
ParallelEVM: Operation-Level Concurrent Transaction
Execution for EVM-Compatible Blockchains

Haoran Lin∗
Zhejiang University
Hangzhou, China

haoran_lin@zju.edu.cn

Hang Feng∗
Zhejiang University
Hangzhou, China
h_feng@zju.edu.cn

Yajin Zhou†
Zhejiang University
Hangzhou, China

yajin_zhou@zju.edu.cn

Lei Wu
Zhejiang University
Hangzhou, China
lei_wu@zju.edu.cn

Abstract
Blockchain systems, especially EVM-compatible ones that
serially execute transactions, face a significant limitation in
throughput. One promising solution is concurrent transac-
tion execution, which accelerates transaction processing and
increases the overall throughput. However, existing concur-
rency control algorithms fail to obtain adequate speedups
in high-contention blockchain workloads, primarily due to
their transaction-level conflict resolution strategies.

This paper introduces a novel operation-level concurrency
control algorithm tailored for blockchains. The crux of our
approach is to ensure that only operations depending on
conflicts are executed serially, while permitting concurrent
execution of the remaining conflict-free operations. In con-
trast to conventional approaches that either block or abort
an entire transaction upon detecting conflicts, our algorithm
integrates a redo phase that identifies and re-executes con-
flicting operations. To facilitate this, we propose the SSA
(static single-assignment) operation log, a mechanism to
trace operation dependencies, thereby enabling precise con-
flict identification and efficient re-execution. Our prototype,
ParallelEVM, is evaluated using real-world Ethereum blocks.
Experimental results show that ParallelEVM achieves an
average speedup of 4.28×, a marked improvement over the
2.49× speedup achieved by optimistic concurrency control.
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1 Introduction
Following the growing prosperity of cryptocurrencies [34,
43], blockchain technologies have gained increasing atten-
tion. The introduction of smart contracts [13] has further
expanded the applications of blockchains beyond cryptocur-
rencies, e.g., decentralized finance. But the limited through-
put remains a significant impediment to the widespread
adoption of blockchains.
To enhance blockchain throughput, efforts have primar-

ily focused on reducing block time or increasing block size.
Block time, the average time to generate a new block, is
typically determined by the consensus protocol. Recent in-
novations have yielded various consensus protocols capable
of generating blocks in a short time [30, 31, 40, 41]. Notably,
Ethereum, a leading blockchain platform, has transitioned
to the more efficient Proof-of-Stake (PoS) consensus [25].
Additionally, permissioned blockchains, such as Quorum,
can adopt more aggressive consensus protocols to achieve
shorter block times. Consequently, block time is no longer
the primary bottleneck for throughput in these blockchains.
However, the block size, determined by the number of trans-
actions processed within the block time, has emerged as a
significant challenge. A decrease in block time, without a cor-
responding improvement in transaction execution speed, in-
advertently reduces block size, thereby undermining overall
throughput. Therefore, our objective is to boost throughput
by enhancing transaction execution speed.

https://doi.org/10.1145/3689031.3696063
https://doi.org/10.1145/3689031.3696063
https://doi.org/10.1145/3689031.3696063
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Figure 1. Token transfer example.

The Challenge of Concurrent Execution. Concurrent
execution stands out as a promising approach to augment
the performance of blockchain execution layers. By lever-
aging the parallelism inherent in modern hardware, this
approach significantly improves the throughput of transac-
tion execution. However, directly integrating conventional
concurrency control algorithms into blockchains has proven
to be suboptimal, largely attributed to the hot spot prob-
lem [2, 10, 24, 44]. For instance, in blockchains like Ethereum,
a mere 0.1% of storage slots are accessed by 62% of storage
operations, illustrating high data contention. Furthermore,
the prevalent pattern for storage operations in blockchains is
read-modify-write (RMW) [17]. When multiple concurrent
RMW operations access the same storage slot, it results in
intense data contention, significantly degrading the perfor-
mance of conventional concurrency control algorithms.
The root cause behind the suboptimal performance of

these traditional algorithms lies in their transaction-level con-
flict resolution strategies. They view transactions as atomic
entities, processing them without insight into their internal
operations. When faced with a conflict, these algorithms
either block or abort the entire transaction, even if only a
subset of operations are truly affected by the conflict. These
coarse-grained parallelizing strategies prove inadequate for
high-contention blockchain workloads.
An Insightful Example. To motivate a new conflict reso-
lution strategy, we examine a representative token transfer
scenario illustrated in Figure 1. The transaction 𝑡𝑥1 initiates
a transfer of ten tokens from user 𝐴 to 𝐵, while 𝑡𝑥2 initiates
a similar transfer from user𝐴 to𝐶 . These transactions inher-
ently conflict because they both access𝐴’s balance. However,
the conflict on 𝐴’s balance does not affect the updates to 𝐵’s
and 𝐶’s balances. Their balances will increase by ten tokens
irrespective of the conflict, assuming 𝐴 has sufficient tokens
to cover both 𝑡𝑥1 and 𝑡𝑥2. Thus, the RMW operations on
𝐵’s and 𝐶’s balances remain conflict-free, enabling poten-
tial concurrent execution. An efficient optimistic execution
strategy might proceed as follows: (i) execute 𝑡𝑥1 and 𝑡𝑥2
concurrently akin to OCC, (ii) validate and commit 𝑡𝑥1, (iii)
detect that 𝑡𝑥2 does not observe 𝑡𝑥1’s update on 𝐴’s balance,
and (iv) re-execute the RMW operations on 𝐴’s balance in
𝑡𝑥2 and then commit it. This paradigm addresses data con-
flicts at the operation level. Rather than blocking or aborting
the entire transaction, only the operations dependent on the
conflicting data are re-executed.

Proposed Approach. Based on the aforementioned insights,
we propose a novel operation-level concurrency control al-
gorithm designed to maximize parallelism, even under high-
contention blockchain scenarios. Central to this algorithm
is its ability to resolve data conflicts at the operation level.
Specifically, only operations dependent on conflicting data
are executed serially, while remaining operations proceed
concurrently without blocking or aborting.

Our approach employs a variant of optimistic concurrency
control (OCC). Consistent with conventional OCC practices,
our approach initially runs transactions concurrently, record-
ing accessed storage slots in a transaction-local memory. Sub-
sequently, transactions undergo individual validation and
commitment. In contrast to OCC, which aborts and restarts a
transaction upon detecting conflicts, our method integrates a
specialized redo phase. This phase identifies and re-executes
all conflict-affected operations, ensuring that only these op-
erations undergo re-execution, thereby mitigating perfor-
mance degradation caused by data contention.
To identify and re-execute conflicting operations in the

redo phase, we introduce the SSA (static single assignment)
operation log, which not only records the inputs and out-
puts of EVM operations but also captures inter-operation
dependencies. The SSA operation log ensures each variable
to be assigned exactly once and defined before it is used. This
approach establishes a definition-use chain for each variable,
with the log explicitly stating the definition and all subse-
quent uses of the variable. When a conflicting variable is
identified, definition-use chains are traversed to pinpoint all
operations that depend on the conflicting variable, enabling
precise and effective conflict resolution.

Our prototype system, ParallelEVM, is implemented based
on Go Ethereum. Evaluations of this system reveal that Paral-
lelEVM achieves an average speedup of 4.28× on real-world
Ethereum workloads, a marked improvement over the 2.49×
speedup of OCC.
Our Contribution. In summary, this paper makes the fol-
lowing contributions:
• Novel Strategy. We introduce an operation-level conflict
resolution approach, enabling parallel transaction execu-
tion even in high-contention blockchain workloads.
• New Techniques. We present the SSA operation log, a
new methodology for identifying and re-executing con-
flicting operations, accompanied by a comprehensive al-
gorithm for its generation.
• Efficient Prototype. ParallelEVM demonstrates its adept-
ness in parallelizing transactions in real-world Ethereum
environments. The evaluation indicates a tangible poten-
tial to augment the overall throughput by employing operation-
level concurrency control algorithm.
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Figure 2. Ethereum world state.

