This is the Pre-Published Version.

The following publication Y. Tang et al., "Demystifying Application Performance Management Libraries for Android," 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 2019, pp. 682-685 is available at https://doi.org/10.1109/ASE.2019.00069.

Demystifying Application Performance
Management Libraries for Android

Yutian Tang', Xian Zhan', Hao Zhou', Xiapu Luo"*, Zhou Xu?, Yajin Zhou® and Qiben Yan*

'Department of Computing, The Hong Kong Polytechnic University
2Department of Computer Science and Technology, Wuhan University
3Department of Computer Science and Technology, Zhejiang University
“Computer Science and Engineering , Michigan State University
*Corresponding Author: csxluo@comp.polyu.edu.hk

Abstract—Since the performance issues of apps can influence
users’ experience, developers leverage application performance
management (APM) tools to locate the potential performance
bottleneck of their apps. Unfortunately, most developers do not
understand how APMs monitor their apps during the runtime
and whether these APMs have any limitations. In this paper, we
demystify APMs by inspecting 25 widely-used APMs that target
on Android apps. We first report how these APMs implement
8 key functions as well as their limitations. Then, we conduct
a large-scale empirical study on 500,000 Android apps from
Google Play to explore the usage of APMs. This study has
some interesting observations about existing APMs for Android,
including 1) some APMs still use deprecated permissions and
approaches so that they may not always work properly; 2) some
app developers use APMs to collect users’ privacy information.

Index Terms—Application Performance Management Library,
Android, Empirical Study

I. INTRODUCTION

Android, a major mobile operating system, has shown its
dominance in many mobile computing landscapes, such as
tablets, smartphones, as well as vehicle systems. Since the
performance issues of apps can influence users’ experience,
more and more developers adopt application performance
management (APM) tools to monitor and detect potential
problems in their apps [1]], [2].

APMs have been used in many applications, such as cloud
applications, web applications, and mobile apps. They can help
developers monitor and detect potential performance issues
in applications [3]], [4]. Unfortunately, developers may lack
deep understanding of the functionalities of APMs [1], [4],
[S] as most of them are close-sourced. Moreover, APMs may
be used intentionally or unintentionally to collect users’ private
information. For example, most APMs allow developers to log
customized information in apps, which is called as leaving a
breadcrumb. Demystifying the design of APMs and exploring
the usage practices of APMs can benefit all stakeholders,
including APM vendors, app developers, and app users. For
APM vendors, the limitations we found in existing APM
libraries can help them improve their products. For app devel-
opers, the implementation approaches of common functions
as well as their limitations we reported can help them have
a better understanding of APM libraries. For app users, the

privacy leaks via APMs we discovered from apps can raise
their awareness of this issue.
Motivation. Existing studies on APMs mainly explain how
to use the data collected by APMs to diagnose or locate the
problems in a program [3[]-[|6]. For instance, Ahmed et al. [3]
discussed whether APMs can detect the performance regres-
sions for web applications (e.g., excessive memory usage, high
CPU utilization, and inefficient database queries) through an
empirical study on three commercial APMs and one open-
source APM. Trubiani et al. [5] proposed an approach to
detect performance anti-patterns in load testing with Kieker
APM. Heger et al. reported [4] the workflow of an APM.
Unfortunately, they neither conduct a systematic analysis on
the functionalities of APMs nor reveal the implementation
details of APMs. As a result, developers may only have a
vague idea about these APMs. To fill the gap, we demystify
the major functionalities of 25 Android-oriented APMs and
discuss their limitations.
Contribution. The contributions of this paper are as follows:
e To the best of our knowledge, this is the first systematic
study on 25 popular APMs for Android. We demystify 8 major
functionalities common in APMs and discuss their limitations.
e We conduct a large-scale empirical study on 500,000 An-
droid apps from Google Play to explore how APMs are used
in apps. We find that 23,397 apps can collect sensitive data
from users through APMs;

We release our experimental dataset, results, and other
supporting materials [7]].

II. DEMYSTIFYING APMS

In this section, we describe how the key features common
in APMs are implemented as well as their limitations.

