free domains and excessive TLB flushes. To avoid
such overhead, VDom is designed (§5) to use separate address spaces
and the domain virtualization algorithm for better performance on
scalable isolation. Specifically, each address space offers additional
hardware domains and is tagged by an address space identifier
(ASID). The virtualization algorithm automatically groups threads
in distinct address spaces and reduces unnecessary TLB flushes.
Thus, VDom securely and efficiently isolates software components
in monolithic applications that access many mutually distrusted
objects.

We implemented a prototype of VDom on both Intel and ARM
architectures, and evaluate its compatibility, security, and efficiency.
The evaluation (§7) indicates that VDom efficiently offers scalable
virtual memory domains. It incurs a minimal overhead (less than
2.65%) on server applications, and has significantly higher efficiency
than libmpk on random domain access tests. Moreover, the eval-
uation shows VDom’s compatibility with existing OS kernels and
memory domain sandboxes.

In summary, this paper makes the following main contributions.

• New findings. We find that a large number of domains
are needed in real-world applications, and the challenges
to provide fast domain virtualization are how to reduce the

overhead caused by waiting for free domains and excessive
TLB flushes.

• Fast domain virtualization with unlimited domains.
We leverage separate address spaces to map different groups
of virtual domains to the hardware domains in each page
table. We propose a domain virtualization algorithm that
switches page global directory, and puts a thread in a private
address space before domain evictions to reduce unnecessary
TLB invalidation.

• Real platform evaluation. We implement a prototype for
X86 and ARM based on Linux, and evaluate VDom on real
platforms. The results show VDom is fast, compatible, and
secure when providing unlimited domains. On server ap-
plications, the overheads are less than 2.18% and 2.65% on
X86 and ARM, respectively. On random domain access tests,
VDom is as efficient as EPK and much faster than libmpk.

2 BACKGROUND
Memory Domain Primitive. Memory domain is an extension
to page-based memory permission. It provides the domain-based
thread-local view on different page groups in the same address
space. PTEs in different page table levels and TLB entries are tagged
with the domain identifier of the pages, while the access permissions
to pages of different domains are stored in a per-core (hardware
thread) register. During memory access, the processor gets the do-
main identifier of the virtual address, checks the access permission
to that address in the register, and raises an exception if any viola-
tion is detected. Intel, ARM, and IBM Power memory domains vary
in granularity (4KB on Intel and Power, 2MB on ARM), scalability
(16 domains on Intel and ARM, 32 domains on Power), types of
access permissions, and privilege (user-space on Intel, kernel on
ARM and Power) to write permission registers.
Address Space Identifier. In mainstream operating systems, each
process has a whole virtual address space. When a core switches
from one process to another, its TLB entries should be invalidated
to avoid the stale address translation of the prior process. This leads
to frequent TLB flushes. To avoid such overhead, address space
identifier (ASID), also called process context identifier (PCID) for
X86, is added to TLB entries and compared with the identifier in
the page table base register when the processor looks up TLB for
address translation. Currently, Linux kernel supports the address
space identifier feature for X86 and ARM.

3 MOTIVATION
3.1 Apps Need More Isolation Domains
After studying previous usage scenarios of the memory domain
and other heavier isolation primitives, we are motivated by the
compelling need for fast and scalable memory isolation.
Libraries. Applications depend on many libraries that include
vulnerable code and in-library secrets. Prior work [76] shows an
average npm package implicitly depends on around 80 other pack-
ages. Many compartmentalization papers [34, 45, 61, 62] selectively
isolate the libraries to keep the security-performance balance. We
studied the number of libraries in different types of programs. To
list a few, vscode, synaptic, team-viewer (desktop) use 78, 82, 61
libraries; ghost, strider, libvirtd (server) use 131, 76, 76 libraries;
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Figure 1: Overhead breakdown of libmpk on httpd that iso-
lates each OpenSSL key with a unique memory domain.

curl, network-manager (utility) use 43, 58 libraries. These depended
libraries may be vulnerable. Among 81 libraries used by chrome,
vulnerabilities, such as CVE-2021-33560 in libgcrypt and CVE-2021-
43527 in libnss, are found in more than 16 libraries. Also, the least
privilege principle requires libraries to protect each secret (e.g.,
keys) with a private domain. Thus, even if the code is exploited in
one domain, unrelated secrets are still inaccessible. Applications
may generate many unrelated secrets in these libraries. For exam-
ple, in servers using OpenSSL, more than 8,000 keys are allocated
to respond to 4,000 requests.
Threads. Inter-thread privilege separation protects the private
stacks and per-thread sensitive data, enhancing stability [58] and
security. Prior work leverages memory domains to protect the
stacks [32] and per-thread credentials [57]. To boost the throughput,
many servers, such as Apache and MySQL, utilize thread pools
containing tens or hundreds of threads and run them in parallel.
Persistent memory. Persistent memory objects (PMO) are fre-
quently used as non-volatile files to store private user data and
Linux supports up to 1024 file descriptors in a process. Memory
corruption on PMOs is long-lived across processes and causes more
severe damage than corruption on DRAM. In prior work, each un-
related PMO owns a private domain for fine-grained access control
[72], requiring scalable isolation.

3.2 Slow Memory Domain Virtualization
Among the prior domain virtualization approaches, the disabled-
page-table-entry-based approach does not involve hardware modi-
fication or additional VM overhead. However, current work of this
approach has a massive performance drop, losing the efficiency of
the hardware memory domain primitives. To observe the causes of
the high overhead, we take libmpk [48] as an instance. When more
than 16 domains are required, it evicts the free virtual domain for
the incoming one. During the eviction, libmpk disables the pages
of the evicted domain by mprotect with PROT_NONE. If all mapped
domains are used by other threads, libmpk has to wait for them
to release a domain. We analyze a libmpk’s evaluation case with
higher concurrency. We protect each private key in OpenSSL in
a separate 4KB domain and run httpd with 25 server threads to
transfer 16KB data. Figure 1 shows the overhead breakdown. Busy
waiting and TLB shootdowns across all cores running httpd make
up most of the slowdown as concurrency scales up.

4 THREAT MODEL
VDom is a kernel-user co-design that provides scalable user-space
isolation domains. Therefore, the kernel and VDom APIs are as-
sumed to be trusted. Also, we assume that the underlying hardware
is correctly manufactured. The loading and initialization of user-
space programs are also inherently trusted in VDom.

Untrusted components in user-space programs may attempt to
arbitrarily read or write memory. VDom guarantees that unautho-
rized read and write on protected memory pages never succeed.
Specifically, if a thread has not claimed its permission on a virtual
domain, any attempt to access pages assigned with that domain
fails. Address space integrity is enforced. Thus, malicious syscall in-
vocations that modify PTE domain bits are intercepted. Also, VDom
shows compatibility with memory domain sandboxes [32, 64] that
mitigate unsafe permission register updates, kernel-based confused
deputy attacks [21], and control-flowhijacking that illegally updates
the permission register. Since how the application code invokes
API to change permission on a domain depends on the concrete
trust model, sanitizing the call sites and arguments of VDom API is
out of scope.