2 Background
2.1 Blockchain
A blockchain is a distributed state machinemaintained over a
peer-to-peer network. It is organized as a sequence of blocks,
each connected by cryptographic hash pointers. Within each
block is a series of transactions that either transfer cryptocur-
rency or invoke smart contracts [43] to alter the blockchain’s
state. Typically, the design of a blockchain encompasses two
distinct layers: a consensus layer ensuring all nodes, even
those mutually distrustful of each other, agree on the same
block history, and a state layer defining the state’s structure
and its transition rules.
Ethereum’s State. Ethereum structures its state as the world
state [43], which is illustrated in Figure 2. This state repre-
sents a relationship between account addresses and their
respective account states. An Ethereum account has four
components: (1) balance, the quantity of Ether, Ethereum’s
native cryptocurrency, owned by this account, (2) nonce, the
number of transactions initiated by the account, (3) code
hash, the hash pointer to the account’s smart contract code,
and (4) storage hash, the hash pointer to the root node of a
Merkle Patricia tree [43], encoding the account’s key-value
storage (a mapping of 256-bit integers).
The rules governing Ethereum’s world state transitions

are stipulated by the Ethereum Virtual Machine (EVM) [43].
The EVM, a 256-bit word stack machine, comprises volatile
byte-addressable memory and persistent key-value storage.
The EVM code accesses the stack via instructions like PUSH,
POP, SWAP, DUP, the memory via MLOAD, MSTORE, MSTORE8, and
the storage via SLOAD and SSTORE. When executing a smart
contract, the EVM runs the contract code and modifies the
world state. Every EVM operational step has an associated
"gas" cost, which the transaction’s initiator covers.
Throughput Bottleneck. The throughput of a blockchain
hinges on two parameters: block time and block size. Block
time, typically fixed at the consensus layer, has historically
been the throughput’s constraining factor. For instance, the
Proof-of-Work (PoW) consensus necessitates a prolonged
block generation time (approximately 10 minutes per block
for Bitcoin) to prevent simultaneous block creation. Conse-
quently, Bitcoin [34] achieves a rate of only around seven

transactions per second. However, several modern consensus
protocols boasting rapid block generation have emerged and
gained traction in both industrial and academic areas [19,
26, 30, 31, 40, 41]. Notably, Ethereum transitioned to the
more efficient Proof-of-Stake (PoS) consensus [25], permit-
ting shorter block times 1. Besides, Quorum, a permissioned
blockchain based on the Ethereum protocol, is reported to
reach 2000 tps [3]. With such progress, the consensus layer
is no longer the limiting factor for performance.
To augment throughput, increasing block size is a subse-

quent logical step. Yet, the size cannot be indiscriminately
enlarged, as less efficient full nodes might lag behind the
blockchain due to constraints in storage space and execu-
tion speed. Sharding presents a viable solution for the space
constraint by partitioning the blockchain state into shards,
enabling each node to manage only a fragment of the total
state [11, 27, 32, 36, 42]. However, sharding does not rectify
the speed issue, primarily attributed to the hot spot problem.
Given that a majority of blockchain transactions invoke a
few popular contracts, they are processed predominantly by
a handful of active shards. This means that nodes in these
shards handle a significant volume of transactions, restrict-
ing substantial block size growth. Thus, accelerating trans-
action execution is pivotal in achieving high-throughput
blockchains.
Limitations of Sequential Execution. The majority of
blockchain systems process transactions within a block in
a serial manner. While these serial execution models offer
simplicity in reasoning, they do not capitalize on the inherent
parallelism of contemporary commodity hardware, such as
multi-core processors and SSDs. This underscores the need
for introducing concurrent transaction execution.

2.2 Concurrency Control Algorithm
Concurrency Control in DBMSs. Traditional Database
Management Systems (DBMSs) provide transactions with an
illusion of isolation from concurrent transactions, ensuring
they remain unaware of the effects of simultaneous transac-
tions. Over time, a variety of concurrency control algorithms
have been proposed to facilitate concurrent transaction exe-
cution while preserving this sense of isolation.

The essence of any concurrency control algorithm lies in
its approach to conflict resolution. A conflict arises between
two operations from distinct transactions when they access
a shared object and at least one operation involves writing.
Concurrency control algorithms can generally be catego-
rized based on their conflict resolution methodologies: (1)
pessimistic algorithms like 2PL[12], which employ locks to
preclude conflicts, and (2) optimistic algorithms like OCC[29],
which assume conflicts are rare and, when detected, abort
and retry the transactions.

1For compatibility, the block time for Ethereum using PoS is still around 12
seconds at the current stage.
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Figure 3. The hot spot distributions for (a) contracts and
(b) storage slots. The contract and slot indices (X-axes) are
arranged in descending order based on their respective in-
vocation and access counts. The counts for invocations and
accesses (Y-axes) are depicted using a logarithmic scale.

Concurrency Control in Blockchains. Blockchains im-
pose a distinctive constraint on transaction execution, not
present in conventional DBMSs: transactionsmust commit in
the specific order outlined within the block. To address this
challenge, researchers have adapted traditional concurrency
control algorithms for blockchain contexts [2, 10, 17, 24]. In
pessimistic approaches, such as 2PL variants, transactions ac-
quire locks based on the sequence outlined in the block. Sim-
ilarly, with optimistic methods like OCC variants, a transac-
tion undergoes validation only after preceding transactions
have been committed.

3 Motivation
3.1 The Hot Spot Problem
A defining feature of blockchain workloads is the hot spot
problem. In blockchains, data accesses are highly skewed,
where a minority of contracts or storage slots receive a dis-
proportionate number of invocations or accesses. For in-
stance, highly popular contracts like CryptoKitties [8] and
certain crowdfunding agreements have notably strained the
Ethereum network at times. To quantify this trend, we col-
lected invocation and access counts for distinct contracts and
storage slots on Ethereum between January 1, 2022, and July
1, 2022. Figure 3 reveals that merely 0.1% of the 10 million

1 contract ERC20 {
2 mapping(address => uint256) balances;
3 mapping(address => mapping(address => uint256))

allowances;
4 function transferFrom(from , to, amount) {
5 _useAllowance(from , _msgSender (), amount);
6 _transfer(from , to, amount);
7 }
8 function _transfer(from , to, amount) {
9 require(balances[from] >= amount);
10 balances[from] -= amount;
11 balances[to] += amount;
12 ...
13 }
14 function _useAllowance(owner , spender , amount) {
15 require(allowances[owner][ spender] >= amount);
16 allowances[owner][ spender] -= amount;
17 ...
18 }
19 }

Figure 4. A fragment of an ERC20 contract in Solidity.

contracts are responsible for 76% of all invocations. Simi-
larly, only 0.1% of the 200 million storage slots account for
62% of all storage access counts. Additionally, we observed
that the ten most frequently invoked contracts represent
approximately 25% of all contract invocations, with nine of
them being ERC20 contracts [14] – the prevailing fungible
token standard on Ethereum. These findings underscore the
intense data contention present in blockchain workloads.
This hot spot problem considerably impairs the efficacy

of traditional concurrency control algorithms. For those tai-
lored to blockchain, pessimistic algorithms might see trans-
actions enduring prolonged blocks or even being preempted
by transactions of higher priority due to lock contention. In
the case of optimistic algorithms, high data conflict rates
result in numerous aborted transactions. Thus, the challenge
of formulating a concurrency control algorithm adept at re-
solving the hot spot dilemma in blockchain workloads remains
as an unresolved issue.