A. APMs under Examination

Criteria for Selecting Android APMs. We define the follow-
ing criteria for selecting candidate APMs:

e The APM can be used to monitor Android apps;

e The APM must support key functions [§]], including cap-
turing crashes, network, diagnosis, capturing Android not re-
spond (ANR) errors, performing Time-on-Page (ToP) analysis,

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

logging/tracking, viewing memory usage, CPU utilization and
time consumed.

We manually inspect 53 APMs based on our selecting
criteria and select 25 APMs that satisfy our conditions. The
entire list of selected APMs can be found in [7].

B. Key Functions in APM

Capturing Crashes. When a crash occurs, an APM
captures the uncaught exception and records the ex-
ecution trace, which can be used by developers to
learn how the exception is triggered. If an excep-
tion is not captured by any try-catch-finally blocks,
it is reported as an uncaught exception, which causes
the crash of an app. All selected APMs capture such
crashes by registering an uncaught exception handler (us-
ing Thread.setDefaultUncaughtExceptionHandler), a cus-
tomized instance of Thread.UncaughtExceptionHandler, to
the main thread. When an uncaught exception occurs, the
uncaught exception handler can capture the exception.

(A limitation in this approach is that using‘

setDefaultUncaughtExceptionHandler can update the
UncaughtExceptionHandler with the Android framework.
If an app uses two APMs, only the one last initialized can
capture uncaughted exceptions as it overrides the default
UncaughtExceptionHandler. As a result, only one APM can
capture the crash.

L J

Network Diagnosis. APMs can be used to diagnose the
network bottleneck and monitor network performance. In
general, there are two options: socket based solution and aspect
oriented programming (AOP) [9] based solution.

Socket Connection Monitoring. APMs can track the network
requests by monitoring the socket in use. Specifically, it can be
realized by implementing the SocketImplFactory interface,
and then setting the customized SocketImplFactory as the
default. The information about the IP address and port of the
target server can be obtained through reflection.

Using AOP for Interception

inheritance: com.andngid.b uvild.api.transform. Transform

7777777777777777777

! aspectJ weaver
with Aspectd ! 74

[.class; = dex’ = apk’.]

Fig. 1: Workflow of Aspect] in APM

@QPointcut ("execution(* transfer(..))")// the pointcut expression
private void anyOldTransfer() {}// the pointcut signature

Fig. 2: The Structure of A Pointcut in AOP

Another method for monitoring and measuring URI requests
is using AOP. For example, Aspect] is used to implement

(1@Pointcut("call(org.apache.http.HttpResponse
org.apache.http.client.HttpClient.execute(org.apache.h
ttp.HttpHost, org.apache.http.HttpRequest)) &&

(target (httpClient) && (args(target, request) &&
baseCondition()))”)

2 void httpClientExecute (HttpUriRequest
request) {

4}

Fig. 3: Http Requests Interception based on AOP

AOP in APMs [10]. The workflow of Aspect] in an APM is
shown in Fig.[I] When a developer builds an app with Gradle,
the APM can hook the transformation process from classes
to a dex file by inheriting the Transform class [[11]. Then,
the Aspect] weaver [10] injects the customized code into the
original classes.

Aspect] allows developers to use Pointcut to implement
code injection dynamically. As shown in Fig. 2} a pointcut
declaration contains two elements: a method signature com-
prising the name of the method and method parameters, and a
pointcut expression determines the method executions to track.
As the example shown in Fig.[3] the pointcut designator call is
used to match all method executions whose method signatures
are defined in the pointcut expression.

The pointcut designator target can intercept all join points
(execution of methods). Consequently, with all these pointcut
designators, APMs can capture network requests at runtime.

The limitation in the APMs with AOP-based interception is |

that it relies on the class Transform, which only supports the
transformation from classes to dex file with Gradle build.
Therefore, it can only be used in apps built with Gradle.
If an app is not built with Gradle, AOP-based interception
| cannot work as expected.

J

Analyzing Android Not Response (ANR) Error. Application
Not Responding (ANR) error is another typical error that
frequently occurs in apps. When a user interface (UI) thread
of an app is blocked for a long time, the ANR error will be
triggered. APMs leverage the following approaches to capture
the ANR errors:

Solution 1. APMs can implement a watchdog to detect ANRs.
The watchdog is a thread, which can check the status of main
thread in a periodic way. If the main thread has been frozen
for more than a threshold, the watchdog will report an ANR
error.