Physical attacks, IO attacks, side-channel attacks, and micro-
architectural attacks are beyond our scope.

5 DESIGN
VDom intends to virtualize the memory domain primitives with the
following requirements:

• Unlimited domains: To meet the demand for a large num-
ber of domains, domain virtualization must provide unlim-
ited domains, ensuring that a thread can always obtain a new
virtual domain regardless of the limited number of physical
domains (unless the domain identifier integer overflows).

• Low overhead: Domain virtualization must incur negligible
overhead because the hardware primitives are famous for
efficiency. In general cases, like server applications, virtual
domains should be faster than existing methods such as
VMFUNC-based approach.

Since busy waiting and TLB flushes are major overheads, we
propose the key idea of grouping threads into separate ASID-tagged
address spaces with private domain maps. Unlimited domains
means that a thread can always allocate a domain. If the thread
requires fewer domains than an address space can provide (e.g., 16
on Intel), it can obtain a physical domain from its separate address
space without racing against threads in distinct address spaces. Oth-
erwise, it can switch to another address space, or evict an old virtual
domain and remap the new one. To achieve low overhead, first, we
choose the lightweight memory domain primitives. Second, extra
TLBmiss caused by separate page tables incurs lower overhead than
that in VMs. Third, compared to normal thread switches, switching
between ASID-tagged address spaces incurs the minimal overhead
of page global directory (pgd) updates without TLB flushes. Finally,
when a thread that exclusively owns its address space remaps a
virtual domain, only local TLB invalidation is needed.
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Figure 2: VDom architecture overview.

5.1 VDom Architecture
Our concrete goal is to map unlimited virtual domains (vdom) to
physical domains (pdom) in separate address spaces and provide
fast domain switch with low overhead.

To this end, we design VDom, as demonstrated in Figure 2. Sup-
ported by similar architectural memory domain primitives and
per-core permission registers, applications can isolate mutually
distrusted page groups in unlimited numbers of virtual domains
through VDom APIs (§5.2). Threads are grouped into separate ad-
dress spaces (denoted as AS0 to AS2 in the figure) for fast access
to an unlimited number of domains. Such address spaces maintain
private domain maps to bookkeep the relation between vdoms and
pdoms. The VDom kernel introduces two major abstractions to
denote these virtual domains and address spaces (§5.3). We pro-
pose a domain virtualization algorithm to automatically manage
threads and address spaces (§5.4). When threads require more vir-
tual domains than an address space can accommodate, the algo-
rithm balances the minimal cost of switching address spaces and
modifying page tables along with local-only TLB invalidation. We
leverage ASID to achieve lower overhead. We also present several
optimization strategies for TLB and page table manipulation (§5.5).

5.2 VDom APIs
VDom offers user-space processes APIs listed in Table 1. To utilize
VDom, vdom_init is first called. An application obtains a unique
vdom for a frequently-accessed (e.g., basic libraries andmaster keys)
or common memory region by vdom_alloc. A process isolates a
group of pages in the vdom via vdom_mprotect. For hardware mem-
ory domain, changing the access rights on pdoms in the per-thread
permission register completes a domain switch. To virtualize the
permission register, VDom introduces a per-thread array called vir-
tual domain register (VDR), every 2 bits of which represents the
access right to memory protected by the corresponding vdom. A
thread invokes vdr_alloc to limit the number of separate address

Table 1: VDom APIs and description.

API Description
vdom_init() Initialize VDom for the process.
vdom_alloc(freq) Allocate a frequently-accessed or common vdom.
vdom_free(vdom) Free the vdom for the process.
vdom_mprotect
(addr, len, vdom)

Assign the process’s memory pages containing
any part within [addr, addr+len-1] with the vdom.

vdr_alloc(nas)
Give the thread a permission register, and limit
the number of address spaces that the thread can
efficiently switch between.

vdr_free() Free a thread permission register.
wrvdr(vdom, perm) Write the calling thread’s permission on vdom.
rdvdr(vdom) Read the calling thread’s permission on vdom.

spaces it owns at most, and exclusively owns a VDR before calling
rdvdr or wrvdr to read or update the permission on a vdom. In ad-
dition to Intel MPK’s full access, write disable (WD), and access dis-
able (AD) permissions, VDom introduces the pinned type. A pinned
vdom is access-disabled but less likely to be evicted in the hybrid
least-recently-used (HLRU) eviction policy (§5.5). vdom_free frees
a vdom, while vdr_free releases the VDR of the calling thread.

On top of the APIs that share similar semantics to the Linux
protection key (or memory domain) counterparts, VDom supports
thread-local memory protection via the per-thread VDR and the
underlying permission register, i.e., PKRU on Intel or DACR on
ARM. According to the values of local VDRs, all threads in a process
independently have their permissions on different vdoms. Moreover,
frequent domain switches within a thread are efficiently supported
by updating the permission bits in VDRs. Unlike syscalls that update
the process address space (e.g., mprotect, mmap), a thread only
changes the access rights of itself via wrvdr.

5.3 Kernel Abstraction
VDom kernel maintains the metadata of vdoms and separate address
spaces via two abstractions, per-process virtual domain metadata
(VDM) and per-address-space virtual domain space (VDS). VDM
maintains the vdom allocation bitmap and efficiently searches pages
protected by a given vdom. In particular, to balance memory space
and efficiency, VDM has a hierarchical structure called virtual do-
main table (VDT), whose last-level entries point to chained virtual
memory areas protected by the indexing vdom. VDS, which repre-
sents a separate address space, is responsible for mapping multiple
vdoms to limited pdoms in its private page table and storing addi-
tional context for memory management.

As the number of isolated domains grows, VDom automatically
groups threads into distinct VDSes. Guided by the domain virtu-
alization algorithm, these VDSes generate private domain maps
based on the domain access sequence of their threads, but share
all unprotected memory regions. Specifically, address translation is
shared across VDSes for all virtual addresses, including those of pro-
tected memory areas mapped to different pdoms in separate page
tables. Thus, though threads in each VDS have a separate domain
map on protected pages and can access distinct domains in parallel,
cross-thread synchronization and process-level memory operations
are supported without any application modification. In the OS ker-
nel, VDom allocates a descriptor for each VDS to bookkeep the pgd
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Figure 3: VDom memory domain virtualization algorithm workflow (left) and a concrete example of thread migration (right).
In the right subfigure, thread T migrates from VDS0 to VDS1 when activating vdom D. In the permission register, Px is the
permission to vdomx. FA means full access right. Mx in pdom_mprot denotes pages protected by vdomx. #thread in the domain
map denotes the total number of threads in a VDS that accesses the vdom.

and domain map. Since pdoms are fewer than vdoms, the domain
map is indexed by pdom and stores the (pdom, vdom) pairs to avoid
sparsity. Furthermore, the descriptor contains a CPU bitmap and a
unique context identifier, aiming to trace cores executing threads
in the VDS for minimal TLB shootdowns and leverage ASID for
better performance in contemporary OS kernels.

