Toss a Fault to BPFCHECKER: Revealing Implementation Flaws for
eBPF runtimes with Differential Fuzzing

Chaoyuan Peng’
Zhejiang University
Hangzhou, China
ret2happy@zju.edu.cn

Lei Wu
Zhejiang University
Hangzhou, China
lei_wu@zju.edu.cn

ABSTRACT

eBPF is a revolutionary technology that can run sandboxed pro-
grams in a privileged context and has an extensive range of ap-
plications, such as network monitoring on Linux kernel, denial-
of-service protection on Windows, and the execution mechanism
of smart contracts on blockchain. However, implementation flaws
in eBPF have broad-reaching impact and serious consequences.
Prior studies primarily focus on the memory safety of the eBPF
runtimes, but few can detect implementation flaws (i.e., whether
the implementation is correct). Meanwhile, existing implementa-
tion flaws detecting methods predominantly address bugs in the
verifier, neglecting bugs in other components (i.e., the interpreter
and the JIT compiler). In this paper, we present BPFCHECKER, a
differential fuzzing framework to detect implementation flaws in
the eBPF runtimes. It utilizes eBPF programs as input, performing
differential testing for the critical states across various eBPF run-
times to uncover implementation flaws. To enhance the semantics
of generated programs, we devise a lightweight intermediate repre-
sentation and perform constrained mutations under the guidance of
error messages. We have implemented a prototype of BPFCHECKER
and extensively evaluated it on the three eBPF runtimes (i.e., Solana
rBPF, vanilla rBPF, Windows eBPF). As a result, we have uncov-
ered 28 new implementation flaws, received 2 CVEs and $800,000
bounty with developers’ acknowledgment. More importantly, 2
of the newly found bugs can be used to create divergences in the
execution layer of the Solana network.

CCS CONCEPTS

« Security and privacy — Software and application security.

“Part of the work was accomplished when the author is a research intern at BlockSec.
t Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690237

Muhui Jiang
The Hong Kong Polytechnic University
Hong Kong, China
muhjiang@polyu.edu.hk

Yajin Zhou
Zhejiang University
Hangzhou, China
yajin_zhou@zju.edu.cn

KEYWORDS
Differential Fuzzing, eBPF, Software Security

ACM Reference Format:

Chaoyuan Peng, Muhui Jiang, Lei Wu, and Yajin Zhou. 2024. Toss a Fault
to BPFCHECKER: Revealing Implementation Flaws for eBPF runtimes with
Differential Fuzzing. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS °24), October 14-18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690237

1 INTRODUCTION

eBPF (extended Berkeley Packet Filter) [4] is a promising technology
originating in the Linux kernel that allows (extensible) programs
to run in a privileged context, like an operating system kernel.
Leveraging its programmability, eBPF is widely adopted for dif-
ferent applications in industry and academia [53]. Cloud service
providers, for instance, employ eBPF for efficient packet filtering
[1, 17, 46] and load balancing [14, 50]. Windows operating system
uses eBPF to provide observability and denial-of-service protection
[5, 18]. In addition, Solana [49], a rapidly growing high-performance
blockchain, utilizes a variant of eBPF as the execution environment
for on-chain programs (or smart contracts [2]). Given the wide-
spread adoption and thriving ecosystem of eBPF, any bugs in the
eBPF runtime would have a broad-reaching impact and serious
consequences.

Unfortunately, this concern is valid: real-world bugs in the eBPF
runtimes pose significant risks. The implementation of the eBPF
runtime may not conform to the eBPF specifications, and these im-
plementation flaws can produce unexpected execution results. For
instance, implementation flaws [21, 23, 25] within the kernel eBPF
can lead to privilege escalation issues. In the Solana blockchain,
different execution results between the JIT compilers and inter-
preters can produce inconsistent results among validators in the
network, leading to the network partition in the worst case (e.g.,
CVE-2021-46102 [24] and CVE-2022-23066 [22]). Hence, compre-
hensively detecting implementation flaws in all components in
eBPF runtimes is significant since these undetected (silent) bugs
will provide essential exploitation primitives.

Various fuzzing tools [15, 28, 30] and verification techniques [26]
have emerged and aim to uncover bugs in the eBPF framework. In
particular, coverage-guided fuzzers like Syzkaller [7] and BRF [11]
generate system-call-based test cases and have identified memory

https://orcid.org/0009-0009-1295-9802
https://orcid.org/0000-0003-2196-6894
https://orcid.org/0000-0003-1675-5283
https://orcid.org/0000-0001-7610-4736
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/3658644.3690237

bugs in the Linux kernel eBPF. These approaches find it challenging
to detect logic bugs as they use crashes or the sanitizer violation as
the sole oracle, namely, rules to determine whether the execution
of a program is correct. Though some previous works have applied
semantic rules as their oracle, they are exclusively designed for ver-
ifiers. For instance, Scannell proposed an eBPF fuzzer [35], which
generates template programs that write values to the calculated
map pointer and detect faulty pointer arithmetic bugs of the verifier
by checking the value of the map. Other semantic-aware testing
tools [9, 41] check the correctness of the verifier assumptions by
observing the execution state of the sanitized eBPF program. The
formal verification technique [27] is also proposed to verify the
eBPF JIT compiler by the stepwise specification. It requires refer-
ence implementation as precise as the targeted system and also
requires further efforts to extend to the other eBPF runtimes.

Current Challenges These approaches have proven effective
in detecting specific types of vulnerabilities in their targeted com-
ponent of the eBPF framework. However, they are insufficient for
detecting implementation flaws in the user-space eBPF runtime
due to several key challenges to detecting implementation flaws for
eBPF runtimes, which existing solutions fail to address.

First, there is little prior knowledge on how to design the semantic-
aware oracle to check the correctness of the entire eBPF runtimes
(Challenge 1). Specifically, existing eBPF fuzzers can detect mem-
ory bugs with the assistance of existing memory sanitizers [36, 42],
which instrument memory-related instructions and check whether
the access is deemed legitimate at runtime. These memory sanitizers
are feasible mainly because deciding the ground truth of the valid
memory region and the property to check is relatively trivial. How-
ever, detecting implementation flaws in the eBPF runtime requires
that the oracles contain fine-grained state model with eBPF domain
knowledge. Due to the subtle design disparities across different run-
times, the modeled oracles must avoid semantics conflicts. However,
to the best knowledge, no existing work models and aligns states
of different eBPF runtimes. Second, it is generally challenging for
dynamic techniques to generate representative eBPF programs that
encompass both legal and illegal ones to explore all eBPF compo-
nents, namely parser, verifier, and executor (Challenge 2). Since the
eBPF runtime only executes the verified eBPF program, existing
template-based and grammar-aware techniques generate programs
that are likely to be rejected by the eBPF runtime (as they can’t pass
the verification) and thus are not representative. Third, new indica-
tors for the eBPF runtime are required for measuring runtime states
and providing effective feedback (Challenge 3). Code coverage does
not inherently indicate the efficacy of a given eBPF program when
a subtle bug is triggered by a specific value or control flow [29, 48].
Existing eBPF fuzzing techniques (e.g., [7, 9, 11]) leverage coverage-
driven mutation to generate new test cases. However, when two
eBPF programs cover different internal states of the runtime, they
can still reach similar code coverage, making the coverage metric
not sensitive to the concrete value of the instruction [10]. Conse-
quently, we need a new feedback metric to indicate whether the
generated test case is effective.

Our solutions To address the above challenges, we propose
BprCHECKER, the first general differential fuzzing framework for

detecting implementation flaws in eBPF runtimes. The main in-
sight behind BPFCHECKER is that the inconsistent intermediate
states across different eBPF runtimes generally indicate potential
implementation flaws. In order to address Challenge 1, BPFCHECKER
models the intermediate states and compares the post-states across
different user-space eBPF runtimes after program execution to de-
tect implementation flaws. To get a deterministic execution result
and eliminate false positives, we provide the same context before
executing a given eBPF program on different eBPF runtimes. We
use R to denote a specific eBPF runtime and P to denote the input
eBPF program. The captured intermediate state after the program
execution can be represented as Sg = R(P). We identified the po-
tential implementation flaw when the checking procedure for n
runtimes is met:
Vi,j €{0,1,...,n}, ifR;(P) # Rj(P)

The intermediate states Sg include the error message from the
verifier and the concrete step-wise execution states from the execu-
tor (i.e., accessible memory content and the values of registers).

In order to address Challenge 2, we propose a lightweight inter-
mediate representation (IR) with eBPF-affinity and generate the
semantically constrained eBPF program with different styles. The
state-of-the-art methods (e.g., [7, 9]) leverage grammar-aware or
template-based program generation. Therefore, they achieve a low
semantic correctness rate of the generated program. Existing LLVM
IR does not support variants of the eBPF instruction set for different
eBPF runtimes and may produce redundant instructions. Moreover,
it is challenging to leverage LLVM IR to generate illegal instructions.
While enhancing the LLVM’s eBPF backend is feasible, it requires
substantial effort. Our proposed IR not only supports various eBPF
instruction sets but flexibly generates low-level instructions as well.
Specifically, each IR instruction includes an operator, an offset value,
an immediate value, and no more than two operands. In order to
create a sophisticated program control flow, the basic blocks of
the IR program are designed to be connection-free. The evaluation
shown in 4.1 demonstrates that with the help of our lightweight IR,
the generated eBPF program can reach an average 18.28% semantic
correctness rate, which is 2.1x of the baselines.