3.2 Toward Parallelizing an ERC20 Contract
An Example of Data Conflicts. Figure 4 depicts a segment
of an ERC20 contract’s implementation. This contract main-
tains its persistent state through two variables: the balances
mapping, which denotes token owned by each account, and
the allowances mapping, which monitors tokens authorized
for third-party transfers. The transferFrom function allows
message senders to transfer tokens on an owner’s behalf.
This function can fail if either the owner’s token balance is
insufficient (as seen in line 9) or the sender’s allowances are
inadequate (as seen in line 15).



ParallelEVM: Operation-Level Concurrent Transaction Execution for... EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Data conflicts typically emerge in ERC20 contracts when
several transactions intend to distribute tokens from an iden-
tical sender address [17]. Consider the concurrent transac-
tions:

𝑡𝑥1 = transferFrom𝐷 (𝐴, 𝐵, 𝑣𝑎𝑙𝑢𝑒1)
𝑡𝑥2 = transferFrom𝐸 (𝐴,𝐶, 𝑣𝑎𝑙𝑢𝑒2)

,where function subscripts indicate the transaction’s sender
address. These transactions conflict because both target the
same storage slot, balances[A].
Transaction-level Conflict Handling Strategy. Tradi-
tional algorithms struggle to parallelize 𝑡𝑥1 and 𝑡𝑥2 due to
the balances[A] conflict. However, a majority of operations
within these transactions remain unaffected by this conflict
(e.g., balances[B] and balances[C]). We denote such strate-
gies as transaction-level, emphasizing that they treat a trans-
action as a whole, without regard to its individual operations.
When faced with a conflict, these strategies either block or
abort the complete transaction, leading to inefficiencies amid
substantial data contention.
Operation-level Conflict Handling Strategy. Revisiting
the previous example, under optimistic concurrency con-
trol, 𝑡𝑥2 fails validation because it does not observe 𝑡𝑥1’s
balances[A] update, resulting in an incorrect value. How-
ever, 𝑡𝑥2 does correctly update other slots. Using this ob-
servation, we enhance traditional OCC by incorporating a
redo phase after the validation phase. Instead of aborting
𝑡𝑥2 after a failed validation, we re-execute line 10 using the
updated balances[A] value. This allows for the resolution of
the conflict through a single line of source code re-execution,
enabling parallel execution of most operations within 𝑡𝑥1 and
𝑡𝑥2. This is termed as the operation-level strategy, focusing
only on operations directly or indirectly impacted by con-
flicts. Given that most blockchain workload conflicts affect
only a few operations [17], this approach can substantially
mitigate performance issues linked to conflicts.

To ensure the correctness of the operation-level strategy,
we introduce a concept termed constraint guards. Using a
scenario from the earlier example, imagine if after execut-
ing 𝑡𝑥1, balances[A] does not have sufficient tokens for 𝑡𝑥2.
Under these conditions, 𝑡𝑥2 must be aborted because of the
balance verification in line 9. Our strategy should identify
this violation and abort 𝑡𝑥2, rather than merely re-executing
line 10. To facilitate this, we embed constraint guards into
lines 9 and 15 that validate these essential conditions. Dur-
ing the redo phase for 𝑡𝑥2, if constraints are not met, the
transaction is aborted.

4 Challenges and Our Solution
4.1 Challenges
The cornerstone of our approach is to address transaction
conflicts at the granularity of individual operations. While
we have enhanced the conventional OCC with an additional

v1 = SLOAD(&allowances[A][E])L1

v2 = LT(v1, value2)L2

v3 = SUB(v1, value2)L4

SSTORE(&allowances[A][E], v3)L5

v4 = SLOAD(&balances[A])L6

v5 = LT(v4, value2)L7

v6 = SUB(v4, value2)L9

SSTORE(&balances[A], v6)L10

v7 = SLOAD(&balances[C])L11

v8 = ADD(v7, value2)L12

SSTORE(&balances[C], v8)L13

S15

S15

S15

S16

S16

S9

S9

S9

S10

S10

S11

S11

S11

ASSERT_EQ(v2, 0)L3

ASSERT_EQ(v5, 0)L8

Figure 5. The SSA operation log of the transaction 𝑡𝑥2 in
Section 3.2. Operations in diamond boxes (i.e., L3 and L8) are
constraint guards. The corresponding line numbers in source
code (Figure 4) are annotated on the left; the definition-use
and use-definition chains are drawn on the right.

redo phase that identifies and re-executes operations af-
fected by conflicts, achieving this at the EVM bytecode level
presents considerable challenges.
Identification of Conflicting Operations. For the redo
phase to be both accurate and efficient, it’s imperative to
identify all operations contingent on conflicts, ensuring no
under-estimation or over-estimation. Such conflicting opera-
tion identification requires precise dependency graph of all
operations. Nevertheless, pinpointing these dependencies
within the EVM bytecode is non-trivial. This is primarily
because EVM operations don’t manifest data dependencies
explicitly. Instead of directly using the results of preceding
operations as inputs, EVM operations obtain inputs from the
runtime context – comprising the stack, memory, and storage.
This layer of abstraction complicates the task of identifying
the originating operations of these inputs.
Re-execution of Conflicting Operations. The successful
execution of an EVMoperation is contingent upon its specific
runtime context. For instance, carrying out an ADD operation
necessitates knowledge of the top two stack elements, while
the MLOAD operation requires awareness of the memory state
at that point. However, reconstructing the runtime context
when re-executing conflicting operations only is challenging.
Absent these contexts, the accurate re-execution of EVM
operations becomes unfeasible.
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4.2 Proposed Approach: The SSA Operation Log
To surmount the previously outlined challenges, we intro-
duce a novel technique termed the SSA operation log. The
foundational concept is that, instead of analyzing the EVM
bytecode, we dynamically create the static single assignment
form (SSA) [6] representation of the operations, which states
the data dependencies explicitly. Concretely, we enforce that
the inputs of each operation in SSA operation log must be
explicitly delineated by : (i) immediate values, (ii) outputs
of prior operations, and (iii) committed storage slots2. By
adopting this approach, we bypass the need to access run-
time contexts, thereby simplifying both the identification
and re-execution of conflicting operations.
The SSA operation log offers clear use-definition and

definition-use3 relationships for operations. Throughout the
redo phase, conflicting operations can be pinpointed by nav-
igating the definition-use chains. Subsequent steps involve
reconstructing operation inputs based on their definition
operations and re-executing these conflicting operations. As
an exemplar, Figure 5 delineates the SSA operation log for
the transaction 𝑡𝑥2 discussed in Section 3.2. During the redo
phase, the conflict associated with balances[A] can be traced
back to the L6 entry (L6 is the first operation that introduces
the conflicting value). By tracking the definition-use chains
presented on the right of Figure 5, it becomes evident that
operations spanning L6 to L10 are contingent upon the con-
flicting balances[A]. Therefore, we can replace v4 in L6 by
the value committed by 𝑡𝑥1, re-execute instructions from L7

to L10, and finally update balances[A] correctly.

5 ParallelEVM Design
5.1 Overview
Figure 6 illustrates that ParallelEVM employs a variant of
optimistic concurrency control algorithms. However, Paral-
lelEVM avoids aborting transactions immediately after the
validation failure. It instead instigates a redo phase dedicated

2A storage slot is termed ’committed’ if it remains untouched by preceding
operations in the ongoing transaction.
3A variable, 𝑣, situated on the left of an assignment statement, 𝑠 , signifies
a definition of 𝑣. Conversely, a variable, 𝑣, on the right of a statement, 𝑠 ,
implies that a definition of 𝑣 is utilized at 𝑠 .

to conflict resolution at the operation level. Transaction exe-
cution in ParallelEVM is segmented into four distinct phases:

1. Read phase: ParallelEVM concurrently and speculatively
executes transactions. For each transaction, ParallelEVM
records all key-value pairs it accessed (read and write) and
dynamically generates an SSA operation log, as discussed
in Section 5.2.