5.4 Domain Virtualization Algorithm
The domain virtualization algorithm divides threads into partially
shared address spaces for unlimited domains and fewer TLB
flushes (low overhead). When several threads in the same VDS
require more vdoms than the pdoms in the address space, the algo-
rithm creates a new VDS and migrates a thread to it. If a thread in
a VDS needs more vdoms, it is switched to another VDS, or vdom
eviction happens. The input event of the algorithm is defined as
a thread T accessing the memory MD protected by vdom D. We
define that a pdom is free if no vdom is mapped to it. Evicted pages
in a VDS are mapped to a predefined access-never pdom.
Workflow. Figure 3 (left) demonstrates the flow chart of the domain
virtualization algorithm. If vdom D is not mapped in the current
VDS ❶, D requires a free pdom. If thread T stays in a VDS with free
pdoms ❷, VDom allocates a free pdom, maps D to that pdom ❸,
and updates the domain map. Leveraging the underlying memory
domain hardware, the OS kernel assigns PTEs of all present pages
protected by the vdom with the selected pdom. If the current VDS
runs out of free pdoms, the algorithm first checks the number of
threads sharing the current VDS. If T is the only thread in its VDS
❹, VDS switch or vdom eviction happens ❺. If the current VDS
is shared across several threads, T checks every existing VDS ❻

to decide if T can migrate to that VDS ❼. If no existing VDS can
accommodate T, a new VDS is allocated and initialized to be the
destination of the thread migration ❽.
Thread migration. A concrete example of thread migration ❽ is
shown in Figure 3 (right). Assume the hardware offers 10 pdoms,
with pdom0 as default and 1 as access-never. Before migration, T
shares VDS0 with another 5 threads and vdom0, 4, 14, 24, 30 are
mapped to pdom0, 5, 8, 2, 4 in VDS0, respectively. The physical

permission register of T stores the access rights on mapped vdoms.
Assume that D is not mapped in VDS0. From❶, VDom reaches❻ for
lack of free pdoms. Then, the algorithm tries to accommodate T in
VDS1, in which vdom0, 24, 30 are already mapped and pdom6, 7, 8, 9
are free. T fits in VDS1 by mapping vdom4, 14, D to pdom6, 7, 8. The
highlighted entries in domain maps show how the domain maps
and numbers of accessing threads are updated during migration.
Additionally, the permission register of T is synchronized to stay
consistent with the new domain map. For instance, permission bits
P24 are moved in the permission register in line with the remapping
of vdom24 from pdom2 to 4. To complete the migration, pages
protected by vdom4, 14, D are assigned with pdom6, 7, 8 in their
PTEs in VDS1, and the pgd of T is switched.
VDS switch or domain eviction. Though switching pgd is faster
than modifying PTEs, pgd switch may not always be optimal. For
example, if a thread swaps strings in two protected PMOs in distinct
VDSes, each memory access incurs a pgd switch, which is prohibi-
tively expensive. In contrast, if the PMOs are mapped in the same
VDS by domain eviction, the following PMO access only involves
updating the permission registers. Therefore, VDom balances the
overhead of vdom eviction and VDS switch when the thread T asks
for more domains ❺. In particular, if the vdom D is frequently-
accessed (defined in vdom_alloc), or some other mapped vdoms
are accessible according to the permission register, the domain vir-
tualization algorithm evicts an old domain and remaps D in the
current VDS. The kernel walks VDT to efficiently find all memory
areas protected by the old vdom and disables related PTEs by the
access-never pdom. Such eviction solely flushes local TLB entries.
Otherwise, VDom first tries to find D in other VDSes of T and
switches pgd if successful. If not, another VDS is allocated to make
the most of additional page tables within the number defined in
vdr_alloc, or vdom eviction happens in a chosen VDS of T.

5.5 TLB and Page Table Optimization
VDom optimizes TLB and page table operations to efficiently sup-
portmultiple address spaces and occasional domain evictions.VDom
kernel keeps track of the ASIDs and CPU bitmaps of all VDSes to
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reduce excessive inter-processor TLB flushes. Moreover, TLB range
flush instructions ensure invalidation of minimal virtual address
ranges during the eviction. However, some processors spend propor-
tional time to the range size. Thus, to balance the cycles consumed
by range flushes and later TLB misses, VDom invalidates all en-
tries in a given ASID if the evicted vdom protects a large chunk of
memory.

Domain evictions on large ranges involve proportional numbers
of PTE updates. To further reduce eviction overhead, we optimize
page table manipulation. If a vdom of continuous non-huge pages
that range across 2MB is evicted, the kernel directly disables page
middle directory (PMD). Accessing the illegal PMD triggers page
fault. Later, when the page group is to be remapped, the HLRU
policy first checks which pdom (denoted as pdomx) the vdom is
mapped to last time. If the vdom that currently maps to pdomx is
inaccessible and not pinned, it is evicted. Otherwise, the page group
finds the victim by LRU. Note that if all vdoms are pinned when
access-disabled, VDom strictly follows LRU policy within a VDS. By
remapping a large domain to the same pdomx, VDom saves cycles
on updating numerous PTEs.

6 IMPLEMENTATION
To test the scalability and efficiency of our domain virtualization ap-
proach on prevalent architectures, we implement a VDom prototype
for Intel and ARM based on Linux kernel version 5.17. Program-
mers can utilize VDom when setting the HAS_VDOM flag in Kconfig.
Summarized by git diff, 4290 lines of code across 68 source files are
modified in Linux. The APIs contain about 400 lines of code across 4
files. Among the added code, about 70% is architecture-independent,
while X86 and ARM have different page fault handlers and ASID
management methods. The following subsections introduce the
implementation details, including Linux extended data structures
(§6.1) and VDS management (§6.2) for Intel X86 and ARM. Since
MPK efficiently updates the permission register in user space, the
secure API call gate is implemented on Intel (§6.3).

6.1 Linux Data Structures
To describe VDSes, we modify task_struct and mm_struct in
Linux. Basically, the per-thread task_struct has two extra fields:
a pointer to the VDS the thread stays in and a pointer to the VDR of
the thread. When the thread can efficiently switch between several
VDSes (determined by nas in the vdr_allocAPI), an array of point-
ers to VDSes and their corresponding values in the architectural
permission register are also recorded in task_struct. In Linux,
mm_struct represents one address space. In contrast, we decide
to use it for all VDSes. This design is superior to using a separate
mm_struct for each VDS in that only page tables require extra syn-
chronization. Simply using the clone syscall with deep page table
copy also needs maintenance when changing the process state, in-
cluding its mm_struct. In VDom, mm_struct stores the VDM of the
process and chains all VDSes together via a linked list. Additionally,
vds_struct keeps track of each VDS. Apart from the pgd, domain
map, CPU bitmap, and context identifier, TLB generation is added in
X86 vds_struct for the X86-specific ASID management in Linux.