In order to address Challenge 3, we utilize the error message
during the execution in the user-space eBPF runtimes as feedback
and perform IR program correction upon the generated program.
Suppose the error message from the verifier shows that the invalid
memory access is due to the second instruction. In that case, mutat-
ing the second instruction is more likely to turn this program into
a valid one than mutating other instructions. We implement differ-
ent mutators to handle the common verifier error messages (e.g.,
the memory access violation error, PC error, etc.). The evaluation
shown in 4.1 demonstrates that the semantic IR corrector could
improve the semantic correctness rate of the generated program
by around 5%. It is noteworthy that BRF conducts error message-
driven mutations at the source code level, whereas BPFCHECKER
engages in low-level instruction mutations, which are considerably
more complex and effective than those at the source code level.

We implement our prototype of BPFCHECKER and evaluate it
on three eBPF runtimes. The results show that BPFCHECKER can
generate sufficient test cases, which are all syntactically correct

1 fn execute_program_interpreted_inner() { 1 fn emit_muldivmod() {
2 ... // setup state 2
3 3 if sdiv {
4 match insn.opc { 4 ... // emit overflow check instructions
5 5
6 SDIV32_IMM => { 6 emit_alu(jit, size, Oxf7, 7, R11, @, None)?;,
7 if regldst] as 132 == i32::MIN && insn.imm == -1 { 7 + 1
8 ... // exit with DivideOverflow error 8 e el mmm—___- . 1
9 } S — ——— 9 | if size == $S32 && mul {] |
10 /| \l 10 1 emit_sign_extend_i32_to_ib4(dst, dst)?; ! 1
11 reg[dst] =! (reg[dst] as 132 / insn.imm as i32) as ub4; ! 11 '\} missing sign extension for SDIV ,' 1
12 , 1oL J \ J | 12 ~TTTTTTTTT TS TS ST T TS T TS T TS AT TS 1
13 i ! ' I13} I
14 } | 12 - E | idivl exclusively modifies lower 32-bit value of the register | 1
15 } i | (T T e \ I

| | 00000000 | FFFFFFFD | | ; idivi r11 I _ _generated

‘\\ 5 /,’ l\ [register mapping instr‘uctions]l' x86 instruction

I [
register state

r5

r5

Figure 1: Motivating example. The left part shows the correct implementation of the SDIV instruction for the interpreter.
The right part shows the buggy implementation during native code generation for SDIV instruction in the JIT compiler. The
inconsistent register state after the execution reveals the implementation flaws in the Solana rBPF engine.

instructions and achieve 2.1X semantic correctness of the base-
lines. Furthermore, our proposed lightweight eBPF IR can improve
the semantic correctness by at least 34%. A total of 28 bugs were
found, and 18 were fixed. Moreover, we receive 2 CVEs and $800,000
bounty from the vendor. An analysis of the detected bugs indi-
cates that 18 of the detected bugs do not manifest as segmentation
faults or sanitizer violation conditions; thus, they cannot be de-
tected using state-of-the-art methods. BPFCHECKER is available at
https://github.com/bpfchecker/BpfCheckerSource.
In summary, we make the following contributions:

o Sufficient test case generator We propose a semantic-aware
test case generator that leverages lightweight eBPF IR under
error message guidance to generate eBPF programs with a high
semantic correctness rate.

e Deterministic differential testing engine We model the in-
termediate states of the eBPF runtimes and propose the semantic
oracle, which detects the implementation flaws by comparing
the execution states among each runtimes.

o Effective prototype system and new findings We present the
design and implementation of BPFCHECKER, a differential fuzzing
framework to detect implementation flaws in the eBPF runtimes.
We further apply BPFCHECKER against three eBPF runtimes, ex-
ploring the inconsistency and crash in each implementation. As
a result, we identified 28 new bugs from three eBPF runtimes
and received a total of $800,000 bounty. Two of the newly found
bugs are critical severity, and two CVEs have been assigned so
far. More importantly, to our best knowledge, one of the bugs is
the first publicly disclosed consensus bug in the Solana execution
layer.

2 BACKGROUND AND MOTIVATION

2.1 eBPF

eBPF (Extended Berkeley Packet Filter) has evolved significantly
and now offers a more general-purpose framework for running cus-
tom code in the privileged space: its execution is strictly sandboxed,
ensuring no unexpected side-effects can manifest. While the ini-
tial implementation of eBPF is deeply integrated within the Linux

kernel, the demand for its generic programmability and functional-
ity in user-space applications leads to the evolution of user-space
eBPF runtimes [32, 34]. These emerging runtimes allow developers
to leverage eBPF’s generic features beyond the traditional kernel
boundary, thereby broadening its application from innovative secu-
rity measures to the smart contract execution layer.

eBPF runtime is primarily constituted by the program verifier
and the executor. In order to safeguard the security and stability
when executing eBPF programs, eBPF runtimes use different se-
curity approaches. User-space eBPF runtimes, such as rBPF [34]
and uBPF [32], use a basic verifier to check whether the program
conforms to basic syntactic specifications and enforce the legiti-
macy of instructions during execution. Since the executor does not
enforce type or memory safety during execution, the kernel-space
eBPF runtime utilizes a sophisticated verifier to check the safety of
the program in terms of data flow and control flow before loading
it. Once the program passes the verification, eBPF utilizes the JIT
compiler to compile it to native code for execution or, alternatively,
executes it via an interpreter.

eBPF verifier The eBPF verifiers utilize static analysis to check
the safety of the provided programs at varying degrees of strict-
ness. Specifically, kernel verifier [13] and PREVAIL verifier [44]
use abstract interpretation with several abstract domains [8, 47].
These verifiers determine safety in two steps. First, they validate
the control flow of a program, such as unbounded loop and un-
reachable instruction. Second, they simulate the execution of each
instruction based on the collected states and reject the programs
containing illegal operations, such as using uninitialized registers
and out-of-bounds accesses.

On the other side, verifiers embedded in the user-space runtimes
[32, 34] perform lightweight verification and check instruction
syntactically on the operands and operators without context infor-
mation. They rely on dynamic analysis to ascertain the presence of
runtime security vulnerabilities within the program.

eBPF execution The typical eBPF architecture is the 64-bit register-
based virtual machine with a fixed stack, while the heap space is

https://github.com/bpfchecker/BpfCheckerSource

lddw r5, 0x10000000cC
2 sdiv32 r5, -4
3 // Missing sign bit extension in JIT mode:
« // JIT: r5 = 0x00000000FFFFFFFD
5 // interpreter: r5 = OxFFFFFFFFFFFFFFFD
6 jslt r5, @, 1lbb_7
7 lddw re, ox1
s lbb_7:
exit

11 // Final inconsistent register states:
w2 // JIT: ro 0
13 // interpreter: ro 1

Figure 2: The simplified proof-of-concept eBPF program of
CVE-2022-23066 in Solana rBPF runtime.

not contained in the specification. As an alternative, the Linux ker-
nel provides an interface to key-value maps for persistent storage
between invocations, while user-space eBPF runtime doesn’t nec-
essarily implement it. In the supported host machine architecture,
Linux kernel eBPF uses the JIT compiler by default. On the other
user-space eBPF runtime, utilizing the JIT compiler or the inter-
preter, is typically configurable. The JIT compilers in user-space
eBPF runtime do not optimize the code in the same way as contem-
porary engines, such as V8 engine [43] or Java Virtual Machines
[40]. They translate each basic instruction into native code with
one pass, supplementing it with runtime error-handling code.

2.2 Motivation

In this section, we follow the discussion of Section 1 and elu-
cidate with a real-world vulnerability of the Solana rBPF engine.
We illustrate our key insight that different runtime states imply
potential implementation flaws and discuss the limitations of exist-
ing work. This dangerous zero-day miscalculation flaw found by
BprFCHECKER can propagate into a more observable and threatening
network consensus issue in Solana. We have responsibly reported
this new vulnerability to the developers and actively helped them
fix it. Notably, we identified this vulnerability in a timely manner
before the buggy implementation was formally switched by the
Solana mainnet, thereby safeguarding the execution security of
countless valuable contracts running on the Solana blockchain. Up
to now, this critical vulnerability has been fixed by the developers
and issued with a CVE ID.

As discussed in Section 1, it is non-trivial to capture this imple-
mentation flaw. Figure 1 shows the inconsistent implementation
between the interpreter and JIT compiler of the Solana rBPF engine,
as highlighted in red for the differences. The code spanning lines
9 to 11 on the right part of the Figure 1 manifests the bug in the
JIT compiler, which doesn’t generate the sign extension instruction
after the idivl x86 instruction. In the implementation of the in-
terpreter (i.e., line 11 on the left part of the Figure 1), it explicitly
extends the 32-bit value to the 64-bit value for the destination regis-
ter. This incorrect code generation leads to the inconsistent register
state after execution and can be propagated into a more observable
erroneous result, which is demonstrated as a proof-of-concept eBPF
program.

The PoC program of the bug has been shown in Figure 2. The
program initially loads a value, where the most significant 32 bits
are non-zero, into register r5. Subsequently, it performs the sdiv

operation and directs the execution flow based on the sign bit of
register r5. The final register states and execution flow show a large
difference under interpreter mode and JIT compilation mode. The
root cause is that during the JIT compilation, it doesn’t generate
instructions for sign-extension of the result register. This caused
the upper 32 bits of the sdiv result to remain zero, leading to a
minor error in the calculation result. We highlight the value of ro
and the r5 register with code comments and append the correct
calculated result by the interpreter. We present our key insight into
the correctness oracle by modeling the key state of the runtime as
the execution behavior of a program. After the program is executed
in the eBPF runtimes, the key state (e.g., registers, memory) among
different runtimes should be the same since they are expected to
conform to the eBPF specification.