Solution 2. As it is known that Android is a message-driven
system, system events are scheduled and appended to the
message queue by the main thread. The main thread is
also named as the Looper thread, which is responsible
for looping message queue and handling messages in the
message queue continuously. When the Looper is blocked
(ANR error), Android outputs the ANR error into a certain
trace file (data/anr/traces.txt). APMs can capture ANR
errors by overriding the logger with the following API:
Looper.getMainLooper().setMessageLogging(Printer

printer), because once the ANR occurs Android records the
ANR error with default Printer and writes to the trace file.
More precisely, APMs override the Printer to capture the
ANR errors.

rCompared with Solution 2, Solution 1 has two defects: (1)‘
the watchdog thread has to keep checking the main thread
to capture the ANR error; and (2) it is not easy to set
the threshold. A small value can introduce performance
overhead as it frequently checks the main thread. Not to
mention that a large threshold can make the watchdog fail
to report ANR timely.

\

Time-on-Page (ToP) Analysis. The time-on-page analysis
aims at computing the time spent during UI display transitions.
In Android, once Choreographer component receives an event
(i.e., vertical synchronization) from the display system, it
schedules the rendering work for the next frame [11]]. The
callback method doFrame is automatically invoked by An-
droid when Android starts rendering the next frame. APMs
apply Choreographer.FrameCallback.doFrame() to monitor
Ul display transitions. The time spent during UI display
transitions can be recorded by APMs.

The limitation of this ToP analysis is that Choreographer is
introduced since API 16. Therefore, it cannot be used for
apps using old Android framework APIs.

Logging and Tracking. Developers can employ the logging
functions provided by APMs to collect runtime information for
debugging or understanding users’ execution traces during the
runtime. The information recorded with the built-in logging
function in APM will be sent back to the server. Similarly,
developers can also exploit APMs to track an event. Develop-
ers often use such a API to collect users’ behaviors, such as
preferences and execution paths.

Memory usage. Collecting memory usage is useful to diag-
nose the potential memory leakage in an app. In general, there
are three approaches for collecting memory usage at runtime:
(1) using the Android API ActivityManager.MemoryInfo; (2)
reading the system file /proc/meminfo; and (3) invoking the
Android API ActivityManager.getProcessMemoryInfo.

The method (1) and (3) can provide memory usage of the
app. Whereas method (2) allows the inspection of the memory
usage of all running processes.

CPU Utilization. To capture the CPU utilization, APMs obtain
the CPU usage by inspecting system files. These system files
include /proc/cpuinfo, /proc/<pid>/stat, /proc/stat, and
/sys/devices/system/cpu/cpu0.

Time Consuming. To compute the time consumed by
a code fragment, APMs mainly use two approaches:
currentTimeMillis and TimeUnit.MILLSECOND. Both func-
tions are defined in Java SDK.

We notice a compatibility defect in the existing APMs. That
is, the file /proc/stat cannot be visited since Android 8.0
(API 26). APMs cannot collect CPU usage of all active
processes with this approach.

III. EMPIRICAL STUDY

We guide our empirical study by answering the following
research questions (RQs).
RQ1. How prevalent are APMs in Android apps?
Motivation. We setup this RQ to reveal the usage situation of
APMs that are adopted by Android apps.