6.2 VDS Memory Management
We modify page table management and page fault handling routine
in the kernel. Each VDS has a unique pgd but shares the same
view of virtual memory except for the hardware memory domain
bits in PTEs. VDS memory synchronization keeps Linux metadata
of virtual memory, such as the red-black tree of virtual memory
areas (VMA), consistent with the actual page tables. VDom updates
the page tables of VDSes lazily through page fault just like de-
mand paging when more permissions to a page are granted, while
synchronizes page tables of all VDSes eagerly on permission revoca-
tion. To be specific, whenever the kernel frees the process memory,
changes the protection bits of a page group, walks page tables with
an operation determined by a function pointer, or when kswapd
reclaims page frames, eager synchronization is activated. Note that
the OS kernel changes its virtual memory metadata along with
page table update. Since all VDSes share the same mm_struct, the
original Linux code completes metadata management without extra
synchronization effort.

The page fault handler deals with permission fault and VDS
demand paging. Accessing unmapped domains and memory access
violation trigger protection key fault and page domain fault on Intel
and ARM, respectively. Linux kernel identifies the vdom of the fault
address through the extended vm_flags in VMA and inspects the
per-thread VDR. Any access violation results in SIGSEGV. Other-
wise, pgd switch or domain eviction is triggered for the unmapped
vdom. On the other hand, handle_mm_fault is responsible for lazy
demand paging for VDom. Similar to SMV [33], the kernel finds the
pgd of the trapped thread and updates both the VDS page table and
the per-process shadow page table to keep the consistency of the
process address space.

6.3 Intel APIs Protection
VDom leverages the fast user-space PKRU update instruction on
Intel. Hence, to protect critical data, such as VDRs, in VDom APIs
from memory corruption and control-flow hijacking, VDom uses
the access-never domain (pdom1).

In user space, a VDR can solely be accessed by its owner thread in
the trusted API library. During initialization, VDom library assigns
the VDR pages with pdom1 and locks them through the whole
process lifetime. A program has full access to pdom1 right after
entering the API library and no access permission before returning
to the untrusted user code. Moreover, wrvdr identifies the calling
thread’s VDR from a read-only page mapped by the kernel, rather
than a pointer passed by an argument. Furthermore, when a thread
is in the API library, some critical data such as the new permission
to a vdom is spilled on the stack, which is also protected by pdom1.

VDom securely shares VDR pointer and domain map with APIs
via processor core numbers. In wrvdr and rdvdr, each thread needs
to efficiently get its VDR and domain map. Since gettid is too slow
and thread-local storage (fs) is writable in user space, VDom binds
each running thread to a particular processor core. During context
switch and thread migration, the kernel checks the processor num-
ber. Then, the corresponding cacheline-aligned per-core entry in a
shared page is filled with the next thread’s pointer to VDR and its
domain map. Moreover, inter-core scheduling is disabled between
getting the core number and accessing the VDR pointer.
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1 lib_entry:
2 xor %ecx, %ecx
3 rdpkru
4 and $0xfffffff3, %eax # full access to pdom1
5 wrpkru
6 mov %rsp, %rax # spill old rsp in rax
7 mov cpunode_seg, %edx
8 lsl %dx, %edx # load segment limit
9 and cpunode_mask, %edx # get core number
10 lea shm_oft(%rip), %rdi # secure sharing page
11 shl log($64), %rdx # offset from the page
12 add %rdi, %rdx
13 mov (%rdx), %rdi # thread's VDR address
14 add stack_oft, %rdi # new rsp offset to VDR
15 mov %rdi, %rsp # switch stack
16 push %rax # push the old rsp
17 inline_func:
18 ...
19 lib_exit:
20 pop %rsp # pop the old rsp
21 xor %ecx, %ecx
22 rdpkru
23 make_eax_pkru: # arithmetic in regs ->
24 ... # to update active vdoms
25 xor %edx, %edx
26 or $0x4, %eax # access disable for pdom1
27 mov %edx, %ecx # clear before wrpkru
28 wrpkru
29 and $0xc, %eax
30 cmp $0x4, %eax # check is pdom1 disabled
31 jne illegal
32 retq # return from old stack1

Figure 4: Call gate for VDom API library on Intel X86.

Figure 4 shows more details on API memory protection and
secure sharing. Take wrvdr as an example. At the entrance, the
call gate: (1) sets full access to pdom1 in PKRU (line3-5); (2) gets
the core number through lsl instruction that reads the global
descriptor table (line7-9); (3) gets the page for secure sharing based
on rip (line10); (4) finds the cacheline-aligned (64-byte-aligned)
entry in the page to get the VDR of the thread according to the core
number (line11-12); (5) determines the stack address to switch to
(line13-14); (6) switches rsp, pushes the old rsp and executes the
regular prologue (line15-17). Before the gate exits to the untrusted
user code, the PKRU update for the target vdom and disabling
access permission to pdom1 are merged in one wrpkru (line23-28)
to boost performance. To defend against control-flow hijacking
which controls the value in eax before wrpkru, the value in eax is
compared with the legal value (line29-31).

7 EVALUATION
This section answers the following questions:

• Is VDom compatible with other Linux subsystems and exist-
ing memory domain sandboxes (§7.1)?

• Can VDom defend against potential attacks under the pro-
posed threat model (§7.2)?

• Does themodified kernel slow down thewhole system (§7.3)?
• How much overhead do micro-operations of VDom incur
(§7.5)?

• How fast can protected server applications and the random
domain access test run (§7.6)? To better understand the per-
formance of VDom, we choose one representative from each
motivating aspect (§3.1) in application benchmarks.

Table 2: VDom ports an example from each type of defense
of existing memory domain sandbox.

Example Type Arch
Insert watchpoint before make code pages with
PKRU update instructions executable ❶

binary scan X86

Check fixed PKRU permission before switch ❷ call gate X86
Block unchecked read on protected memory
through process_vm_readv ❸

syscall filter X86
ARM

Our evaluation environments are Dell PowerEdge T440 with an
Intel Xeon Gold 6230R CPU (2.10GHz 26 cores 52 threads) and 64GB
memory, and Raspberry Pi 3 Model B with a 1.2GHz quad-core 64-
bit ARM Cortex-A53 and 1GB memory. We test on Linux 5.17.0
with X86_64 generic Kconfig for Intel and ARMv7l raspi Kconfig
for ARM. The Linux distributions for Intel and ARM are Ubuntu
18.04 and Ubuntu 20.04, respectively.

7.1 Compatibility Evaluation
Other Linux subsystems. To examine the compatibility of VDom
with other Linux subsystems, we run the Linux Test Project (LTP)
[6] on the original and our modified kernel, respectively. We pass
memory management, file system, disk IO, scheduler, and IPC test
suites in LTP on both kernels.
Memory domain sandboxes. Existingmemory domain sandboxes
monitor sensitive syscalls that change the pdom of memory pages
and defend against kernel-based confused deputy attacks. To defeat
such attacks in VDom, similar syscall filters can be applied as well
and the virtual address of the trusted library is locked once loaded
to enforce the sole entry of VDom-related syscalls.