2. Validation phase: Here, ParallelEVM validates the specula-
tive executions from the read phase. Transactions progress
to validation only if preceding ones are successfully com-
mitted. Within this phase, ParallelEVM revisits all key-
value pairs from a transaction’s read set, verifying consis-
tency between initially read values and freshly retrieved
ones. Success in validation propels a transaction to the
write phase; failure diverts it to the redo phase.

3. Redo phase: At this phase, ParallelEVM attempts to re-
solve conflicts through re-execution of the conflicting op-
erations. Leveraging the dependencies record in the SSA
operation log, ParallelEVM identifies and re-executes all
conflicting operations, as explained in Section 5.3. If the
re-execution preserves all constraint guards, the transac-
tion advances to the write phase for commitment. Failing
that, the transaction aborts, necessitating a restart during
the write phase.

4. Write phase: This final phase is where ParallelEVM consoli-
dates transactions. If a transaction successfully pass either
the validation or redo phase, ParallelEVM directly com-
mits it, committing its write set to the storage. Conversely,
if both phases fail, ParallelEVM aborts the transaction, ne-
cessitating a restart and eventual commitment.

5.2 SSA Operation Log Generation
This section illustrates the dynamic generation of the SSA
operation log during the read phase. The log generation algo-
rithm fundamentally seeks to trace data flows and pinpoint
the defining operations of instruction inputs. An entry in
this log contains:
• LSN: A unique log sequence number identifying the entry.
• Opcode: The operation’s instruction code.
• Operands: Inputs of the operation.
• Result: The operation’s output.
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• Def: Definition operations of input operands. This includes
stack, storage, and memory sub-fields that trace data de-
pendencies across the stack, storage, and memory. Further
details on these structures and their generation rules are
explored in Sections 5.2.1-5.2.3.

5.2.1 StackOperation LogGeneration. This section out-
lines the generation of SSA operation log entries for stack-
only operations. For each operation, ParallelEVM records
definition operations for all stack operands in the def.stack

field. If a stack operand, operands[i], is the result of a prior
operation 𝑜𝑖 , the def.stack[i] field is tagged with the LSN

of 𝑜𝑖 . Otherwise, it is assigned NULL.
ParallelEVM leverages a shadow stack to accurately popu-

late the def.stack field, logging each stack item’s definition
operation. If an item is the result of a prior log entry, its
shadow stack counterpart reflects the entry’s LSN. Otherwise,
it’s marked NULL. Hence, ParallelEVM can retrieve definition
operations for stack operands from the shadow stack, storing
them in def.stack.
The shadow stack is managed akin to the actual stack.

For the PUSH operation, which adds a constant to the stack,
ParallelEVM pushes a NULL into the shadow stack. For POP,
SWAP, or DUP operations, the shadow stack is adjusted as the
actual stack. For other computational operations, shadow
stack items (lsns) corresponding to stack operands are first
identified and removed. If all lsns are NULL, indicating a
constant result, a NULL is pushed into the shadow stack as
the result is pushed to the actual stack. Otherwise, a new log
entry is created, the lsns are stored in def.stack, and the
entry’s LSN is pushed to the shadow stack.
Figure 7 exemplifies the log entry generation for the ADD

operation. Prior to the ADD operation, the stack holds two
items: 30 and 20. The shadow stack implies the first item (30)
is the eighth log entry’s result, and the second item (20) is
a constant. Post-operation, ParallelEVM crafts a log entry
for the ADD operation, pushes the result 50 onto the stack,
and appends the new entry’s LSN (i.e., 9) to the shadow stack.

Consequently, subsequent operations can realize that the top
stack item (50) originates from the ninth log entry.

For storage and memory operations, the generation rules
for def.stack fields are similar. But they should additionally
maintain the def.storage and def.memory fields.

5.2.2 Storage Operation Log Generation. We now ad-
dress the storage operations: SLOAD and SSTORE. SLOAD opera-
tions can be categorized into two types: (I) reading storage
slots written by previous transactions (committed storage
slots), and (II) reading values from prior SSTORE operations
within the same transaction. The def.storage field is em-
ployed by ParallelEVM to differentiate these types. In the
first scenario, the def.storage is set to NULL since these SLOAD
operations are independent of any prior operations within
the same transaction. In the latter scenario, it captures the
LSN of the most recent corresponding SSTORE operation.
To monitor storage data flow, ParallelEVM utilizes two

mapping structures during transaction execution. The first,
latest_writes, records the LSN of the most recent SSTORE
for each storage slot and is used to determine whether a
slot has been written by the current transaction. Conversely,
the direct_reads, which maps each storage slot to a set of
LSNs, keeps track of the LSNs associated with all type I SLOAD
operations. During the execution of an SSTORE writing stor-
age slot 𝐴, ParallelEVM updates latest_writes[A] with the
operation’s LSN. For an SLOAD accessing slot 𝐴, if 𝐴 is ab-
sent in latest_writes, it indicates that the slot has not been
written by the current transaction and relies only on com-
mitted storage slots. In this case, the def.storage is set to
NULL, and the entry’s LSN is added to direct_reads[A]. Oth-
erwise, def.storage is assigned the latest_writes[A] value,
implying that the SLOAD reads the output of a prior SSTORE.
After the transaction execution, direct_reads precisely

records all SLOADs that read slots written by previous trans-
actions (type I), assisting in identifying invalid slot reads
during the redo phase (Section 5.3).

5.2.3 Memory Operation Log Generation. Within the
EVM, memory operations, such as MLOAD and MSTORE*, are
not uniformly aligned. This leads to potential overlap among
multiple memory write operations, and individual memory
reads might rely on several writes. An example showcas-
ing this behavior with interleaved MSTORE and MSTORE8 is
presented in Figure 8a. Subsequent memory operations to
this region must recognize their dependence on these two
MSTORE* instructions.
To track memory data flow, ParallelEVM incorporates

a shadow memory strategy, analogous to the shadow stack
mechanism. As delineated in Figure 8b, for every bytewritten
by a MSTORE* operation, the corresponding byte in the shadow
memory is marked with <LSN, offset>, where LSN is the
write operation’s log sequence number, and offsetmeasures
the distance from the current byte to the first one written
by the MSTORE*.
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0xFF 0xFF 0x00 0xFF 0xFF

LSN3: MSTORE(Address = 0, Value = 0xFFFF...FF)

0

... ...

LSN8: MSTORE8(Address = 16, Value = 0x00)

15 16 17 31

Memory

(a) Interleaved MSTORE and MSTORE8.

<3,0> <3,15> <8,0> <3,17> <3,31>... ...
0 15 16 17 31

Shadow
Memory

(b) Shadow memory.

0 16

start len

3

lsn

0

offset

16 1 8 0

17 15 3 17

(c) The def.memory field corresponding to (b).

Figure 8.Memory tracking example.

Leveraging the shadow memory, ParallelEVM can record
data dependencies of every memory read in the def.memory

field. Precisely, the def.memory contains multiple <start,

len, lsn, offset> tuples. These indicate that the bytes in the
range [start:start+len) depend on the bytes in the range
[offset:offset+len) from the result of the lsn-th log entry.
For example, when a MLOAD operation reads a 32-byte mem-
ory span in Figure 8a, ParallelEVM populates the def.memory
with the tuples depicted in Figure 8c.