Existing approaches (e.g., BRF [11], BVF [15], buzzer [9]) can not
detect this (non-crash) bug as they use crashes or memory safety
properties as their sole oracle. Moreover, this miscalculation flaw
does not violate memory-safety properties but a domain-specific
correctness oracle, which is difficult to obtain in practice. First,
they heavily rely on observing the memory violation, while this
miscalculation is identified as the register state properties viola-
tion. Second, these techniques are mostly coverage-driven; such a
test case generation strategy is unaware of whether the input is
high-quality for the eBPF runtime and is unlikely to generate input
that satisfies the semantic requirement of the PoC program. Addi-
tionally, static differential analysis (e.g., ParDiff [52]) is incapable
of analyzing the compiled native code and exploring the infinite
program states.

To tackle the aforementioned problems, critical are generating
high-quality eBPF programs and designing the correctness oracle.
Therefore, BPFCHECKER first leverages the lightweight eBPF IR to
generate the test case under error message guidance. Afterward,
BprCHECKER models the key states of the eBPF runtimes and uses
the consistences of the key states as a correctness oracle. We will
demonstrate more details in the next section.

3 DESIGN

Figure 3 depicts the overall workflow of BPFCHECKER with the
constraint-based test case generator and the differential testing
engine. Firstly, we generate IR constraints that fit the requisites
of two user-space eBPF verifiers (i.e., rBPF verifier and PREVIAL
verifier [44]). Subsequently, the constraint-based test case generator
(Section 3.1) generates the IR program and converts it to the eBPF
program. Finally, the differential testing engine (Section 3.2) executes
the eBPF test case, takes the error message from the rBPF verifier
as the feedback, collects the intermediate states, and detects the
difference between runtimes. During the fuzzing loop, the semantic
IR corrector (Section 3.1.3) mutates the first instruction, resulting in
the verifier rejection as exactly as possible. We find a potential bug
if the differential testing engine detects disparate states. Otherwise,
we save the test case to the corpus queue for further mutation if it
is verified or triggers a new error message.

3.1 Constraint-based Test Case Generator

Generating programs under semantic-aware constraints requires
context information of the program instructions. Hence, we devise

i\:

Test Cases

a Constraint-based]
T —

Implementation Flaws
Post-state !
—
Analyzer '

IR Generator
eBPF Specification |

IR program
Corrector i

(D Test Case Generator

Correct Cases

Figure 3: Overview of our design.

ire<lddw, r5, 0x10000000c>
2 irl<sdiv32, r5, -4>
3 ir2<jslt, irl, o, ir4>
1 ir3<lddw, ro, ox1>
5 ir4<exit>

Figure 4: An example IR program

an IR with eBPF-affinity (Section 3.1.1). The test case generator
consists of the constraint-based generator (Section 3.1.2) and the
semantic IR corrector (Section 3.1.3).

3.1.1 Intermediate Representation. Although eBPF programs can
be written in C and compiled into bytecode using LLVM, the in-
structions generated by LLVM IR exhibit a degree of redundancy,
and it is difficult to include invalid low-level instructions. Since
LLVM IR is in strict SSA form, we cannot customize register usage.
Moreover, different user-space eBPF runtimes use slightly varied
eBPF instruction sets, which are not supported by the LLVM’s eBPF
backend. Enhancing the LLVM’s backend to accommodate these
changes requires considerable engineering effort.

To generate the program in a more low-level way and facilitate

further semantic-aware program generation and correction, we
propose a lightweight IR with eBPF-affinity, which ensures syntactic
correctness and is tagged with the semantics of the eBPF program. It
represents the eBPF program at the basic block level, which consists
of detailed IR instructions. All the basic blocks are connected by
each other, which forms a tree view of the program.
Syntactic Structures The eBPF instruction set constitutes a re-
duced instruction set architecture. The instruction fields are fixed-
length. Accordingly, each IR instruction includes an operator, an
offset value, an immediate value, and no more than two operands.
To create a sophisticated program control flow, unreachable basic
blocks are allowed to be generated. All IR instructions are con-
tained within basic blocks, and thus, we can construct the final
eBPF bytecode by traversing all these basic blocks with one pass.

Figure 4 demonstrates the lightweight IR program of the PoC
program in Figure 2. Specifically, one of the operands in ir2 reuses
the irl1, indicating that the result register value of the ir1 is used
again in ir2. With a set of well-defined IR instructions, our IR pro-
gram produces syntax-correct test cases. These test cases might
contain semantic errors. Those semantic errors are introduced by
the non-constrained generation part, which might use invalid val-
ues that violate the verifier rules. Next, we will fix these errors to
improve the semantic correctness of the test cases.

1 BPF_MOV64_IMM(BPF_REG_2, 1)
> BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 32)
;3 BPF_ALU64_IMM(BPF_NEG, BPF_REG_2, @)
+ BPF_ALU64_IMM(BPF_NEG, BPF_REG_2, 0)
5 BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 1, 1)
¢ BPF_RAW_INSN(BPF_JMP | BPF_EXIT, @, @, 0, 0)
BPF_JMP32_IMM(BPF_JLE, BPF_REG_2, 1, 1)
s BPF_RAW_INSN(BPF_JMP | BPF_EXIT, @, 0, 0, @)
9 BPF_MOV32_REG(BPF_REG_2, BPF_REG_2)
10 // verifier: 1, truth: @
11 BPF_ALU64_IMM(BPF_MUL, BPF_REG_2, -1)
> // verifier: -1, truth: o
3 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1)
« // verifier: 0, truth: 1

Figure 5: PoC program for CVE-2021-31440

3.1.2 Constraint-based Generator. We study diverse verification
rules across the user-space eBPF verifiers (i.e., rBPF, PREVAIL veri-
fier) and distill common constraints that preempt the generation of
low-quality programs. The constraints are classified as follows.

Constraints on opcodes. We construct a constraint op € OPdefined>
where op represents generated opcode of the instruction and opge fined
is the opcode specified in the specification. Accordingly, there is

a constraint 0p € 0pjjjegal, Where 0pjjjeqq) is the set of bytes that
cannot be interpreted as an opcode.

Constraints on registers. We construct a constraint reg € regconzext
U regqata> Where reg represents generated register number. Mean-
while, the register numbers are classified under two different use
sets as reggqrq and regeonrext. Specifically, regg,;4 is used to store
the calculation result from the algorithm instruction, while regcontext
maintains the context information during the execution. The con-
text information comes from the eBPF runtime and can also used to
load dynamic memory address information. Since the eBPF runtime
stores the context information to the register r1, we construct the
default constraint r1 € regcontext-

Constraints on values of operands and immediate arguments.
The other constraints are decided by the value of operands and
immediate arguments. Since we know the heap length and stack
space of the eBPF runtime, we limit the possible memory address
range under those predefined valid memory spaces as M. We apply
the memory address constraints to the operands of the memory
instruction as Imm € M, where Imm denotes the generated value
of operands.

After obtaining the constraints, BPFCHECKER automatically gen-
erates the initial IR program that satisfies the constraints. We create
the initial IR program using two variations, as demonstrated below.

o Arithmetic-oriented. This mode explores states caused by arith-
metic operations within the runtime environment. We increase

the generation weight of arithmetic operation instructions. When
the candidate registers are overly abundant, the register and
operand dependency among arithmetic instructions weakens.
The real-world arithmetic-related bugs, such as CVE-2021-31440
shown in Figure 5, utilize operations of shifting, negation, multi-
plication, and addition on the same register to trigger boundary
conditions of the tracked register states in the verifier. Further-
more, when all defined registers, namely ro to r9, are involved
in arithmetic calculation during generation for 10 instructions,
each register is utilized by the arithmetic instruction only twice
on average. Since only a unique register state is considered a
significant indicator during inconsistency detection, we restrict
the number of available registers to half the total register count
defined in the eBPF specification and limit the number of basic
blocks generated.

e Control-flow-oriented. This mode aims to explore control-flow-
related implementation in the eBPF runtime. In the verifier, since
the typical control-flow analysis is performed on the control-flow
graph, we prefer to generate additional basic blocks to augment
the complexity of the nodes within the graph.

3.1.3 Semantic IR Corrector. The eBPF program generated from a
given IR program can still violate the rules of the eBPF verifier or
raise errors during the execution. This is due to the fact that the
generator does not perform control-flow analysis on the IR program
and can thus generate instruction with a dead loop. Performing
precise control flow and value tracking introduces significant over-
head and is impractical as it needs to be understood in detail for the
internal implementation of each runtime. Identifying all the seman-
tic checks performed in the verifier is a daunting job. Fortunately,
we noticed that the occurrence of errors within the verifier invari-
ably generates corresponding error messages, providing a semantic
meaning of the check. The error message gives us a clear under-
standing of what is going on with the executed eBPF program. To
improve the correctness of the generated program in a lightweight
way, we introduce the semantic IR corrector to iteratively refine
and mutate low-level eBPF programs based on the error messages
captured during the differential execution.