MPK sandboxes additionally sanitize unsafe wrpkru by binary
inspection and protect the call gate against arbitrary PKRU updates
caused by control-flow hijacking. VDom call gate is compatible with
MPK sandboxes by replacing original wrpkru instructions with in-
line wrvdr calls (no indirect jumps). In the call gates between every
two domains, existing MPK sandboxes [32, 59, 64] compare eax
with the fixed legal permissions. Indeed, the domain virtualization
algorithm does not generate fixed maps between vdoms and pdoms.
To determine eax’s legality, VDom can check the shared domain
map again after wrpkru to find out whether the target vdoms are
active and dynamically constructs the expected PKRU value.

In summary, three types of defense are taken into consideration:
(1) filters that block the malicious syscalls that help escape the
sandbox; (2) binary inspection that identifies unsafe wrpkru and
xrstor; (3) call gate that defeats arbitrary PKRU write via control-
flow hijacking. For simplicity, we choose one concrete defense
from every aspect that the state-of-the-art MPK-based sandbox,
Cerberus [64], summarizes to show adequate compatibility. As
listed in Table 2, sandbox-enhanced VDom correctly handles unsafe
and hijacked PKRU updates ❶ ❷, and intercepts syscalls that access
protected pages directly as confused deputy ❸.

7.2 Security Evaluation
Security analysis. Typically, the security of memory domain is
enforced by three software layers: (1) kernel and APIs that link
the memory domain semantics to the underlying page tables and
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permission registers; (2) trusted user-space sandbox that prevents
malicious components from escaping the protection of memory
domain; (3) application that correctly invokes APIs. As a first-layer
software, VDom must secure itself and eliminates new escapable
surface.

First, VDom kernel keeps address space integrity against mali-
cious remapping and reassigning vdom to protected memory. Once
a virtual memory area is assigned with a vdom, the user-space
application cannot reassign another vdom to this area until pro-
cess termination. Second, no similar syscalls that might act as con-
fused deputies are added by VDom. The third attack surface is VDS
metadata and page table corruption. Since the kernel maintains all
metadata related to VDSes, malicious user attackers cannot corrupt
these critical data without kernel hacking. Fourth, particularly on
Intel processors, X86 user-space APIs modify both VDR memory
arrays and PKRU registers, which are protected via the access-never
pdom and secure kernel-user sharing (§6.3). To prevent insecure
wrpkru and xrstor from arbitrarily updating the permission on
the access-never pdom, VDom can port the binary inspection from
Hodor [32]. By analysis, VDom is secure.
Penetration Tests. Both in-thread attacks and cross-thread attacks
on random vdoms are tested in a sample program with multiple
VDSes. VDom supports no access, read-only and read-write permis-
sions. Programs terminate immediately on both architectures once
they attempt to access vdoms with AD in VDRs, or to write with
WD permission, showing the efficacy of VDom.

In our evaluation, VDom is immune to X86 VDom user-space API
VDR and stack corruption, no matter whether the attacker directly
attempts to overwrite the data or firstly tries to change the memory
domain flags of related pages. Filling the PKRU register with hi-
jacked eax in API exit causes segmentation fault as expected, which
also shows that reusing wrpkru never gives untrusted application
code control over data in the API library. Hence, the tests indicate
that VDom offers the same security enhancement as the original
memory domain.

7.3 Performance Impact On Linux
For applications not using VDom, to measure the performance on
ourmodified Linux, we runUnixBench [2] on the original andVDom
kernel, respectively. Note that UnixBench is a microbenchmark fo-
cusing on kernel performance, which means the performance drop
(if any) of modified Linux is exaggerated compared to applications.
On UnixBench single-thread and parallel test suite, VDom has simi-
lar scores (98.5% to 101.8% marks) on X86 and ARM compared to
the baseline kernels.

7.4 Performance Comparison Methodology
We use the following methodology to compare VDom with libmpk
and EPK in the performance benchmarks on the Intel platform.
Libmpk. Libmpk fails to support multi-threading, due to data race
and the lack of a per-thread view of metadata. We fix these bugs
without changing the key logic and port libmpk to Linux 5.17.
EPK. We run the in-VM (simulated) EPK-hardened applications and
compare the overhead against that of VDom-enhanced applications
out of VM. The application binaries are identical.

Table 3: Average cycles of common operations.

Operation X86 Cycles ARM Cycles
empty API call return 6.7 16.5
empty syscall return 173.4 268.3
update PKRU or DACR 25.6 18.1
VMFUNC [46] 169 undefined
fast wrvdr API call return 68.8 406
secure wrvdr API call return 104 406
secure wrvdr with 4KB eviction 1,639 2,274
secure wrvdr with 2MB eviction 1,605 3,159
secure wrvdr with 64MB eviction 8,097 11,778
secure wrvdr with VDS switch 583 723

Since EPK is designed and implemented based on KVM [38], we
set up the host using KVM in Linux 5.17 and QEMU [14]. Both
applications and benchmark processes are executed in the guest
Ubuntu 18.04 based on Linux 5.17 kernel. The kernels for the vanilla
applications, VDom, and the VM have the same configurations, boot
arguments (no KPTI), and are compiled by the same toolchain. We
allocate 50 hardware threads and 56GB of memory to the VM,
which is quite adequate for the tested applications. To explore
the performance of VMs, efficient IO virtualization approaches
are used. A network interface card is passed through. In fact, the
loopback network used in the evaluation (but not in the real world)
eliminates the overhead of network virtualization. We also pass
through a Samsung solid-state disk storage device, which is identical
to the one used to evaluate VDom, to the guest kernel via vfio-pci to
achieve the best VM speed. Indeed, other user-space virtual machine
monitors, such as Firecracker [11] and Cloud Hypervisor [3], exist.
According to our experiment with several monitors, the tuned VM
on QEMU achieves similar or the best performance.

We simulate the overhead of domain switches in EPK because
the code or binary is not publicly available. As reported in EPK [29],
the average cycles consumed by different types of domain switches
(i.e., MPK switch and VMFUNC switch across distinct total numbers
of EPTs) are compared with VDom’s in microbenchmarks, because
EPK is evaluated on a similar Intel Xeon CPU. In applications, we
simulate EPK by inserting the reported cycles in every domain
switch depending on the number of EPTs and whether the switch
involves VMFUNC. For instance, to simulate a VMFUNC-based
switch, 350 cycles or 830 cycles are inserted into the application.
Otherwise, 97 cycles are added. We achieve the accurate cycle
insertion in EPK simulation by increasing a counter by one again
and again until the counter reaches a predefined threshold. The
deviation ranges from -11 to +5 cycles. Our methodology ignores
the overhead incurred by extra TLB misses from multiple EPTs.
Hence, the actual overhead should be no less than the simulated
one.

7.5 Microbenchmarks
We measure the cost of (1) domain switch, (2) different access pat-
terns on distinct numbers of vdoms, (3) memory synchronization,
(4) VDS context switch.
Domain switch. The costs of domain switches in different scenar-
ios and other related operations are shown in Table 3. X86 VDom
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Table 4: Average cycles cost by wrvdr and counterparts on
sequential and switch-triggering accesses of 2MB (512 pages)
vdoms. X86f and X86s mean the fast and secure wrvdr API.
X86e and ARMe mean VDom evicts old domains rather than
switches VDSes.