5.2.4 Constraint Guard Generation. To ensure correct-
ness, ParallelEVM imposes several constraints during the
redo phase. These constraints are divided into control-flow,
data-flow, and gas-flow categories. Control-flow constraints
mandate that the re-execution in the redo phase replicates
the path taken during the speculative execution in the read
phase. For instance, the condition for a conditional jump
(JUMPI) must remain consistent. Similarly, the destination
for an unconditional jump (JUMP) should be invariant. When
processing control-flow operations, ParallelEVM introduces
constraint guards to ensure related operands (including jump
conditions and destinations) remain unchanged. Specifically,
if a shadow stack item corresponding to a control-flow operand
is not NULL (indicating a non-constant operand), ParallelEVM
appends an ASSERT_EQ log entry. This entry consists of an
operands field representing the operand value and a def.stack
field denoting the definition operation. During the redo
phase, ParallelEVM compares the operands field with the
result field of the log entry identified by LSN as def.stack.
A match signifies constraint satisfaction, while a mismatch
triggers a redo phase failure.

For data-flow constraints, ParallelEVM guarantees that the
re-execution preserves the data interdependencies among

operations. As an illustration, for an MSTORE operation, the
target address must remain unchanged during the redo phase.
If it’s altered, ParallelEVM would not identify the operations
dependent on this address-altered MSTORE. To safeguard this,
whenever the target address of a runtime context operation
(like MLOAD and MSTORE) is not constant, ParallelEVM adds an
ASSERT_EQ log entry to guard the address operand.

Gas-flow constraints ensure that the transaction fee, de-
termined by the total gas cost, remains valid after redo. Each
EVM instruction consumes a specific amount of gas. EVM
instructions are classified into constant cost instructions,
which have a fixed gas cost, and dynamic cost instructions,
where the gas cost varies depending on the execution con-
text. For example, in the case of the SSTORE operation with a
dynamic gas cost, changing a slot from zero to a non-zero
value consumes more gas than performing the reverse op-
eration. A successful redo requires that the total gas cost
remains unchanged. To achieve this, ParallelEVM generates
an ASSERT_EQ log entry for each dynamic cost instruction.
These entries ensure that the gas cost of each re-executed
operation matches the cost from the original execution.

5.2.5 Definition-Use Graph Generation. Building upon
the def fields, ParallelEVM can identify all operations an
individual operation hinges upon. However, the redo phase
requires an inverse approach: identifying all operations de-
pending on a given operation. To facilitate this, ParallelEVM
crafts a definition-use graph, denoted as 𝐷𝑈𝐺 , during SSA
operation log generation. In 𝐷𝑈𝐺 , each log entry translates
into a node within the graph, and an edge from 𝑒𝑛𝑡𝑟𝑦1 to
𝑒𝑛𝑡𝑟𝑦2 implies that 𝑒𝑛𝑡𝑟𝑦2 utilizes 𝑒𝑛𝑡𝑟𝑦1’s result.

5.3 Redo Phase
Algorithm 1 describes the methodology for identifying and
re-executing conflicting operations during the redo phase.
Upon transaction validation failure, ParallelEVM obtains all
conflicting storage slots and their correct values, as repre-
sented by the conflicts map in Algorithm 1. Then, Paral-
lelEVM leverages the direct_reads map, as discussed in Sec-
tion 5.2.2, and identifies all SLOAD log entries reading conflict-
ing storage slots directly (see line 2). It subsequently amends
their results to reflect the correct values (spanning lines
3-5). Using the depth-first search algorithm on the definition-
use graph, ParallelEVM locates all conflicting operations
depending on the prior conflicting SLOAD entries (see line 6).
Following this, ParallelEVM sequentially re-executes these
operations, excluding the prior SLOAD entries. In scenarios
where an entry is a constraint guard, ParallelEVM verifies
the satisfaction of the constraint (lines 9-11). Alternatively,
it reconstructs the operation inputs based on results from
definition operations specified in the def field (see line 13)
and then re-execute the operation (line 14).
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Algorithm 1: The algorithm for the redo phase.
Input: SSA operation log: 𝑜𝑝𝑙𝑜𝑔;
definition-use graph: 𝐷𝑈𝐺 ;
conflicting storage slot map: 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 [𝑘𝑒𝑦𝑠]𝑣𝑎𝑙𝑢𝑒𝑠 .
Output: whether the redo phase is successful.

1 Function Redo(𝑜𝑝𝑙𝑜𝑔, 𝐷𝑈𝐺 , 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠):
2 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← SLOADs in 𝑜𝑝𝑙𝑜𝑔 that read 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 directly;
3 for entry in sources do
4 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 [𝑒𝑛𝑡𝑟𝑦.𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠];
5 end
6 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔_𝑜𝑝𝑠 ← DFS(𝐷𝑈𝐺 , 𝑠𝑜𝑢𝑟𝑐𝑒𝑠);
7 for 𝑒𝑛𝑡𝑟𝑦 in 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔_𝑜𝑝𝑠 / 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do
8 if entry.opcode is ASSERT_EQ then
9 𝑒𝑥𝑝𝑒𝑐𝑡 ← 𝑒𝑛𝑡𝑟𝑦.𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠.𝑣𝑎𝑙𝑢𝑒 ;

10 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑜𝑝𝑙𝑜𝑔[𝑒𝑛𝑡𝑟𝑦.𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠.𝑙𝑠𝑛] .𝑟𝑒𝑠𝑢𝑙𝑡 ;
11 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≠ 𝑒𝑥𝑝𝑒𝑐𝑡 then return false;
12 else
13 reconstruct the inputs based on 𝑒𝑛𝑡𝑟𝑦.𝑑𝑒 𝑓 ;
14 re-execute 𝑒𝑛𝑡𝑟𝑦 and update 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑠𝑢𝑙𝑡 ;
15 end
16 end
17 return true
18 end

5.4 Correctness
This section illustrates the correctness of ParallelEVM. We
begin by establishing the equivalence between the SSA op-
eration log and the EVM bytecode sequence.
Lemma 1. Given a transaction 𝑇1, let its EVM bytecode
sequence executed during the read phase be represented by
{𝑃 [𝑖]}, and let its corresponding SSA operation log be {𝐿[𝑖]}.
If all entries in {𝐿[𝑖]} are re-executed on storage 𝑆 with all
constraint guards satisfied, then the resulting outputs will
match those of a direct re-execution of𝑇1 on the same storage.

Proof. Denote the re-executed EVM bytecode sequence of𝑇1
as {𝑄 [𝑖]}. In the initial execution (i.e., the read phase), each
𝐿[𝑖] maps uniquely to an EVM bytecode 𝑃 [ 𝑗]. We define
the relationship between the index of SSA operation log (𝑖)
and the index of EVM bytecode ( 𝑗 ) as 𝑓 (𝑖) = 𝑗 , where 𝑓 is
a monotonically increasing function. The proof proceeds in
two parts: (1) we posit that {𝑃 [𝑖]} and {𝑄 [𝑖]} are identical
and show that the re-execution of {𝐿[𝑖]} and {𝑄 [𝑖]} yield
the same results; (2) we prove that {𝑃 [𝑖]} and {𝑄 [𝑖]} are
indeed the same sequence.
• Part 1: Assuming {𝑃 [𝑖]} and {𝑄 [𝑖]} are identical, {𝐿[𝑖]}
and {𝑄 [𝑓 (𝑖)]} would naturally be the same instructions.
Given that {𝐿[𝑖]} captures all storage-related instructions
from {𝑃 [𝑖]} (and thus {𝑄 [𝑖]}), our goal is to demonstrate
that every corresponding pair 𝐿[𝑖] and𝑄 [𝑓 (𝑖)] yield iden-
tical results upon re-execution. This is done using induc-
tion. For the base case, 𝐿[0] and 𝑄 [𝑓 (0)] have identical
results. For the induction step, presuming that for all 𝑖 < 𝑘 ,

𝐿[𝑖] and 𝑄 [𝑓 (𝑖)] produce matching results, our next step
is to verify this for 𝐿[𝑘] and𝑄 [𝑓 (𝑘)]. This is equivalent to
show that the gas costs and inputs for 𝐿[𝑘] and 𝑄 [𝑓 (𝑘)]
are the same. Gas-flow constraints guarantee that each
instruction’s gas cost remains unchanged in redo phase.
Thus, 𝐿[𝑘] and 𝑄 [𝑓 (𝑘)] have the same gas cost. Now, we
break down the inputs:
– Stack inputs: Every EVM bytecode deterministically
alters the stack structure, in both size and item order, re-
gardless of its inputs. Given that {𝑃 [𝑖]} and {𝑄 [𝑖]} are
identical, they share the same stack structure, or equiv-
alently, the same shadow stack. Hence, 𝐿[𝑘] sources its
stack inputs from the results of the same operations as
𝑄 [𝑓 (𝑘)]. Using induction, we deduce that the results of
these definition operations align, ensuring the consis-
tency of stack inputs between 𝐿[𝑘] and 𝑄 [𝑓 (𝑘)].