The workflow of the semantic IR corrector is shown in Algo-
rithm 1. Given an eBPF IR program, we extract error messages
from the differential testing engine (Section 3.2) during execution.
These messages indicate the invalidity of test cases and supple-
ment instruction constraints and can be used to refine the test
cases. More generally, we first identify the throw point of an er-
ror message, which is typically a verifier rejection or runtime er-
ror statement. Then, we analyze the message format and the in-
valid instruction location associated with the error message by the
extractErrorInstructionLocation function. Specifically, as shown
in Figure 6, while executing the memory load operator, we en-
counter an error message that complains about the access violation
error. The error message comprises a formatted string including
the exact invalid accessing address and the location (PC number) of
the error instruction. We create a regular expression based on the
error string format to extract the location of the error instruction
and the error type. Afterward, we select the mutator from our pre-
defined mutator pool according to the error type. The main error
types we focused on are memory errors and division errors. For the

-

©

10

11

12

13

Algorithm 1 The Workflow of Semantic IR Corrector.
Input :P:Last executed eBPF IR program
Output: P’: New eBPF IR program mutated by corrector
mutationTimes < 0
PP
while mutationTimes < T do
E « executeProgram(P)
if E # 0 then
L « extractErrorInstructionLocation(E)
S « getMutationStrategyByErrorType(E)
P’ «— mutation(P,L,S)
else
‘ break
end

mutationTimes < mutationTimes + 1
end

other errors, we select the default mutator. We create three types
of predefined mutators, as demonstrated below:

e MemoryError Mutator. We first analyze whether the memory
address of the erroneous instruction is loaded by the immediate
value or the register according to the concrete opcode type. If
the memory address is in the form of an immediate value, we
replace the address with a random number from the predefined
valid memory space M. If the address is loaded from a register,
we replace it with another random register in regconrext-

e DivisionError Mutator. Division errors occur when the divisor
is zero. Since the generated instructions are constrained, we
will not generate division instructions where the divisor is an
immediate number 0. Therefore, the DivisionError implies that
the divisor register is zero during execution. We replace the
divisor register with a random register in regcontexs Or insert an
arithmetic instruction before the division instruction to change
the value of the divisor register.

e Default Mutator. We randomly delete the erroneous instruction
or replace it with a new instruction. The new instruction is either
copied from the already executed instructions or generated by
the constraint-based generator.

We use the selected mutator to mutate the given IR program and
execute the newly mutated one on the differential testing engine
within a limited time. When the new program does not raise the
same error or the number of iterations reaches the boundary, we
cease the corrector. Since we only perform mutations on the ex-
act single instruction, the syntactic correctness of the test case is
preserved.

3.2 Differential Testing Engine

We design a differential testing engine that can execute the eBPF
programs on the eBPF runtimes and detect the differences between
these runtimes. To identify the presence of a difference between
two runtimes, we model the intermediate state of the runtime. After
that, we initialize the runtimes to the same state before execution
and collect the intermediate state that denotes the internal execu-
tion state of runtimes for comparison after the execution. Capturing

inst O Load R,
inst 1 Load [OxfffffffO:4]
inst 2 Exit

IR program

l 1) Execute

Differential Testing Engine

[Runtime, } [Runtime, } [Runtime,, }

| Error message:
1 Access violation in stack frame 0x07ff0000 at
! address Oxfffffff0 of size 4 at BPF instruction 1 ...

--------------------- e
N

,/ Message Analyzer N
! tentative Is error message eliminated?
1 LIR program <>ﬁ

(@) Execute again

(3 Mutate program Nlo Yes

Mutator Pool

[DivisionError Mutator]

\
|
I
I
I
I
I
I
I
I
I
1
|
I
I
I
I
I
I
I
I
[

i
1
1
1
:
1
i [MemoryError Mutator]
1
1
1
1
1
1

{ Default Mutator] Semantic

\
IR Corrector ,’
.

inst O Load R,
corrected IR program inst 1 Load [OxBOOFFffO:4]
inst 2 Exit

Figure 6: Example of how semantic IR corrector fixes the
invalid eBPF program.

eBPF runtime differences through differential fuzzing can be for-
malized as follows. We use R to denote a specific eBPF runtime and
P to denote the input eBPF program. The captured state after the
execution can be represented as Sg = R(P). For n eBPF runtimes
under fuzzing, if any of the eBPF runtimes encounter an exception
and throw error messages, we consider it as an invalid test case,
which is beneficial for test case optimization. Furthermore, we iden-
tify an implementation flaw among R; if there is a difference for n
runtimes, as demonstrated below:
Vi,j€{0,1,...,n}, ifRi(P) # R;(P)
3.2.1 eBPF runtime model. We leverage the runtime variables to
model the internal state of the runtime. Meanwhile, to guarantee
the runtime has the same state before the given eBPF program
is executed, we initialize these variables in different runtimes to
the same before the execution. Similarly, we capture the difference
among runtimes by comparing these variables. We define the initial
runtime state as Sy, which is represented as a tuple (Stack, Heap, R).
Specifically, Stack and Heap refer to the stack and heap memory
space in the eBPF runtime, which is allocated for each execution
of the program. R denotes the register states before the execution.
Meanwhile, we denote the runtime state after the execution by Sg,
which is determined by the tuple (Stack, Heap, R, Eyerifiers Eexec)-
The Stack, Heap and R in Sg retain the same meanings as those
in Sy. In addition, we use Eyep;fier and Eexec to denote the error
state in the eBPF runtime, including the verifier error state and the
execution error state.

3.2.2 State analyzer. We need to set each runtime under testing
to the same initial state Sy and capture the post-state Sg after the
execution. Since all runtimes are fed with the same eBPF program
as input, they are expected to have the same S;. We introduce the
following strategy to initialize the Sj.

Heap Since initializing a large-size heap memory is notably time-
consuming, before the execution of the differential testing engine,
we randomly generate the target heap memory size within 1024 KB.
Subsequently, we generate initial memory data filled with random
numbers based on the memory size. By fulfilling the randomly
generated memory data, we can capture the differential memory
access cases if inconsistent memory addresses are accessed.

Stack We ensure uniformity in the stack size across all runtimes.
Since the stack content can not be controlled by the input eBPF pro-
gram, we do not generate random stack memory content. Instead,
we initialize the stack space with all-zero data.

R Inthe user-space eBPF runtime, all registers except for the con-
text registers are initialized to zero by default. Due to the different
registering mapping implementations in the JIT module among
eBPF runtimes, instrumenting additional initialization code for the
native register is imprecise and redundant. We generally initialize
the register in the preface of the generated eBPF program. The
instrumented preface code contains register load instructions (e.g.,
load zero to each register in reg,,;,) in a fixed basic block, which
generally does not affect the program execution logic.

After executing the eBPF program, we dump and compare the
post-state Sg by the following metric.

Eyerifier ~ Since the divergence in design principles exists among
different user-space eBPF verifiers, some verifiers tend to defer the
soundness safety check to the runtime. While one invalid instruc-
tion is rejected by the verifier V,, it can still be verified by another
implementation of the eBPF verifier V},. However, this doesn’t nec-
essarily mean that the implementation of the verifier V;, is incorrect.
Instead, V}, assumes this invalid instruction will be detected during
the runtime execution. If the program is verified by the verifier,
the Eyerifier is defined as 0. Therefore, it does not contain error-
kind metadata. Otherwise, the detailed error metadata is extracted
from the Eyerifier- To reduce the false positive when comparing
the different results from the verifiers, we only identify the veri-
fier inconsistencies when all Eyepifier have error metadata with
different types.

Eexec We instrument the runtime to capture the error state when
the runtime raises errors during execution. Since some eBPF run-
times do not have limitations on the execution instruction count,
we manually instrument code, which raises an error if certain num-
bers of instructions are executed. By instrumenting the instruction
meter code, we align the execution limitation behavior among each
runtime and prevent the runtime from entering an infinite loop.

3.2.3 Instrumentation. We instrument each runtime to set up the
equivalent initial runtime state and capture the post-state after
execution. The captured states (Heap, Stack, R, Eyerifier: Eexec) are
converted into a uniform format to align across different runtimes.
Specifically, (heap, Stack, R) are converted into a mapping structure

that includes the memory content and the 64-bit register value.
Moreover, (Eyerifiers Eexec) are converted into error types shared
among different runtimes. As each runtime differs, the instrument
requires a one-time engineering effort.

Runtime Modification: Initial State Configuration As each
runtime has a distinct initialization method, we set up rBPF and
vanilla rBPF via their built-in APIs. For Windows eBPF, we patch
the initialization code for the Stack, Heap, and R. By writing the
memory field of the internal variables, these states are re-initialized
to ensure consistency with each other.

Runtime Modification: Execution State Probing To make a
fine-grained oracle, we capture the intermediate states after each
instruction execution in both JIT and interpreter modes. The JIT
compiler of rBPF runtime generates machine code in a single pass
over the bytecode and emits the machine code for each opcode
without optimization. Therefore, we insert an additional trampoline
during JIT compilation to capture the state after an instruction is
executed. The trampoline for rBPF is implemented as follows:

e Save the register context to the stack.

o Invoke the rust callback function with an offset address. In the
callback function, we map native registers to eBPF registers to
capture the register state. Furthermore, by reading the fixed slot
maintained and shared during the execution, we can capture the
memory state M.

e Restore the register context and rebalance the stack.

In interpreter mode, we collect the state after executing each
opcode handler. Since each opcode handler is processed within a
loop, the instrument code is inserted at the beginning of the loop.
For Windows eBPF, we add the exception handler to convert the
runtime exception into the error status. The instrument ensures
that the number of states captured in both interpretive and JIT
modes remains consistent.

4 EVALUATION

Subjects We select three mainstream user-space eBPF runtimes,
namely Windows eBPF (version 0.13.0), vanilla rBPF (version 0.2.0),
and Solana rBPF (version 0.7.0) as the subjects to evaluate our ap-
proach. We denote them as eBPFyy , rBPF,4ni114 » and ¥YBPFso10na -
Windows eBPF mainly consists of the PREVAIL verifier and the
uBPF executor. Although Windows eBPF is compiled as a Win-
dows kernel driver and runs in the kernel mode in production
environments, we compile it as a user-space program to improve
the efficiency of its execution and to facilitate the detection of its
state. Since Solana rBPF is a fork of vanilla rBPF, we select both of
them as the evaluation target to check whether the implementation
flaws is introduced by the customized modification. Specifically, we
individually capture the states from the JIT and interpreter mode
for each user-space eBPF runtimes. Therefore, we have six states
set after running on three eBPF runtimes with two modes. Note
that due to the huge design disparities between the Linux kernel
eBPF runtimes and the other runtimes, we do not generally apply it

on the kernel eBPF runtimes and will discuss it in Section 5.2 with
more details.