50.0%
100000

% -
40.0% 80000

30.0%1 60000

20.0% 40000

10.0% 20000

0.0% -~ o

Game
Tools
Sports
Finance
Comics
Business
Social

Photograph
Lifestye

Communication
Entertainment
Media & Video

Shopping
Transportation
Weather

Medical

Travel & Local
Education
Productivity

Music & Audio
News & Magazines

(]
@5
Q =
c+
=
W =
@ 2
o
£
gw
-8
=

Books & Reference

Fig. 4: APM Usage by App Category

Results. We randomly select 500,000 apps from Google
Play. The size of apps ranges from 100KB to 1.2GB. These
apps come from 25 categories. Note that we merge all sub-
categories of Game into one. We find that there are 55,722
apps (11%) that use APMs. The details of these apps’ cat-
egories can be found in Fig. 4] From the diagram, we can
see that developers usually use APMs in entertainment and
lifestyle apps. By contrast, developers seldom choose APMs
if apps belongs to Lib & Demo and Book & Reference.
RQ2. Will apps collect sensitive data using APMs?
Motivation. As APMs allow developers to log and collect
values of variables at runtime, for this RQ, we aim at checking
whether sensitive data will leak through APMs.
Methodology. We leverage FlowDroid [12] to detect the
privacy leaks from sensitive data (a.k.a, source) to statements
sending the data outside the application or device (a.k.a, sink).
We use the sensitive APIs defined in existing works [12]], [[13]
as source (e.g., getLatitude(), getSimSerialNumber()). We
select the APMs’ logging APIs as sinks. We manually verify
that these APIs can send the data to APM servers. To be exact,
for an APM API, we design a demo and log messages with
the APL If messages logged by this API can be received by
the APM server, we consider API as a sink. We consider a
path from a source to a sink as a leak.

Results. As a result, we find 23,397 apps out of 55,722

apps (42%) collect sensitive data from users with
APMs. In total, 99,566 leaks are found in all these
23,397 apps. The top-ranked sources for these leaks

are: TelephonyManager::getDeviceId() (13943 leaks),

android.location.LocationManager: :getLastKnownLocation()

(13906 leaks), org.apache.http.HttpEntity::getEntity
(5030 leaks), and android.location.Location: :getLatitude()
(2852 leaks).

RQ3. What are the limitations in existing APM?
Motivation. In this RQ, we aim at discussing the limitations
in APMs, which can assist APM vendors to improve their
products.

Methodology. We care about two types of defects in APM:
using deprecated permissions and accessing sensitive data.
First, we manually collect permissions required by these
APMs. Then, we reverse engineer all APMs to inspect insecure
APIs.

Result. Some APMs request permissions that are proven
to be deprecated or unnecessary. These permissions in-
clude READ_LOGS, READ_PHONE_STATE, GET_TASK,
BLUE_TOOTH, SYSTEM_ALERT _WINDOW, and SYS-
TEM_OVERLAY_WINDOW. Specifically, the permission
READ_LOGS and GET_TASK are deprecated.

IV. RELATED WORK

Application Performance Monitoring. Trubiani et al. [5]
discussed how to use the information collected by APM
to diagnose the problem in applications. Ahmed et al. [3]]
studied the effectiveness of APMs for measuring the runtime
performance of web applications. Yao et al. [I]] discussed
how to instrument logs in order to have better monitoring
performance. Willnecker et al. [6] proposed an approach to
model the performance of JavaEE applications. Different from
these studies, we focus on exploring the functionality of APMs
and discovering usage patterns of APM rather than discussing
the way to use the data collected by APMs.

Network Measurement. Since the Android framework pro-
vides convenient interfaces for users to intercept and forward
network packets, many apps are designed to measure the
mobile network performance [14f]. Li et al. [13] adopted
the network round-trip time (nRTT) as the metric to appraise
the accuracy of network measurement apps. Xue et al. [[15]]
conduct a systematic study of three types of factors, including
implementation patterns of measurement apps, Android archi-
tecture, and network protocols, to learn how these factors bias
the measurement results of these apps.

Measurement and Monitoring for Apps. Several approaches
have been proposed to diagnose performance bottlenecks in
apps. Applnsight [16]] instruments mobile apps by interposing
event handlers to collect information on critical paths that are
triggered by user transactions. Lee et al. [[17] proposed a user
interaction-based mobile application profiling system which
can analyze fine-grained information, including user interac-
tion, system behavior, and power consumption, to perform
Android app tuning. AndroidPerf [18], a cross-layer profiling
system, leverages cross-layer dynamic taint analysis as well
as instrumentation to obtain both the execution information
and the performance information about Android apps. Di-
agDroid [19] adopts a dynamic instrumentation approach to
capture the data related to Ul interactions and diagnose Ul
performance of apps.

V. CONCLUSION

Since developers still use APMs as black boxes, we conduct
the firs study to demystify APMs for Android. We reveal the

implementations of 8 key functions commons in APMs and
their limitations. Moreover, we conduct a large-scale empirical
study on 500,000 Android apps with interesting observations
(e.g., limitations and issues in existing APMs).