– Storage inputs: When re-executing {𝐿[𝑖]}, adherence
to data-flow constraints ensures that each 𝐿[𝑖]’s tar-
get storage slot matches that of 𝑃 [𝑓 (𝑖)]. By induction,
for 𝑖 < 𝑘 , each 𝐿[𝑖]’s target storage slot aligns with
that of 𝑄 [𝑓 (𝑖)]. Furthermore, the target storage slots
for 𝐿[𝑘] and 𝑄 [𝑓 (𝑘)], as stack inputs, are also identical.
Hence, for 𝑖 <= 𝑘 , 𝐿[𝑖], 𝑃 [𝑓 (𝑖)] and 𝑄 [𝑓 (𝑖)] uniformly
access the same storage slot. That is, 𝐿[𝑘] and 𝑄 [𝑓 (𝑘)]
share identical storage input dependencies, either read-
ing from the same storage 𝑆 or deriving from the results
of identical operations, leading to the same storage in-
puts.

– Memory inputs: Using a similar logic to storage in-
puts, we can establish that memory inputs for 𝐿[𝑘] and
𝑄 [𝑓 (𝑘)] are consistent.

• Part 2: To prove that {𝑃 [𝑖]} and {𝑄 [𝑖]} are identical se-
quences, we employ a proof by contradiction. It’s clear
that 𝑃 [0] and𝑄 [0] are the same. Let’s assume that 𝑃 [𝑘+1]
and 𝑄 [𝑘 + 1] are the first instruction that differ in these
sequence. This implies that while 𝑃 [𝑘] and 𝑄 [𝑘] are the
same control-flow operation, they lead to distinct target
addresses. Let’s denote the counterpart of 𝑃 [𝑘] in the SSA
operation log as 𝐿[𝑓 −1 (𝑘)]. Given that all control-flow
constraints in {𝐿[𝑖]} hold true, 𝐿[𝑓 −1 (𝑘)] must yield the
same target address as 𝑃 [𝑘]. However, as part 1 demon-
strated, the execution result of 𝐿[𝑓 −1 (𝑘)] matches that of
𝑄 [𝑘]. By transitivity, 𝑃 [𝑘] and𝑄 [𝑘] must have congruent
target addresses, which leads to a contradiction. □
Subsequently, we demonstrate that the partial re-execution

of the SSA operation log in the redo phase is equivalent to a
full re-execution.
Lemma 2. For a given SSA operation log {𝐿[𝑖]}, the sub-
sequent two execution methods yield identical results: (1)
executing {𝐿[𝑖]} over storage 𝑆1 ∪ 𝑆2; (2) first executing
{𝐿[𝑖]} over storage 𝑆1 ∪ 𝑆3 and then partially re-executing
entries dependent on 𝑆3 by substituting 𝑆3 with 𝑆2.
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Proof. Denote the executed entries in the first method as
{𝐿1 [𝑖]}, and in the second method as {𝐿2 [𝑖]}. We prove that
the results of 𝐿1 [𝑖] and 𝐿2 [𝑖] are identical using induction:
Base case: Both 𝐿1 [0] and 𝐿2 [0] are SLOADs targeted on the
same address, leading to the same results due to the storage
replacement.
Inductive step: Assume for all 𝑖 < 𝑘 , 𝐿1 [𝑖] and 𝐿2 [𝑖], the
results of 𝐿1 [𝑖] and 𝐿2 [𝑖] are identical. We prove that this
holds true for 𝐿1 [𝑘] and 𝐿2 [𝑘]. Both 𝐿1 [𝑘] and 𝐿2 [𝑘] share
the same input dependencies, either from prior operations
(line 13 in Algorithm 1, these inputs are consistent due to
inductive hypothesis that all prior operations produce the
same results) or from storage (line 4 in Algorithm 1, these
inputs are consistent due to the storage replacement). Thus,
the results of 𝐿1 [𝑘] and 𝐿2 [𝑘] are identical. □
Finally, combining Lemma 1 and Lemma 2, we conclude

the correctness of ParallelEVM.
Theorem 1. ParallelEVM yields results identical to those
of serial transaction execution.
Proof. Weestablish the serializability of ParallelEVMby demon-
strating its equivalency to OCC. From Lemma 2, we show
that the partial SSA operation log re-execution during the
read phase is the same as the full SSA operation log re-
execution. Lemma 1 further establishes that a successful full
SSA operation log re-execution is equivalent to the EVMbyte-
code re-execution. Notably, in ParallelEVM, even when the
SSA operation log execution fails, it still results in the EVM
bytecode being executed during the subsequent write phase.
Hence, the mechanism in ParallelEVM – a redo phase fol-
lowed by a write phase – has the same effect as the abort-and-
restart write phase seen in traditional OCC models. Given
that the serializability of OCC is well-established [29], we
can confidently state that ParallelEVM produces the same
results as the serial transaction execution. □

6 Implementation and Evaluation
We have implemented a prototype of ParallelEVM based on
Go Ethereum v1.10.17, involving approximately 4200 lines
of code changed.

6.1 Experimental Setup
Our evaluation was conducted on a machine equipped with
an 8-core, 16-thread CPU and 16GB memory, running the
Ubuntu 22.04 operating system, which mirrors the typical
setup of an Ethereum node. Additionally, for comparison,
we integrated optimistic concurrency control (OCC), two-
phase locking (2PL), and Block-STM [18] into Go Ethereum.
To collect historical transactions and states for evaluation,
we deployed an Ethereum archive node as proposed by
Feng et al. [16]. The workloads consist of Ethereum mainnet
blocks ranging from block height 14,000,000 (January 2022)
to 15,000,000 (June 2022).

Table 1. Speedups achieved by different algorithms.

Baseline 2PL OCC Block-STM ParallelEVM

1× 1.26× 2.49× 2.82× 4.28×

6.2 Correctness Validation
To validate the correctness of ParallelEVM’s implementation,
we execute real-world Ethereum blocks using ParallelEVM
and compare the resulted states with the Ethereum main-
net states. Ethereum maintains its state as a Merkle Patricia
Trie [43], where every non-leaf node contains the crypto-
graphic hash of its child nodes. Therefore, two Ethereum
states are identical if and only if the root nodes of their re-
spective MPTs match. We have run ParallelEVM to process
the first 14 million blocks from the Ethereum mainnet, and
ParallelEVM always produced a matching value of the MPT
root for every block. This result demonstrates that Paral-
lelEVM rigorously follows the rules defined in the Ethereum
yellow paper [43].