Implementation and settings. We implement BPFCHECKER with
Python, C, C++, and Rust, to which the lightweight eBPF IR mod-
ule makes substantial contributions. We compile each user-space
eBPF runtime with the sanitizer feature enabled in the compilation
options, including Address Sanitizer (ASan) [36] and Undefined
Behavior Sanitizer (UBSan) [42]. This enables us to obtain detailed
elucidations when an underlying memory issue occurs. All experi-
ments were done on a server running Ubuntu 22.04 with an Intel
Core i9-13900K processor and 128G DRAM. We repeat each experi-
ment for 10 campaigns to mitigate the randomness by the fuzzing.

Baseline fuzzers. Since the existing state-of-the-art eBPF fuzzers
(e.g., BRF and Buzzer) are not adapted to the user-space eBPF run-
time and fail to comprehend the semantics of user-space eBPF
runtime, they have mediocre performance in the user-space eBPF
runtime. We further conduct an performance evaluation of the
Buzzer, BRF, and BPFCHECKER against the baseline in Section 4.1.
Consequently, we use the internal fuzzer inside each eBPF project
as the baseline fuzzer. Specifically, we use [38] as the baseline fuzzer
for Solana rBPF, and use [20] as the baseline fuzzer for Windows
eBPF. Although vanilla rBPF does not have an internal fuzzer, its
structure is similar to Solana rBPF. Consequently, we have adapted
the fuzzer from Solana rBPF to vanilla rBPF, establishing it as the
baseline. Notably, using these project fuzzers as the baseline doesn’t
noticeably degrade the baseline performance since they are actively
maintained by the developer team and offer a more comprehensive
understanding of instruction set semantics compared to state-of-
the-art kernel eBPF fuzzers.

Research Questions. We conduct extensive experiments and
analysis, aiming to answer the following research questions that
are concerned with the effectiveness of BPFCHECKER and the root
causes of the discovered implementation flaws.

Since the verifier rejects the invalid eBPF program, generating a
high-quality eBPF program is imperative for bug detection. The ef-
fect of our eBPF IR design and semantic IR corrector is an essential
step towards better understanding how test case optimization trig-
gers bugs more effectively. Consequently, we study the following
research question:

[RQ1: Can BPFCHECKER generates representative test cases? j

The capability of detecting implementation flaws demonstrates
the effectiveness of our approach. Thus, we investigate the follow-
ing research question:

[RQ2: Is BPFCHECKER effective in bug finding? }

Moreover, the bug symptoms and their root causes allow devel-
opers to gain more practical insights into addressing a bug. This
leads us to study the following research question:

[RQ3: What are the root causes of the detected bugs? }

Table 1: The code coverage and semantic correctness rate (SCR) reached after 12-hour fuzzing by BPFCHECKER (denoted as BC),
BPFCHECKER variants and baselines. The baselines differ for each subject because we use the internal fuzzer within each eBPF

runtime.
. . Code Coverage SCR
Subject Metric BC BG, BC, Baseline BC BC, BC, Baseline
Average 63.1% 48.9% 57.2% 45.2% 21.3% 15.9% 12.2% 9.6%
rBPFsolana Im _ _
provement 29.0% 10.3% 17.5% 34.0% 74.6% 121.9%
Average 58.6% 41.2% 54.1% 37.5% 19.1% 13.5% 12.6% 10.1%
rBPFyanilla Im _ _
provement 42.2% 8.3% 56.3% 41.5% 51.6% 89.1%
¢BPF Average 51.2% 43.7% 48.0% 39.4% 14.4% 9.7% 8.3% 6.4%
w Improvement - 17.2% 6.7% 29.9% - 48.5% 73.5% 125%
Average (among subjects) 57.6% 44.6% 53.1% 40.7% 18.3% 13.0% 11.0% 8.7%

Table 2: The code coverage and semantic correctness rate (SCR) reached after 12-hour fuzzing by BPFCHECKER (denoted as BC),

BRF, Buzzer and baselines. The baselines differ for each subject.

Subject Code Coverage SCR
BC BRF Buzzer Baseline BC BRF Buzzer Baseline
BPFso1ana 63.1% <5% 32.1% 45.2% 21.3% <0.1% 12% 9.6%
BPF yanilla 58.6% <5% 26.3% 37.5% 19.1% <0.1% 1.5% 10.1%
eBPFy, 51.2% <5% 22.0% 39.4% 14.4% <0.1% 2.3% 6.4%

Table 3: Covered instruction types (CIT) reached after 12-
hour fuzzing by BPFCHECKER and baselines. The baselines
differ for each subject.

Subject BC Baseline Improvement
rBPFso1ana 121 109 11.0%
rBPFyunilla 108 95 13.7%

eBPFy, 96 87 10.3%

Average 108 97 11.3%

Table 4: The average number of executed test cases per second
over a 12-hour fuzzing by BPFCHECKER and baselines. The
baselines differ for each subject.

Subject BPFCHECKER Baseline Slowdown
rBPFsoiana 650 880 26.1%
rBPFynilla 580 790 26.6%

eBPFy, 2610 5960 56.2%

Average 1280 2543 49.7%

4.1 Effectiveness of Test Case Generator (RQ1)

BprCHECKER generates the test case based on the eBPF IR, which
complies with the BPF instruction specification from the eBPF
standardization. To demonstrate the effectiveness of the test case
generator, we measure the covered instruction types, the semantic
correct rate, and the code coverage during the fuzzing campaign.
To demonstrate the effectiveness of the lightweight eBPF IR and
the semantic IR corrector , we conduct an ablation study. We create
variants of BPFCHECKER by disabling the semantic IR corrector
(BCi) and replacing the IR program generator with a random one
(BCr). We compare the performance of these variants and the vanilla
BprFCHECKER on two metrics, including the instruction type cover-
age and the semantic correctness rate of the generated programs.
Specifically, we calibrate the instruction type coverage and the se-
mantic correctness on the interpreter mode of each eBPF runtime.

For a correctly implemented runtime, these data should be the same
under the JIT and interpreter modes.

Semantic correctness rate. Generating syntactically and seman-
tically correct test cases is essential to explore the deep area of the
eBPF runtime. The semantic correctness rate (SCR) is the percentage
of semantically correct test cases, i.e., those validated by the eBPF
verifier, among all samples generated over a specified duration. A
higher SCR indicates the capability to explore more intricate states
and uncover more profound bugs. We sample 100,000 programs
generated by each variant on all subjects, and compute the number
of semantically correct samples. We repeat the experiment for 10
campaigns. The average SCR value for each variant is reported in
Table 1.

According to the column “SCR” in Table 1, only 8.7% programs
generated by baseline fuzzers are semantically correct, which means
all the others can contain illegal instructions and they are not ef-
fective in triggering the potential inconsistencies among runtimes.
Conversely, BPFCHECKER achieves an 18.3% semantic correctness
rate on average, surpassing the baseline by more than double. Com-
pared with BPFCHECKER and BC;, semantic IR corrector reveals
an improvement in SCR of up to 74.6%. Even in the worst case,
semantic IR corrector improves the SCR by 51.6% on rBPF,pii14 -
Moreover, the removal of the IR (BC;) results in a reduction of at
least 34% in the SCR. The significant SCR improvement indicates
that both IR and semantic IR corrector can effectively improve the
generation effectiveness.

Code coverage. We measure the code coverage after 12-hour
fuzzing by BPFCHECKER and the baseline, repeating for 10 cam-
paigns. The average code coverage for each subject is reported
in Table 1. Compared with the coverage reached by the baselines,
BprCHECKER achieves up to 56.3% improvement. We observe that
the code coverage is significantly decreased when the IR program
generator is disabled (BC). In the worst case, the coverage of

rBPFyanitia drops by 42.2% without the IR program generator. The
removal of semantic IR corrector decreases the coverage by at least
6.7%, revealing that the quality of testcases affects the coverage.

Covered instruction types. For each testing subject, we measure
the number of covered instruction types (CIT) reached after 12
hours of fuzzing. We only execute the verified programs and count
the executed instruction types by calculating the joint interpreter
code coverage related to the instruction handler. We leverage the
CIT to understand whether the generated program itself can be
fully explored and executed by the runtime.

The results of CIT are reported in Table 3. Among verified pro-
grams, more than 10% types of instructions cannot be covered by the
random generator, resulting in relatively limited implementation
exploration. Conversely, BPFCHECKER achieves 11 more covered
instruction types and can thus reveal implementation flaws that
the baselines fail.

Kernel eBPF fuzzer evaluation. State-of-the-art kernel eBPF
fuzzers, such as Buzzer [9] and BRF [11], demonstrate effective-
ness in identifying flaws within the kernel verifier and the kernel
eBPF API However, they lack the semantic understanding of the
user-space eBPF instruction set and do not model user-space eBPF.
Specifically, BRF primarily generates programs targeted at the ker-
nel eBPF API, and it is based on source code compilation, unable to
generate or mutate on low-level instructions. Consequently, their
performance in detecting faults in user-space eBPF is mediocre.
Therefore, we used the project fuzzer as a baseline to highlight the
performance of the state-of-the-art fuzzers.

We evaluate the effectiveness of Buzzer and BRF by replacing the
code generation component of BPFCHECKER with the respective
code generators from Buzzer and BRF. We use Buzzer in commit
hash 39b2b25 and BRF in commit hash 047d1c9. We employ the
same machine environment as utilized in the evaluation (Section 4).
The experiment is repeated 10 times.