VI. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful com-
ments. This work is supported in part by the Hong Kong
General Research Fund (No. 152223/17E, 152239/18E), the
Fundamental Research Funds for the Central Universities (No.
NSFC 61872438), and the NSF grant (No. CNS-1566388).

REFERENCES

[1] K. Yao, G. B. de Pddua, W. Shang, S. Sporea, A. Toma, and S. Sajedi,
“Logdperf: Suggesting Logging Locations for Web-based Systems’
Performance Monitoring,” in Proc. ICPE, 2018, pp. 127-138.

[2] M. Karami, M. Elsabagh, P. Najafiborazjani, and A. Stavrou, “Behavioral
Analysis of Android Applications Using Automated Instrumentation,” in
Proc. SERE, 2013, pp. 182-187.

[3] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang,
“Studying the effectiveness of application performance management
(apm) tools for detecting performance regressions for web applications:
An experience report,” in Proc. MSR, 2016, pp. 1-12.

[4] C. Heger, A. van Hoorn, M. Mann, and D. Okanovi¢, “Application
Performance Management: State of the art and challenges for the
Future,” in Proc. ICPE, 2017, pp. 429-432.

[5] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche,
“Exploiting Load Testing and Profiling for Performance Antipattern
Detection,” Information and Software Technology, vol. 95, pp. 329 —
345, 2018.

[6] F. Willnecker, A. Brunnert, W. Gottesheim, and H. Krcmar, “Using
Dynatrace Monitoring Data for Generating Performance Models of Java
EE Applications,” in Proc. ICPE, 2015, pp. 103-104.

[7]1 OnlineArtifact, “Demystifying apm for android.” [Online]. Available:
https://sites.google.com/view/apm-empiricalstudy/

[8] Techbencon, “Performance engineering survey: Findings
from 400 dev, test, and it ops professionals.”
[Online]. Available: https://techbeacon.com/app-dev-testing/

performance-engineering-survey-findings-400-dev- test-it- ops- professionals

[91 V. O. Safonov, Using aspect-oriented programming for trustworthy
software development. John Wiley & Sons, 2008, vol. 5.

[10] Eclipse, “Aspectj.” [Online]. Available: https://www.eclipse.org/aspectj/
doc/released/adk 1 Snotebook/index.html

[11] Google, “Android documentation.” [Online]. Available: https://developer.
android.com

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259-269, 2014.

[13] L. Li, A. Bartel, T. F. Bissyandf\l’, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
Inter-Component Privacy Leaks in Android Apps,” in Proc. ICSE, vol. 1,
2015, pp. 280-291.

[14] D. Wu, R. K. C. Chang, W. Li, E. K. T. Cheng, and D. Gao, “Mopeye:
Opportunistic monitoring of per-app mobile network performance,” in
in Proc. USENIX ATC, 2017, pp. 445-457.

[15] L. Xue, X. Ma, X. Luo, L. Yu, S. Wang, and T. Chen, “Is what you
measure what you expect? factors affecting smartphone-based mobile
network measurement,” in Proc. INFOCOM, 2017, pp. 1-9.

[16] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild,” in Proc. OSDI, 2012, pp. 107-120.

[17] S. Lee, C. Yoon, and H. Cha, “User interaction-based profiling system
for android application tuning,” in Proc. UbiComp, 2014, pp. 289-299.

[18] L. Xue, C. Qian, and X. Luo, “Androidperf: A cross-layer profiling
system for android applications,” in Proc. IWQoS, 2015, pp. 115-124.

[19] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “Diagdroid: Android
performance diagnosis via anatomizing asynchronous executions,” in
Proc. FSE, 2016, pp. 410-421.

https://sites.google.com/view/apm-empiricalstudy/
https://techbeacon.com/app-dev-testing/performance-engineering-survey-findings-400-dev-test-it-ops-professionals
https://techbeacon.com/app-dev-testing/performance-engineering-survey-findings-400-dev-test-it-ops-professionals
https://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html
https://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html
https://developer.android.com
https://developer.android.com