# of vdoms 3 4 15 16 29 32 64 70

VDom X86f seq 70 73 82 151 121 141 138 134
VDom X86f trig 70 75 82 530 552 566 704 701
VDom X86s seq 107 104 113 183 152 171 161 166
VDom X86s trig 105 106 113 573 611 623 771 765
VDom X86e seq 69 70 82 301 1,565 1,594 1,598 1,605
libmpk seq 102 103 150 30,609 30,909 30,877 30,721 30,704
EPK seq [29] 97 97 101 111 NA 115 162 NA
EPK trig [29] 97 97 101 NA NA 350 830 830
VDom ARM seq 406 423 491 486 536 480 490 533
VDom ARM trig 408 433 668 662 695 714 779 811
VDom ARMe seq 408 421 1,613 1,895 3,137 3,161 3,187 3,185

Table 5: The overheads of allocating and synchronizing 4KB
pages across different numbers of VDSes.

# of VDSes 2 4 8 16 32
X86 overhead (%) 3.8 8.9 20.9 38.8 56.1
ARM overhead (%) 19.7 33.8 undefined undefined undefined

protects the user library by the access-never pdom in the secure
wrvdr API call, while the fast call relinquishes the call gate for
efficiency. All application benchmarks (§7.6) use the secure API.
On ARM processors, updating the DACR register is privileged and
secure. The evaluation shows the wrvdr API is particularly fast
when the vdom is mapped in the current VDS. Moreover, the page
table optimization accelerates 2MB eviction to reduce the overhead
of necessary eviction on large memory domains.
Accessing domains. Our synthetic benchmark accesses various
numbers of vdoms (each 2MB domain has 512 pages) according
to sequential and switch-triggering patterns. Take the 64-domain
benchmark as an example. The sequential pattern accesses vdoms
in order (i.e., iterates from vdom0 to 63), while the switch-triggering
pattern causes a VDS switch on each access via traversing vdoms
with strides. For eviction-based methods (i.e., libmpk and VDom
eviction), the sequential access has the same performance as the
switch-triggering access. We also compare libmpk and EPK to show
the efficiency of VDom. As shown in Table 4, switching VDS (with-
out kernel page table isolation) is faster than libmpk and comparable
to EPK. Thanks to ASID, the heavy TLB flush instructions are virtu-
ally not needed during address space switches. Additionally, since
VDom can work without VMs and EPTs, when the application owns
more than 3 address spaces, a VDS switch takes similar cycles to
an EPT switch. Moreover, due to our optimization on page table
operations, for 2MB domains, eviction in VDom is faster than that
in libmpk.
Memory synchronization. Memory synchronization in VDom
takes extra cycles on managing PTEs and TLB entries. To measure
the overhead, we run a multiple-address-space application that pro-
gressively allocates 4KB pages. One address space holds the data,
and the code in other address spaces (VDSes) immediately accesses

the data after initialization. Table 5 demonstrates that the synchro-
nization overhead is proportional to the number of total address
spaces the application owns. Since the evaluated ARM processor
has only 4 cores, the overhead of memory synchronization for more
than 4 VDSes is dominated by the scheduler. Notice that if there is
no data access from other address spaces, the cost is close-to-zero
thanks to the demand paging mechanism.
Context switch. Multiple page tables in the same mm_struct com-
plicate context switch. Accordingly, when switching to a process
not using VDom, on Intel and ARM, the switch_mm function spends
about 451.9 and 1442.1 cycles in total. Compared to the original
Linux, VDom slows down context switch by 6% and 7.63%. Due to
additional metadata maintenance, an average switch to a VDS takes
771.7 and 1545.1 cycles on Intel and ARM platforms, respectively.

7.6 Application Benchmarks
OpenSSL: isolate many in-library secrets. OpenSSL [9] is a
widely-used project for cryptography operations and the TLS pro-
tocol. Memory disclosure vulnerabilities in OpenSSL, such as CVE-
2011-4576, CVE-2014-0160, and CVE-2016-2176, allow attackers to
breach cryptographic keys. We put each private key structure (e.g.,
EVP_PKEY) into a separate 4KB vdom when allocation. Since the
physical memory consumption of the vanilla httpd is about 4.5MB,
even if 256 private keys are allocated, the 21.8% physical memory
overhead is acceptable. Access to a protected key is enabled when
libcrypto code requires to read it and disabled right after key-related
operations. In total, 207 lines of code are added to the enhanced
OpenSSL library.

We test HTTPS throughput of Apache HTTP server (httpd) link-
ing the original and protected OpenSSL with ApacheBench (ab).
Both programs choose the ECDHE-RSA-AES256-GCM-SHA384 ci-
pher suite and 1024-bit secret key. We start one httpd worker that
spawns 40 threads and use Event Multi-Processing Model. In each
run, we start several ab instances simultaneously to simulate differ-
ent numbers of concurrent clients. Each ab instance sends 10,000
requests to httpd with a file size of 1KB, 64KB, or 128KB. Figure 5
shows the average throughput of protected httpd relative to origi-
nal httpd over 10 runs with various concurrent client counts and
request sizes, measured after a warm-up phase. On X86, VDom
introduces an average of 0.12% overhead for 1KB file size, and 1.92%
and 2.18% overheads for 64KB and 128KB each. On ARM, the corre-
sponding numbers are 2.50%, 1.43%, and 2.65%. Even if all private
key structures are protected in the same domain, the lowerbound
overheads on Intel range from 0.86% to 1.03%. Running the un-
protected httpd in VM incurs 6.03%, 7.15%, and 5.09% overheads
for 1KB, 64KB, and 128KB files, respectively. On top of that, the
simulated EPK introduces 6.69%, 8.17%, and 5.21% overheads when
compared to the vanilla version running in the host. Our evaluation
result demonstrates that libmpk is inefficient regardless of the file
size. In each run, more than 80,000 vdoms are allocated in httpd.
Thanks to separate page tables, VDom allows threads to access all
domains without busy waiting.
MySQL: separate many threads. MySQL is an open-source re-
lational database management system. It is a single-process multi-
thread program, which spawns a new thread or reuses a thread in
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Figure 5: Throughput of original, VDom, EPK, and libmpk
httpd on X86 and ARM.

the thread cache to handle an incoming client connection. We mod-
ify MySQL to protect the stack of each connection handler thread.
VDom puts each thread’s stack into a separate vdom, ensuring that
a thread’s stack cannot be accessed by other threads. This prevents
compromised threads from having arbitrary access to other threads’
stacks, changing their execution flow or stealing data stored on the
stack. By default, MySQL allows more than 100 clients to connect
simultaneously, which means that a corresponding number of con-
nection handler threads are created in the mysqld process. We also
use VDom to protect in-memory data for MySQL MEMORY storage
engine that creates in-memory tables to achieve fast access and low
latency. VDom ensures that the database can only be accessed by
the engine. The MEMORY storage engine stores records in the data
structure named HP_PTRS. Thus, VDom isolates all HP_PTRS struc-
tures into a vdom, and updates VDRs before and after accessing
the structure in MEMORY storage engine code for least privilege.
Altogether, 91 lines of code are added to MySQL.