The average code coverage and SCR for each subject are reported
in Table 2. The majority of programs generated by BRF primarily
consist of kernel eBPF API calls, which are prone to errors when
executed in user-space eBPF. This leads to significantly low code
coverage and reduced semantic accuracy. Buzzer leverages a tem-
plated approach to produce eBPF programs, yet it lacks semantic
awareness to the instruction set of user-space eBPF runtime. Ad-
ditionally, it has limited program generation strategy and fails to
generate sufficient instruction types, resulting in notably low code
coverage. Using the instruction-level program corrector and effec-
tive IR, BPFCHECKER achieves more than 10 X semantic correctness
and 2 X code coverage of the Buzzer. Additionally, during the 24-
hour fuzzing campaign, both Buzzer and BRF failed to find any bugs
that BPFCHECKER could identify within 12 hours.

As Buzzer uses template-based program generation, its semantic
accuracy for generated programs is significantly lower compared
to BPFCHECKER. Since BRF generates API-oriented eBPF programs
and relies solely on source code-level mutations, it fails to produce
a diverse range of low-level instructions, which results in signif-
icantly lower semantic accuracy in user-space eBPF. The project
fuzzer, which accounts for the subtle semantic variations in its

instruction set, is more representative. Moreover, BPFCHECKER sig-
nificantly outperforms state-of-the-art fuzzers in terms of program
correctness and effectiveness in detecting implementation flaws in
user-space eBPF runtime.

()
Answer to RQ1: BPFCHECKER can generate sufficient test

cases which are all syntactical correct instructions and can
reach 18.3% semantic correctness rate on average, which
is 2.1x of the baselines on average for the evaluated tar-
gets. In terms of code coverage, BPFCHECKER achieves an
improvement of at least 17.5% compared to the baselines.
Furthermore, BPFCHECKER can explore all types of instruc-
tions implemented in the eBPF runtimes, while 11 types of
instruction cannot be explored by the baselines.

4.2 Effectiveness of BPFCHECKER(RQ2)

4.2.1 Throughput. BPFCHECKER generates eBPF programs using
the constraint-based generator mentioned in Section 3.1.2 under er-
ror message guidance. In this section, we evaluate the performance
of the BPFCHECKER in terms of the execution speed.

The evaluation approach is as follows. For a given test case,
BPFCHECKER executes them on a single runtime in both JIT and
interpreter mode. We run the BPFCHECKER and the baseline fuzzer
of both Solana rBPF and Windows eBPF project. To mitigate the
nondeterministic factors introduced by multithreading execution,
all tools are running on a single CPU core and is repeated for 10
times. Moreover, we measure the average number of test cases
executed per second over a 12-hour period.

The evaluation result shown in Table 4 demonstrates the average
executed test cases for both BPFCHECKER and the baseline fuzzer.
For rBPF runtime, the average slowdown of BPFCHECKER compared
to the baseline fuzzer is 26.1%. For Windows eBPF, since libFuzzer
leverages in-process execution, it is faster than BPFCHECKER which
executes the standalone eBPF runtime binary. However, considering
the benefits of triggering and detecting implementation flaws, the
slowdown is acceptable. Even if the overall slowdown reached 49.7%,
BprCHECKER can still detect most of the implementation flaws that
the baseline fuzzers fail to identify, which is demonstrated in the
Section 4.2.2.

4.2.2 Implementation Flaws Discovery. We conduct differential
fuzzing on these eBPF runtimes and find a total of 28 new im-
plementation flaws as described in Table 5, including 7 crash and
21 non-crash implementation flaws. We also obtained 2 CVEs for
critical vulnerabilities. We triage and confirm these bugs through
manual efforts. Notably, the baseline fuzzer for rBPF is written on
the top of the cargo-fuzz, while on the Windows eBPF, it is written
on the top of the libFuzzer. We denote both of the fuzzer as the
Baseline column shown in Table 5. Among the 28 new bugs, only
3 bugs can be found by the baseline fuzzer after running on each
eBPF runtime with the vulnerable version for 7 days. However,
BPFCHECKER can find all these bugs on the vulnerable eBPF run-
time within 12 hours, showing its effectiveness in bug detection.
The bugs found by the baseline fuzzer are all memory corruption
bugs in the Windows eBPF verifier, showing that the existing oracle

Table 5: Unique bugs found by BPFCHECKER over the course of multiple months. All identified bugs are reported to the
respective vendor, and we actively work with the developers to fix the vulnerabilities. All details concerning the bugs and links
to their fixes are contained within the repository https://github.com/bpfchecker/BpfCheckerSource. The bug ids listed in the
ID column are assigned by PREVAIL verifier issues list [45] (©), vanilla rBPF issues list [33] (&), Solana rBPF issues list [37]
(+), Solana security advisories [39] (x), uBPF issues list [31] (®), and Microsoft Security Response Center [19] (o). The Module
column indicates the component of the respective eBPF runtime where bugs manifest. The Baseline column indicates whether

the bug can be found through the project’s built-in fuzzer.

Subject ID Module Type Status Baseline
rBPFsolana CVE-2022-23066 T Correctness Fixed X
rBPFsoiana CVE-2021-46102 Parser Correctness Fixed X
rBPFsoiana 3qwj-hrj9-6x95* Parser Correctness Fixed X
rBPFsolana 87mf-r7qw-cgqg* Interpreter Correctness Confirmed X
rBPFsoiana frh9-6jf9-7c63* Interpreter Correctness Duplicated X
rBPFsoiana q9wq-j357-4gev® JT Correctness Fixed X
rBPFso1ana 270 JIT Correctness Fixed X
rBPFsoiana 2697 Verifier DoS Fixed X
rBPFsoiana 549~ Verifier Correctness Fixed X
rBPFyanilia 919 Disassembler Correctness Fixed X
rBPF,nilla 929 Disassembler Correctness Fixed X
rBPFyanilia 949 Interpreter Correctness Fixed X
rBPF,,nilla 959 Interpreter Correctness Fixed X
rBPF,nilla 96% Interpreter Correctness Fixed X
rBPFyanilia 99® Interpreter Correctness Fixed X
rBPF,,nilla 101% Interpreter Correctness Reported X

eBPFy, 068772° JIT Memory Corruption Fixed X

eBPFy 068780° Interpreter Correctness Fixed X

eBPFyy 068726° Verifier DoS Confirmed X

eBPFy, 068574° Verifier Memory Corruption Fixed v

eBPFy 067989° Verifier Memory Corruption Fixed v

eBPFy, 243° Verifier Correctness Fixed X

eBPFyy, 5459 Verifier DoS Reported X

eBPFy, 433® Interpreter Correctness Reported X

eBPFy 434® Interpreter Memory Corruption Reported 4

eBPFy 4359 T Correctness Reported X

eBPFyy 436® JT Correctness Reported X

eBPFy, 4379® JIT Correctness Reported X

+ Public discovery of a vendor-concealed Bug.

cannot detect subtle correctness bugs. Moreover, the baseline fuzzer

fails to find any bugs that cannot be detected by BPFCHECKER.
-

Answer to RQ2: BPFCHECKER can identify implementation)
flaws among each component of the eBPF runtime. The ex-
isting state-of-the-art fuzzers fail to uncover 25 out of the
28 implementation flaws found by BPFCHECKER even if their
execution speed surpasses that of the BPFCHECKER. Bug ora-
cles of the existing work are blind to these implementation
flaws despite an input program being able to produce faulty

samples.
\ J

4.3 Analysis of implementation flaws(RQ3)

We summarize the implementation flaws discovered by BPFCHECKER
during our evaluation over three eBPF runtimes. The buggy im-
plementations occur 7 times within the verifier, 7 times within the

JIT, and 11 times within the interpreter. We present the case study
of four typical vulnerabilities detected by the BPFCHECKER. Those
vulnerabilities fulfill each part of the eBPF runtime, including the
verifier, JIT compiler, and interpreter. Notably, CVE-2022-23066
is a miscalculation vulnerability in the rBPF interpreter, caused
by the lack of sign extension to the register. CVE-2021-46102 is a
vulnerability in the rBPF parser that causes an overflow in address
calculation during parsing. Both of these vulnerabilities are of high
severity and have received bounties from the vendor.

Case Study: miscalculation in rBPF interpreter. Figure 7aisa
simplified PoC triggering inconsistent results between JIT and in-
terpreter in Solana rBPF. The bug is caused by an incorrect sign bit
extension when calculating the MUL instruction. The bug does not
cause any crashes and is hard to be detected by other fuzzers. During
the calculation of the interpreter for MUL32 instruction, it directly
cast the result of a signed 32-bit result to a signed 64-bit number and

1 add32 r0, 0x1000ffff // r0=0x1000ffff

2 mul32 r@, ro
// others:
3 exit

// rBPF interpreter: rO=0xffffffffdffe0001

r0=0x00000000dffef001

(a) Miscalculation bug in rBPF interpreter.

1 mov r5, 0x1
2 ldxdw r5, [rl10 - 0x6650]

// r5=1
// load value from stack

// Windows eBPF: no exception raised
// others: return AccessViolation error

3 exit

(b) Incorrect boundary check in the verifier of Windows eBPF.

1 mové4 r8, 0x054545fF
2 1shé4 r8, r8

// vanilla rBPF: panic with overflow shift

rg=0x80000000000000600

// others:
3 exit
(c) Incorrect shift implementation in rBPF interpreter.