6.3 Performance Analysis
Speedups in Real-World Ethereum. To measure the over-
all performance of ParallelEVM, we run ParallelEVM and
other algorithms to process real-world Ethereum blocks. As
shown in Table 1, ParallelEVM achieves an average speedup
of 4.28× compared to Geth 1.10.17 (baseline). Figure 9 il-
lustrates the detailed distribution of speedups: most blocks
are accelerated by 2~7×. In a small subset of blocks (about
0.88%), ParallelEVM underperforms compared to the base-
line, primarily due to time-consuming transactions that fail
during the redo phase. In contrast, 2PL achieves a mere
1.26× speedup, as it tends to block and abort transactions
in blockchain scenarios. Specifically, when transactions po-
sitioned earlier in the block attempt to obtain a lock held
by later-sequenced transactions, the latter are aborted, re-
sulting in significant performance degradation. OCC and
Block-STM exhibit speedups of 2.49× and 2.82× respectively,
which are inferior to ParallelEVM. This shortfall is attributed
to the fact that both OCC and Block-STM need to re-execute
the entire conflicting transactions, while ParallelEVM only
re-executes the conflicting operations. It is worth noting
that Block-STM’s performance improvements in the origi-
nal Block-STM paper are 20× in the Diem benchmarks and
17× in the Aptos benchmarks [18]. However, in our exper-
iments, its performance gain is significantly lower. These
performance differences can be attributed to the workload
differences. Block-STM is originally evaluated using synthet-
ically generated workloads, consisting primarily of randomly
generated transfer transactions with varying conflict rates.
These synthetic workloads fail to capture the hot spot fea-
tures present in real-world blockchain systems. In contrast,
our evaluation uses real Ethereum transactions. The hot
spot data in real-world transactions limit the parallelism and
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1 2 4 14 166 8 10 12
Number of Threads

0

3

2

1

4

5

Sp
ee
du
p

ParallelEVM 
Block-STM
OCC 
2PL

Figure 10. Impact of the number of threads.

0% 100%20% 40% 60% 80%
Percentage of Conflicting Transactions

0

6

4

2

8

10

Sp
ee
du
p

ParallelEVM
Block-STM
OCC
2PL

Figure 11. Impact of the conflicting transaction ratios.

1000200 400 600 800
Number of Transactions per Block

0
0

8
7
6
5
4
3
2
1

Sp
ee
du
p

Figure 12. Impact of the block transaction number on
ParallelEVM.

speedup achieved by Block-STM, as the critical path—defined
as the longest transaction chain within a block that contains
dependencies—tends to be much longer and becomes the
bottleneck. Several works [17, 37, 38] also highlight this bot-
tleneck of parallel systems in real-world blockchains, i.e., the
optimal performance gain varies from 2× to 8×.
Impact of Thread Number. Figure 10 shows the speedups
achieved by ParallelEVM and other algorithms at varying
thread counts. The results demonstrate that ParallelEVM
outperforms 2PL, OCC and Block-STM, indicating its supe-
rior scalability. This is primarily attributed to ParallelEVM’s
operation-level conflict handling strategy, which alleviates
the performance degradation caused by transaction conflicts
in environments with a high number of threads.
Impact of Contention. To demonstrate the effectiveness of
ParallelEVM in various workloads, we simulate varying con-
tention environments. This is achieved by packing ERC20
contracts into blocks while controlling the percentage of
conflicting transactions. A scenario with a 0% ratio indicates
a conflict-free environment, allowing all transactions to pro-
ceed concurrently without aborting or blocking. Conversely,
at a 100% ratio, every transaction, except the first one, en-
counters conflicts.
Figure 11 illustrates the impact of conflict ratios. In low

contention settings, ParallelEVM obtains similar speedups
compared to OCC and Block-STM, attributed to the mini-
mal overheads incurred during dynamic tracking and the

generation of the SSA operation log (as discussed in Sec-
tion 6.4). As contention intensifies, ParallelEVM begins to
outperform other algorithms significantly. This is primar-
ily because ParallelEVM is designed to re-execute only the
conflicting operations when encountering conflicts, while
OCC and Block-STM needs to abort and re-execute entire
conflicting transactions.
Impact of Block Transaction Number. The number of
transactions in a block also influences the performance of
concurrency control algorithms. In today’s Ethereum, the
number of transactions within a block is fairly limited, often
not exceeding 200. However, it’s vital for ParallelEVM to be
scalable and remain efficient even if future developments
lead to larger block sizes. To this end, we simulate blockswith
different sizes and evaluate the performance of ParallelEVM.
Figure 12 illustrates the relationship between the number of
transactions in a block and the subsequent speedup achieved
by ParallelEVM. This figure shows a promising trend for
ParallelEVM: as the block size enlarges with more trans-
actions, ParallelEVM consistently exhibits higher speedup,
showcasing its scalability and efficiency.
State Prefetching Optimization. Analyzing the runtime
profiling data, it becomes evident that storage operations,
especially SLOADs, serve as the performance bottleneck for
ParallelEVM. Accessing the persistent Ethereum state from
the on-disk LevelDB database incurs notable latency. State
prefetching is a promising technique to mitigate expensive
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Table 2. Speedups achieved by different algorithms com-
bined with prefetching.

Prefetch 2PL+ OCC+ Block-STM+ ParallelEVM+

2.89 × 2.23× 3.25× 5.52× 7.11×

disk reads by caching storage slots in memory. To evaluate
the performance of ParallelEVM with state prefetching tech-
niques, we adopt a two-phase approach to block processing:
an initial run dedicated to prefetching storage slots, followed
by a performance-assessment run.We assess the speedups by
measuring the duration of the second run. As depicted in Ta-
ble 2, combining with prefetching, ParallelEVM achieves an
average speedup of 7.11×. As comparisons, prefetching alone
accelerates execution by 2.89×; 2PL, OCC, and Block-STM
combined with prefetching achieve speedups of 2.23×, 3.25×,
and 5.52× respectively. Although the actual speedups in real-
world scenarios depends on the effectiveness of prefetching
techniques, which is outside the scope of this paper, the
above results suggest that ParallelEVM can cooperate better
with prefetching techniques than traditional algorithms.
Pre-execution Optimization. Forerunner [5] introduced a
speculative transaction execution algorithm for Ethereum.
It utilizes the time window between when a transaction is
known and when it is executed to predict and pre-execute
transactions speculatively. Similarly, ParallelEVM can exploit
this window to enhance its performance. By pre-executing
transactions speculatively in a manner akin to the read phase,
SSA operation logs can be pre-generated. During actual exe-
cution transactions that have been pre-executed can proceed
directly to the validation phase, bypassing the read phase.
Even if there are discrepancies in storage values retrieved
during pre-execution, the redo phase can promptly reconcile
the mismatch using the pre-computed SSA operation log.
We simulate such optimization in ParallelEVM and observe
an average speedup of 8.81×, underscoring ParallelEVM’s
capability for pre-execution.

6.4 Analysis of ParallelEVM Overhead
While ParallelEVM is designed to optimize high-contention
workloads, it is crucial that it remains efficient and does
not introduce undue overhead in scenarios absence of con-
flicts. We provide a comprehensive analysis of ParallelEVM’s
overhead in this section.
Overhead of SSA Operation Log Generation. The gen-
eration of the SSA operation log demands the maintenance
of both the shadow stack and shadow memory in real-time.
These are remarkably lightweight as the EVM operates as a
stack machine interpreter and the main bottlenecks in trans-
action execution are storage operations. Experiments show
that our SSA operation log generation algorithm incurs a
modest average runtime performance overhead of approxi-
mately 4.5% per transaction. Furthermore, as represented in

Figure 11, the overhead of ParallelEVM compared to OCC in
conflict-free scenarios is negligible.
Overhead of Redo Phase. The overhead of redo phase is de-
termined by the number of operations requiring re-execution.
We substantiate that these operations are minimal. Primarily,
our generation algorithm significantly reduces the size of
SSA operation log. For the real-world Ethereum contract in-
vocations, the average EVM instruction count stands at 2559,
contrasted with the average SSA operation log length, which
is 127. Consequently, the SSA operation log’s size, comprises
a mere 5.0% of the EVM instructions. This significant reduc-
tion can be attributed to our algorithm’s adeptness in cutting
down stack manipulation instructions like PUSH and POP, and
instructions independent of storage slots. Hence, even in
circumstances where every entry in the SSA operation log
requires re-execution during the redo phase, it remains more
efficient than the complete transaction re-execution in OCC.
Moreover, experiments show that only seven log entries on
average, equivalent to 0.3% of the original EVM instructions,
typically undergo re-execution in the redo phase. The actual
time spent on the redo phase is a mere 4.9% of the overall
block processing time, with 87% of conflicting transactions
successfully resolving conflicts during this phase. These re-
sults demonstrate that the overhead introduced by the redo
phase is minimal.
Memory Overhead. On our experimental platform, the av-
erage memory consumption of ParallelEVM is 9.48 GB. In
contrast, the official Geth consumes 9.08GB memory. There-
fore, name incurs only 4.41% memory overhead, mainly due
to the shadow stack and shadow memory.