We benchmark performance impact on MySQL using sysbench.
We run the OLTP read-write script of sysbench on an in-memory
database comprising 10 tables, each with 100,000 rows of data.
Figure 6 shows the throughput of original MySQL and MySQL
hardened by VDom with different concurrent client counts. At each
client count, we run MySQL 10 times and take the average. VDom
introduces an average of 0.47% overhead on X86 platform, and 2.59%
overhead on ARM. In the VM environment, the vanilla MySQL
suffers a 6.89% throughput loss. If we consider both VM overhead
and protection, the simulated EPK has an average overhead of 7.33%.
Unlike VDom or EPK, libmpk allows only 15 vdoms to be activated
simultaneously. Since connection handler threads run in parallel,
libmpk cannot provide per-thread protection for MySQL when the
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number of concurrent clients exceeds 14 (because one domain is
for in-memory data).
String Replace: protect many PMOs. Persistent memory is non-
volatile and has performance similar to DRAM when serving as
main memory [35]. Data in PMO is long-lived, so the consequences
triggered by illegal read or write to an attached PMO are more
severe. We use a multi-PMO benchmark and protect each PMO
with a vdom like the prior study [72]. The benchmark has 64 PMOs
of 2MB size. Each PMO is filled with strings and each string is 512
bytes in length. Multiple threads are launched in the benchmark.
Each thread randomly picks a string and performs a substring search
and replacement operation on that string. When a thread needs to
read the string, VDom grants WD permission to the corresponding
PMO; when it needs to replace the substring, full access permission
is granted. We evaluate the performance of both VDS switch and
domain eviction approaches by limiting the address spaces each
thread can access. We run the benchmark 10 times, and each run
performs 4,000,000 operations for each thread.

Figure 7 shows the overheads of different numbers of threads
on X86 and ARM platforms, where 22 on the y-axis means 4%
overhead, 23 means 8%, etc. The line of lowerbound represents the
overhead of using one physical domain to protect all PMOs. We
protect 512 4KB pages in VDom and VM approaches. For libmpk,
we try both 4KB pages and 2MB huge pages. The lowerbound
overheads are 2.06% and 4.97% on X86 and ARM, respectively. In
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VDom, the eviction mechanism brings average overheads of 16.21%
and 13.31%, while VDS switch only slows down the application by
7.03% and 6.15%. Though the random access PMO test has a high
eviction (or VDS switch) rate (e.g., each String Replace operation
usually takes around 10,000 cycles on X86), the overheads of VDom
are acceptable. In contrast, the overhead of libmpk grows with
the number of parallel threads. For example, libmpk with huge
pages incurs a 17.73% performance loss when running a single
thread. However, the overhead increases to 977.77% if 8 threads
are running in parallel. Worse still, if 4KB pages are allocated, the
8-thread libmpk introduces a 3941.95% slowdown. Although the
virtualization overhead of the application is only 2% because the
PMO benchmark is a simple and pure-user-space program, EPK
slows down the program by 8.71% in total compared to our baseline.
Thus, VDom is faster than libmpk and comparable to EPK in the
PMO benchmark.

7.7 Limitations
In VDom, the underlying hardware page tables enhance security
at page granularity. To protect fine-grained data, programmers
have to change the memory layout. Although VDS switch with-
out TLB flush and vdom eviction save cycles compared to two
mprotect syscalls, they still take hundreds and thousands of cycles,
respectively. Thus, unlike hardware-based approaches, frequent
pgd switch and vdom eviction are expensive, which are thank-
fully uncommon in real-world applications. Also, our page table
optimization makes a balance between performance and granu-
larity on the virtual address. Sharing protected pages with legacy
libraries may be hindered by the modified memory layout. Like
other processor-side isolation-based protection, VDom is vulnerable
to IO attacks due to the limitations of the memorymanagement unit.
Though isolated by hardware, in-memory sensitive data plaintext is
vulnerable to cold boot attack [31]. Moreover, the security of VDom
relies on the ported sandbox and policies set by programmers.

8 RELATEDWORK
8.1 Memory Domain
Memory domain virtualization provides user-space applications
with hundreds and thousands of domains. Shreds [17], libmpk
[48], and 𝜇Tiles [57] disable related PMDs or PTEs when a vdom
is evicted. Domain Virtualization [72] maintains a hardware 2-
dimensional permission array indexed by thread identifier and
domain number. EPK [29] and xMP [50] are virtualization-based
methods. However, program in VM runs slower due to IO virtual-
ization and nested paging. Additionally, VDom also supports 32-bit
ARM and future AMD CPUs [7] without VMFUNC.

Memory domain itself has been widely studied. ARMlock [75]
and FlexDroid [54] are built on ARM Memory Domain. ERIM [59],
Hodor [32], Enclosure [28], FlexOS [40], CubicleOS [51], Jenny [52],
ZoFS [23] and UnderBridge [30] rely on Intel MPK for single address
space isolation. Donky [53] and CODOM [63] modify hardware
for secure switches and fine-grained data sharing in cross-domain
calls.

8.2 Hardware-Enforced Data Protection
Traditionally, data protection is divided into randomization and iso-
lation approaches. Among the isolation methods, Dune [13], Secage
[43], Enclosure [28] and FlexOS [40] isolate compartments in dis-
tinct EPTs. However, switching rings and VMFUNC are heavier than
memory domain. MemSentry [39] and BOGO [74] rely on Memory
Protection Extension (MPX) [47] and aim at isolation and memory
safety, respectively. HAKC [44] approximates kernel least privilege
separation by isolating code and data into several partitions via
ARM Memory Tagging Extension (MTE) [8] and Pointer Authen-
tication (PA) [10], while VDom protects user-space applications.
Researchers have also proposed more versatile and secure data
protection primitives by hardware modification. CHERI [68, 69]
isolates program compartments by hardware capability and fat
pointers. HDFI [55] and DataSafe [18] make use of tagged memory
that contains extra security information. IMIX [26] encodes permis-
sion to secure pages in instructions rather than permission registers
for near-to-zero cost without thread-local flexibility. For higher en-
tropy than today’s randomization, Morpheus [27] rerandomizes
secrets with a hardware churn unit frequently, while RegVault [71]
extends PA for register-grained full randomization.

Apart from software attacks, data protection against malicious
kernels, physical attacks, and side-channel attacks is also studied.
Hence, encrypted enclaves [41, 49] and SoCs [20] are used to store
secret data. These techniques often have stronger threat models
than memory domain but slow down applications.

8.3 Software-Based Memory Isolation
Software-based memory isolation builds jails to prevent illegal
memory access upon generic instructions and kernel abstractions,
such as address masks, buffer bounds, and virtual memory. SFI [65],
BGI [16], XFI [24], and Native Client [73] limit memory access in
the same address space by source code instrumentation and binary
rewriting. However, frequently masking addresses and checking
bounds without specific secure hardware cause prohibitive over-
head.