1 mové4 r0, O
2 movb4 r8, r4
3 if r6 > -1079394508 goto +12343
4 mové4 rl, ro
5 add32 w8, w4
6 add32 w4, w4
7 mové4 r8, 207967935
8 if r® >= 1459617637 goto -5
9 if w0 != 207050400 goto +24936
10 goto -5

// verifier of eBPF Windows: trapped into an infinite loop

// other: raise runtime PC jump outside error

(d) Incorrect control-flow analysis in Windows eBPF leading to the infinite loop during

verification.

Figure 7: The proof-of-concept eBPF programs of the demonstrated implementation flaws. The comment of each program

demonstrates the simplified execution state.

implicitly performed the sign-bit extension. If the 32-bit represen-
tation of the calculated result is negative, the sign-extended 64-bit
representation will be extended as negative, i.e., the upper 32-bits
are populated with ones. However, the eBPF specification stipulates
that the upper bits following 32-bit integer operations should be
zeroes. The initial value of r0 is set to 0x1000ffff by the ADD32
instruction. In the MUL32 instruction, the self-multiplication re-
sult should be 0xdffe0001. Due to the wrong sign extension, the
interpreter sets the v0 to the wrong 0xffffffffdffe0001. The wrong
result further breaks the intended behavior between the high-level
contract language and the low-level bytecode execution, leading
to the consensus issue in the blockchain network. BPFCHECKER
captures this inconsistency bug through the register comparison
rules.

Case Study: incorrect boundary check in Windows eBPF ver-
ifier. Figure 7b is a simplified PoC triggering heap buffer overflow
in the verifier of Windows eBPF. In the forward analyzer of the ver-
ifier, it traverses and visits all the eBPF instructions and simulates
the load stack operation if the current instruction is a LoadStack
instruction (i.e., read memory on r10 register with offset). It finally

queries whether the target stack memory with the offset k is a num-
ber type or not. The k value is read directly from the user-provided
offset without verification. Therefore, when accessing the simulated
stack array with the unsanitized k, the offset can be larger than the
array size EBPF_STACK_SIZE, leading to the heap buffer overflow.
This bug can be leveraged to read out-of-boundary addresses in ker-
nel memory, as the controlled k value ranges from @ to SIZE_T_MAX.

Case Study: incorrect shift implementation in rBPF Inter-
preter. Figure 7c demonstrates a PoC program that triggers un-
defined behaviours in the interpreter of vanilla rBPF. The eBPF
specification specifies that “Shift operations use a mask of 0x3F (63)
for 64-bit operations and 0x1F (31) for 32-bit operations”. However,
the interpreter in rBPF,,,,;;;, lacks the mask and is not compliant
with the specification. The source bits will overflow when the shift
operation is performed on a large offset like 0x054545ff, as shown
in the PoC program. This leads to undefined behaviour since the
low-level machine codes on different architectures have different

implementations when the shift operation overflows. Hence, the
calculated results vary across machines with different architectures.

Case Study: incorrect control-flow analysis in Windows eBPF
verifier. The eBPF program shown in Figure 7d can trap the Win-
dows eBPF verifier in the infinite loop. Specifically, when there
are more than two back edges inside the CFG and the infinite loop
exists in the eBPF program, the Windows eBPF verifier follows the
loop flow of the program and doesn’t properly check the finitude
during simulation.

Design Disparities Furthermore, during our fuzzing campaigns
spanning several months, we find several design disparities in dif-
ferent runtimes, leading to the initial false positive cases. These
cases are valid and reproducible, yet they all fall within the runtime-
specific design specifications. We categorize these inconsistencies
caused by the design disparities and introduce the following rules

execution errors that can crash runtime directly. Such crashes are
ultimately captured by the host system, affecting the robustness
of the runtime and resulting in the differential testing engine’s
inability to capture execution results accurately.

Configuration Some differences are due to the inconsistent con-
figurations of the runtimes. For example, the stack frame size in
SBF V1 implementation of Solana rBPF is 4096, while the size
in Windows eBPF is 512. Therefore, given a program accessing
memory with a stack space offset of 1000, the execution in Solana
rBPF will not cause errors, while in Windows eBPF, the execution
will raise access violation errors. Moreover, Solana rBPF set the
initial value of register r1 to zero, while vanilla rBPF set it as the
host heap address under default configuration.

to eliminate false positive cases.

Stochastic runtime address The runtime heap and stack address
are not fixed and are allocated dynamically each time the pro-
gram is executed. Besides, user-space eBPF runtimes allow those
stack memory addresses to be accessed. The concrete host ad-
dress stored in the registers causes false positives due to the
inconsistent register states. When we generate a program using
those host-related registers, we only compare the error message
from the verifier and executor since the concrete host address
can taint registers.

Division by zero The eBPF specification considers division by
zero as a regular behavior, whereupon encountering a divisor of
zero, the target register is set to zero. Conversely, within the de-
sign of Solana rBPF, division by zero triggers the DivisionByZero
error. We ignore the state comparison when the execution result
from Solana rBPF is DivisionByZero. This exemption will not
lead to additional false negatives since the other part of the pro-
gram logic can be tested when we generate a semantic identical
program without such division instruction.

Instruction measurement The eBPF specification allows a maxi-
mum of 1 million instructions to be executed at runtime, and the
program size is limited to only 4096 instructions. All verifiers in
user-space eBPF runtimes do not perform sophisticated loop anal-
ysis or check the program’s termination. Moreover, the virtual
machines of vanilla rBPF and Windows eBPF do not control the
number of instructions or the program, leading to the runtimes
getting trapped in infinite loops if the program is infinite. Since
Solana rBPF limits the executed instruction during execution, we
leverage the instruction meter in the Solana rBPF to measure the
instruction executed count and determine whether the program
is infinite. If the program execution on Solana rBPF raises the
ExceededMaxInstructions, we will not execute this program on
other runtimes to avoid unnecessary program hanging. This op-
timization enhances the throughput of fuzzing since the runtime
will not be subject to program-induced infinite loops.

Error handling mechanisms The eBPF specification asserts that
runtime should not experience crashes due to abnormal behavior
of the program. Runtime errors need to be handled judiciously
by the host. However, the JIT compiler in vanilla rBPF does not
implement the proper error-handling mechanisms, resulting in

Answer to RQ3: During the fuzzing campaign, we identify
and categorize 5 types of root causes for inconsistencies re-
lated to designed disparities. The implementation flaws exist
in each component of the eBPF runtimes, yet the execution
component has been overlooked by the existing work. In
addition, as shown in our case studies, implementation flaws
generally do not manifest as segmentation faults or sanitizer
violations, while they have a severe impact on the entire
system.

5 DISCUSSION AND LIMITATION

5.1 Suggestions for developers.

We summarize two concrete suggestions for eBPF runtime develop-
ers according to the analysis of the implementation flaws. @ Beware
of the subtle differences in data types for the arithmetic instructions.
Based on our findings, handlers for data types at boundary condi-
tions can easily be overlooked. It is recommended that the handler
of special cases for each data type be reviewed when implementing
the eBPF specification. @ Enhancing test suites by comparing the
results between the JIT and interpreter. In some user-space eBPF
runtimes (e.g., Windows eBPF), test cases often only validate the
results of either the JIT or the interpreter individually, neglect-
ing the comparison of consistency between them. This oversight
makes existing test suites fail to capture correctness issues during
development.

5.2 Limitation

Limitations due to the fixed IR constraint rules. BPFCHECKER
generates the eBPF program under the predefined constraints. How-
ever, as the eBPF runtime evolves, the rules of the verifier will be
updated, and new instruction types will be added for the executor.
To ensure the quality of the generated program, additional mod-
ifications need to be made to the lightweight IR, along with the
inclusion of new constraints. Although adapting the updated eBPF
instruction sets and generating succinct eBPF instructions can be
achieved by enhancing LLVM’s eBPF backend, it requires a certain
engineering effort. In the future, we aim to utilize more powerful
NLP techniques to automatically adapt updated specifications to

our lightweight IR and generate the corresponding constraints for
the new instruction types.

Limitations due to the design disparities. Since the kernel veri-
fier utilizes safety rules that are not implemented by the user-space
eBPF verifier, their validation results for the same program often
diverge. For instance, given an eBPF program that reads data from
the stack before writing into it, the kernel eBPF verifier would re-
ject it since the uninitialized stack access is not allowed. However,
in user-space eBPF runtime (e.g., rBPF, Windows eBPF), the stack
has been initialized to zero; hence, the verifier does not check the
uninitialized memory access. The design disparities further lead to
undesirable false positives that do not manifest as real bugs. Since
completely eliminating the false positives caused by the design dis-
parities is challenging, we do not generally apply the BPFCHECKER
on the kernel eBPF framework. In the future, we plan to explore
how to generate a subset of programs that adhere to the common
standards of kernel and user-space runtime.

6 RELATED WORK

eBPF Fuzzing. Fuzzing is an effective approach to detecting
bugs, and many works in this area are relevant to our work. Specif-
ically, Syzkaller [7], the state-of-the-art kernel fuzzer, is capable of
testing the eBPF framework by generating random bpf() system
calls. It has been integrated into the kernel upstream to test contin-
uously and has demonstrated promising capability in uncovering
memory bugs. Another work [30] proposed by IO Visor Project
utilizes the LLVM framework to test the eBPF verifier from kernel
space to user space. To do so, it replaces related kernel routines
with simplified user-space versions and performs coverage-guided
fuzzing by libfuzzer. Benjamin et al. [28] proposed a syntax-aware
fuzzer targeting the eBPF subsystem in the Linux kernel based on
Angora [3]. It uses the sample eBPF programs in the Linux kernel
source tree as the initial corpus and uses gradient descent to guide
the mutation. However, the inputs generated by these tools are
likely to have invalid instructions, which will be rejected by the
verifier early. Moreover, even if an eBPF program that passes the
verifier’s checks is generated, detecting correctness bugs is chal-
lenging for these tools since they all use the sanitizer as their sole
oracle. Buzzer [9] is a recent work that targets the verifier. It ran-
domly generates eBPF programs, which mainly involve simple ALU
and JMP instructions, thereby not extensively probing the verifier’s
intricate checking mechanisms. Moreover, it failed to capture cor-
rectness issues in the other components of the eBPF runtimes. As a
result, Buzzer only found bugs within the verifier after an extended
duration of testing.