7 Discussion
Scope. Although the implementation and evaluation are spe-
cific to Ethereum, our solution is also applicable to other
blockchain systems. First, due to our modular design, Par-
allelEVM can be easily applied to other EVM-compatible
blockchain systems. Additionally, our operation-level con-
flict resolution paradigm could be extended to other EVM-
incompatible blockchains, particularly those with account-
based state models and stack-based virtual machines. This
is because our approach focuses on minimizing and effi-
ciently handling conflicts at the operation level, a technique
that is also applicable to other parallel systems [9]. Even
though these blockchains may differ in their execution en-
vironments, the fundamental concepts of conflict minimiza-
tion and resolution are universally applicable. Second, many
blockchains (e.g., Polygon and BSC) closely follow Ethereum’s
development and share similar workloads, particularly due to
the presence of hot spot applications. For instance, Uniswap
is deployed on nearly everymajor EVM-compatible blockchain.
As a result, these blockchains exhibit similar workload char-
acteristics, a similarity that has also been reported by previ-
ous works [17, 37].
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Limitations and Future Work. As illustrated in Figure 9,
there are situations (<1%) where ParallelEVM might under-
perform serial execution. A potential solution is to bifurcate
ParallelEVM into two phases: firstly, miner (or proposer)
nodes would craft concurrent execution schedules, subse-
quently integrating these schedules into the blocks. There-
after, validator nodes would execute block transactions ad-
hering strictly to these predefined schedules. In this way, the
miner (proposer) could formulate efficient operation-level
schedules, ensuring consistent transaction execution accel-
eration on the validator side. Our future work is to generate
operation-level schedules based on the SSA operation log.

8 Related Work
Transaction Decomposition. Transaction decomposition
divides a transaction into multiple smaller sub-transactions.
When a conflict arises within a sub-transaction, only that
specific sub-transaction is aborted. Transaction chopping is
a well-known transaction decomposition mechanism [39].
But it permits only a single sub-transaction to abort and thus
produces coarse-grained decomposed transaction. MV3C [9]
summarizes transactions in the form of a dependency graph
and partially re-executes conflicting transaction when en-
countering conflicts. Faleiro et al. [15] designed piece-wise
visibility (PWV) concurrency control protocol to make trans-
actions’ writes visible prior to the end of their execution.
However, both MV3C and PWV require prior knowledge
of transaction programs, either from manual annotation or
static analysis, complicating their integration into existing
blockchains. In contrast, ParallelEVM integrates the SSA op-
eration log, enabling dynamic dependency graph generation
without the need for prior knowledge.
Blockchain Execution Acceleration. Various studies have
explored the integration of traditional concurrency control
algorithms into blockchain systems. Saraph and Herlihy
[38] introduced a concurrent execution engine that divides
transaction processing into two phases: an initial concurrent
phase where all transactions executed in parallel, discarding
those that conflict; followed by a sequential phase, where the
earlier conflicting transactions are processed sequentially.
Unfortunately, their approach suffers performance degrada-
tion in high-contention workloads. Garamvölgyi et al. [17]
proposed OCC-DA, a variant of OCC featuring determinis-
tic aborts. While their methods enhance the determinism
of OCC, they do not necessarily improve its performance.
Zhang et al. [45] introduced BlockPilot, a parallel execution
framework for blockchains. In BlockPilot, proposers employ
a write snapshot isolation-based OCC algorithm (OCC-WSI)
to execute transactions in parallel and generate block pro-
files that include transaction read and write sets. Validators
then generate a transaction-level conflict-free schedule based
on the block profile. In contrast, ParallelEVM offers a more
granular approach to schedule transactions, without the need

for introducing extra transaction information into blocks.
Jin et al. [24] proposed a concurrency protocol emphasiz-
ing validator-side concurrency in permissioned blockchains.
Their approach divide the transaction dependency graph, as
generated by miners, into several sub-graphs to preserve par-
allelism and reduce communication costs. Nonetheless, their
focus remains limited to transaction interdependencies. Par-
Blockchain [1] introduces an order-execute paradigm (OXII)
for permissioned blockchains. It crafts a dependency graph
for the transactions within a block, thus facilitating the par-
allel execution of non-conflicting transactions. OXII requires
the prior knowledge of the read-write set via either static
analysis or pre-execution; however, ParallelEVM has no such
prerequisite. Moreover, the SSA operation log enables Par-
allelEVM to parallelly execute non-conflicting operations,
moving beyond just transaction-level parallelism.
Software Transactional Memory (STM) represents an al-

ternative approach for atomically executing transactions in
parallel [7, 21–23, 33]. Recent work has explored the use of
STM techniques for parallel smart contract execution. Dick-
erson et al. [10] introduced a “miner-replay" paradigmwhere
miners determine a serializable concurrent schedule using
an STM library and transmit this schedule to validators. Sub-
sequently, the validators construct a "fork-join" program that
deterministically replay the block in parallel. OptSmart [2]
harness optimistic STM systems to construct transaction de-
pendency graphs. Additionally, it maintains multi-versioned
objects to mitigate write-write conflicts. Block-STM [18]
combines OCC with a collaborative schedular that coor-
dinates the execution and validation tasks among threads.
The schedular leverages the write set of aborted transac-
tions to determine future dependencies, ensuring aborted
transactions are not restarted until the conflicts are resolved.
Both ParallelEVM and Block-STM harness information from
aborted transactions to optimize subsequent re-executions.
However, ParallelEVM offers a more granular approach to
conflict resolution. When a conflict arises, Block-STM blocks
or restarts the entire transaction until the conflict is re-
solved. In contrast, ParallelEVM permits the execution of
non-conflicting operations irrespective of any conflicts. Es-
sentially, ParallelEVM offers an "out-of-order" execution:
non-conflicting operations are initially executed, followed
by the re-execution of conflicting operations.

Speculative execution is an alternative approach to accel-
erate transaction execution [4, 5, 20, 28, 35]. Forerunner [5]
put forward a constraint-based approach for speculative
execution on Ethereum. It speculates on multiple futures
and accelerates transactions based on imperfect predictions
whenever certain constraints are satisfied. In contrast to Fore-
runner, ParallelEVM can accelerate transaction execution
even in situations where prior transaction knowledge is not
feasible. Moreover, similar to Forerunner, ParallelEVM can
utilize the transaction dissemination phase to pre-compute
the SSA operation log speculatively. Consequently, during
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the actual execution, these pre-computed transactions can
bypass the read phase and resolve their mismatch reads in
the redo phase.

9 Conclusion
In this study, we present ParallelEVM, an operation-level
concurrent transaction execution system tailored for EVM-
compatible blockchains. By identifying and re-executing con-
flicting operations, ParallelEVM ensures that conflict-free op-
erations proceed concurrently without unnecessary blocks
or aborts. Evaluations demonstrate that ParallelEVM sig-
nificantly boosts transaction execution speed in real-world
Ethereum scenarios.
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