Multiple virtual address spaces are also studied. Arbiter [66],
SMV [33] use per-thread page tables to achieve memory isolation
between threads. Wedge [15], LWC [42] provide each compartment
in a process with its own page table. However, switching between
components requires kernel mediation. Secret-free hypervisor [70]
utilizes separate page tables to ensure that a guest VM domain can
only access its own secrets and explicitly identifies non-secret data.

9 CONCLUSION
In this paper, we present the motivation, design, and implementa-
tion of VDom, a fast and scalable memory domain virtualization
system that provides user-space applications with unlimited isola-
tion domains. VDom introduces separate page tables for scalable
domains and the domain virtualization algorithm, and leverages
TLB and page table optimization for performance. We implement
a prototype for X86 and ARM, and port several applications. The
evaluation demonstrates that VDom is more efficient in server ap-
plications compared to prior domain virtualization work. It offers
scalable and simultaneously accessible domains. The VDSes re-
duce TLB shootdowns. Our generic design requires no hardware
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modification or architecture-dependent feature. Moreover, VDom
enhances security as hardware memory domain primitives and
has compatibility with the Linux subsystems and sandboxes. Al-
though VDom is slower than hardware-based domain virtualization
in some extreme cases, our evaluation shows that the efficiency on
real-world applications with many vdoms allows wide adoption.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the source code of VDom modified Linux
kernel, user-space API libraries, all evaluation benchmarks, and
scripts necessary to reproduce the paper’s evaluation results.

Our work targets Intel X86 and ARM architectures (32-bit pro-
grams). On each architecture, 5 core experiments are included in
the artifact, allowing readers to reproduce our paper’s key results.
Also, readers can build new research on top of the VDom kernel
and library code.

A.2 Artifact Check-List (Meta-Information)
• Program: VDommodified Linux kernel and user-space API libraries,
benchmarked with the security test, the microbenchmarks, and
application benchmarks including httpd (with designated OpenSSL),
MySQL, and a synthetic PMO benchmark.

• Compilation:
– Intel X86: Ubuntu 18.04.6 LTS, GCC 7.5.0.
– ARM: Ubuntu 20.04.4 LTS, GCC 9.4.0.

• Binary:Readers can build benchmark binaries using provided source
code according to the README.md of the artifact. To build and install
the modified kernels, the guides and configurations to enable VDom
on the hardware platforms demonstrated in our evaluation are also
included in README.md.

• Run-time environment: Linux kernel 5.17 upstream and Rasp-
berry Pi versions. Need root access.

• Hardware:
– Intel X86: Dell PowerEdge T440 with an Intel Xeon Gold 6230R

CPU (2.10GHz 26 cores 52 threads) and 64GB memory, or any
machine that supports Intel MPK.

– ARM: Raspberry Pi 3 Model B with a 1.2GHz quad-core 64-bit
ARM Cortex-A53 and 1GB memory, or any machine that supports
ARM Memory Domain with ARMv7l ISA.

• Execution: Automated via provided benchmark scripts.
• Metrics: CPU cycles, requests/s, queries/s, execution time.

• Output: Results are output to the results directory under each ex-
periments directory, including performance data and corresponding
charts.

• Experiments:Microbenchmarks, httpd (with designated OpenSSL),
MySQL, PMO benchmark, security test.

• How much disk space required (approximately)?: 100GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 6-12 Hours.

• How much time is needed to complete experiments (approxi-
mately)?: 2-4 Hours (automated).

• Publicly available?: Yes.
• Code licenses (if publicly available)?: The Linux kernel code

uses Linux’s original (GPLv2-only with the syscall exception) license
unless specified otherwise. Other components that are not directly
related to the Linux kernel (evaluation scripts, GCC plugins, etc) are
licensed under the MIT license.

• Archived (provide DOI)?: 10.6084/m9.figshare.21354552

A.3 Description
A.3.1 How to access? The artifact can be downloaded from our
archive.1 The VDom modified kernel, user-space libraries, and all
benchmarks are available in the archive.

In order to precisely reproduce the results of this paper in the
evaluation section, we gave ASPLOS’23 reviewers access to our
machines with pre-installed software, including an Intel server and
a Raspberry Pi (specific models and configurations are listed in the
previous section).

A.3.2 Hardware dependencies. VDom is evaluated on Intel X86 and
ARM architectures:

• To run experiments on X86 architecture, a machine that
supports Intel MPK is required, typically Intel Xeon Scalable
Processors starting with the Skylake generation or the new
Core Processors from TigerLake. Specifically, our machine
contains an Intel Xeon Gold 6230R CPU (2.10GHz 26 cores
52 threads) and 64GB memory.

• To run experiments on ARM architecture, a machine that
supports ARM memory domain and ARMv7l ISA is required.
Specifically, we use a Raspberry Pi 3 Model B with a 1.2GHz
quad-core 64-bit ARM Cortex-A53 CPU and 1GB memory.

A.3.3 Software dependencies. To use VDom APIs, the VDom modi-
fied Linux kernel and the user-space libraries need to be installed.
The artifact has been tested with Ubuntu 18.04.6 LTS on Intel X86
and Ubuntu 20.04.4 LTS on ARM. All other dependencies required
by the application benchmarks are detailed in the README.md of
the artifact.

A.4 Installation
The setup of the environment and the creation of benchmarks
consist of the following steps:

• Build and install VDom modified Linux kernel.
• Build and install VDom user-space libraries.
• Build benchmark binaries and launch tests.

The specific operations and configurations are shown in the
README.md of the artifact.

1https://figshare.com/articles/software/VDom_Artifact/21354552
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A.5 Experiment Workflow
Running the experiments is automated through the corresponding
shell scripts in the artifact. There are 5 experiments in our arti-
fact, including a security test, microbenchmarks, and 3 application
benchmarks. To run the experiments, use the shell scripts under
each experiment’s directory:
$ ./run.sh

Once a benchmark is complete, results are output to the results
directory under each experiment directory, including performance
data and corresponding chart.

The execution flow of the scripts varies from experiment to
experiment. Please refer to the README.md file in each experiment
directory for a detailed explanation of the testing process.

A.6 Evaluation and Expected Results
Readers can directly view the data and graph in the results direc-
tory after running each experiment, and compare them with the
results in the paper to verify if the results match.

Under the same machine configuration, the experimental results
should be consistent with the results shown in the paper. On other
machines, absolute values may vary, but ordering and trend should
be similar.

A.7 Experiment Customization
We can use VDom APIs to build custom applications to test the
availability, security, and scalability of VDom. Readers can refer
to the code and shell scripts of the microbenchmarks to correctly
leverage the APIs. Another simple approach to customizing an
application is to remove the -DTRY_ILLEGAL_ACCESS definition in
the shell script in eval/sectest.

A.8 Notes
Due to the performance limitation of Raspberry Pi 3 Model B and
the large scale of MySQL, the throughput of MySQL on ARM is not
stable. To obtain reliable results, readers need to check the original
output of sysbench to filter stable output data, not just depend on
the output of the script. Specifically, we select the results without
abnormal data (close-to-zero) in the whole sysbench test period in
our evaluation.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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