The work proposed by Scannell [35] is a bytecode-level semantic-
aware fuzzer that targets the JIT compiler. It generates the bytecode
incorporating a degree of semantics of the register states. If the
generated program is verified by the verifier, it assumes that the
map-writing operation inside the program is always within bounds,
and thus, faulty pointer arithmetic is detected when the value of
the map remains unchanged after the program is executed. The
experiments show a mere 0.77% validity rate among the generated
eBPF programs due to the limited awareness of semantics. Unlike the
above studies, BPFCHECKER considers the consistency of the key states

in the runtime as the semantic oracle and utilizes the semantic-aware
generator to generate high-quality test cases.

Differential Testing. Differential testing is a powerful dynamic
technique introduced by McKeeman et al. [16] to identify bugs
or inconsistencies between software systems implementing the
same functionality. Deng et al. [6] introduced a differential testing
framework of cross deep learning framework. It utilizes a joint API
test across multiple frameworks to construct more fine-grained
constraints and identify inconsistencies more efficiently. However,
since the user-space eBPF framework has new API for the program
execution, it is unsuitable to perform API-based testing on the user-
space eBPF runtime. Examiner [12] and WADIFF [54] leverage a
symbolic execution engine for architecture specification language
(ASL) to generate input test cases for their targeted system. How-
ever, the ASL cannot be leveraged to describe the semantics of the
eBPF program. Csmith [51] generates random C programs with
complex syntactic structures and performs differential testing on
the compile result from the C compiler. However, these frameworks
can not be applied to eBPF directly due to the absence of prior
knowledge regarding the state of eBPF runtime. Apart from the
above studies, BPFCHECKER is the first general differential fuzzing
framework that uncovers implementation flaws in the eBPF runtimes.
Differential Analysis. Differential analysis usually adopts hy-
brid techniques to strengthen the bug detection capability. ParDiff
[52] uses static differential analysis to detect domain-specific bugs
of the network protocol parsers. It firstly extracts finite state ma-
chines from programs to represent protocol format specifications.
Subsequently, it leverages bisimulation and SMT solvers to detect
fine-grained and semantic inconsistencies between the network pro-
tocol parsers. However, due to the challenge of understanding and
extracting the code generation process of the JIT compiler, it will
take too much effort to analyze JIT compilers of the eBPF runtimes.
Different from the existing differential analysis, BPFCHECKER employs
concrete execution to address the challenges of state abstraction.

7 CONCLUSION

In this paper, we present BPFCHECKER, a differential fuzzing frame-
work that can satisfy the semantics required by the eBPF runtime
to detect implementation flaws in the eBPF runtimes. To address
the oracle challenges posed by the nature of the correctness bug,
BPFCHECKER uses the differential testing engine to identify any
unexpected execution discrepancy caused by the implementation of
the eBPF runtime. Furthermore, BPFCHECKER uses the lightweight
eBPF IR and the semantic IR corrector to enhance the quality of
the test cases. BPFCHECKER outperforms state-of-the-art fuzzing
approaches in terms of both semantic correctness rate and identi-
fied bug finding. Simply put, we have uncovered a total of 28 new
bugs, with 2 of them assigned CVE numbers and received $800,000
bounty from the vendor. In addition, we analyze the root causes and
potential impacts of these vulnerabilities in a real-world scenario.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their invaluable comments.
This work is partially supported by the National Key R&D Pro-
gram of China (No. 2022YFE0113200), the National Natural Science
Foundation of China (NSFC) under Grant 62172360, U21A20464, the

Hong Kong ITF Project (No. PRP/005/23FX). Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
funding agencies.

REFERENCES

(1]

8

=

[9

=

[10]

[11]

[13]

[14]

[15

[16]

Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. 2021. Efficient
network monitoring applications in the kernel with ebpf and xdp. In 2021 IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). IEEE, 28-34.

Maher Alharby, Amjad Aldweesh, and Aad Van Moorsel. 2018. Blockchain-based
smart contracts: A systematic mapping study of academic research (2018). In 2018
International Conference on Cloud Computing, Big Data and Blockchain (ICCBB).
IEEE, 1-6.

Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711-725.

Alexei Starovoitov Daniel Borkmann. 2024. eBPF. https://ebpf.io

Poorna Gaddehosur Dave Thaler. 2021. Making eBPF work on Windows. Retrieved
March 1, 2024 from https://cloudblogs.microsoft.com/opensource/2021/05/10/
making-ebpf-work-on-windows

Zizhuang Deng, Guozhu Meng, Kai Chen, Tong Liu, Lu Xiang, and Chunyang
Chen. 2023. Differential Testing of Cross Deep Learning Framework {APIs}: Re-
vealing Inconsistencies and Vulnerabilities. In 32nd USENIX Security Symposium
(USENIX Security 23). 7393-7410.

Andrey Konovalov. Dmitry Vyukov. 2024. Syzkaller: an unsupervised coverage-
guided kernel fuzzer. https://github.com/google/syzkaller

Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A Navas,
Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. 2019. Simple and precise
static analysis of untrusted linux kernel extensions. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
1069-1084.

Google. 2024. Buzzer - An eBPF Fuzzer toolchain. https://github.com/google/
buzzer

Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. 2014. Coverage and
its discontents. In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software. 255-268.
Hsin-Wei Hung and Ardalan Amiri Sani. 2023. BRF: eBPF Runtime Fuzzer. arXiv
preprint arXiv:2305.08782 (2023).

Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu Luo,
and Kui Ren. 2022. EXAMINER: Automatically locating inconsistent instructions
between real devices and CPU emulators for ARM. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 846-858.

Linux kernel. 2024. eBPF verifier — The Linux Kernel documentation. Retrieved
March 1, 2024 from https://docs kernel.org/bpf/verifierhtml

Jung-Bok Lee, Tae-Hee Yoo, Eo-Hyung Lee, Byeong-Ha Hwang, Sung-Won Ahn,
and Choong-Hee Cho. 2021. High-performance software load balancer for cloud-
native architecture. IEEE Access 9 (2021), 123704-123716.

Youlin Li, Weina Niu, Yukun Zhu, Jiacheng Gong, Beibei Li, and Xiaosong Zhang.
2023. Fuzzing Logical Bugs in eBPF Verifier with Bound-Violation Indicator. In
ICC 2023-1EEE International Conference on Communications. IEEE, 753-758.
William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100-107.

Microsoft. 2024. eBPF distributed networking observability tool for Kubernetes.
Retrieved March 1, 2024 from https://github.com/microsoft/retina

Microsoft. 2024. eBPF implementation that runs on top of Windows. https:
//github.com/microsoft/ebpf-for-windows

Microsoft. 2024. Microsoft Security Response Center. https://msrc.microsoft.com
Microsoft. 2024. Windows eBPF project fuzzer. https://github.com/microsoft/ebpf-
for-windows/tree/b9d6cb6b7edcc5314413d866a63d36ebcd1abl4d/tests/
libfuzzer

MITRE. 2020. CVE-2020-8835. Retrieved March 1, 2024 from https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2020-8835

MITRE. 2022. CVE-2022-23066. Retrieved March 1, 2024 from https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2022-23066

MITRE. 2023. CVE - CVE-2023-2163. Retrieved March 1, 2024 from https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-2163

MITRE. 2024. CVE - CVE-2021-46102. Retrieved March 1, 2024 from https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=2021-46102

MITRE. 2024. CVE - CVE-2024-26588. Retrieved March 1, 2024 from https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-26588

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. 2019. Scaling symbolic evaluation for automated verification of systems
code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 225-242.

Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020. Specifica-
tion and verification in the field: Applying formal methods to BPF just-in-time
compilers in the linux kernel. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 41-61.

Benjamin Curt Nilsen. 2020. Fuzzing the Berkeley Packet Filter. University of
California, Davis.

Hui Peng, Zhihao Yao, Ardalan Amiri Sani, Dave Jing Tian, and Mathias Payer.
2023. GLeeFuzz: Fuzzing WebGL Through Error Message Guided Mutation. In
32nd USENIX Security Symposium (USENLX Security 23). 1883-1899.

10 Visor Project. 2019. eBPF fuzzing framework based on libfuzzer and clang
sanitizer. https://github.com/iovisor/bpf-fuzzer

10 Visor Project. 2024. uBPF issue list. https://github.com/iovisor/ubpf/issues
10 Visor Project. 2024. Userspace eBPF VM. https://github.com/iovisor/ubpf
Qmonnet. 2024. rBPF issues list. https://github.com/qmonnet/rbpf/issues
Qmonnet. 2024. Rust Virtual Machine and Jit Compiler for eBPF programs. https:
//github.com/qmonnet/rbpf

Simon Scannell. 2021. Fuzzing for eBPF JIT bugs in the Linux kernel. https:
//scannell.io/posts/ebpf-fuzzing

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. {AddressSanitizer}: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12). 309-318.

Solana. 2024. Solana rBPF issues list. https://github.com/solana-labs/rbpf/issues
Solana. 2024. Solana rBPF project fuzzer. https://github.com/solana-labs/rbpf/
blob/f3758ecee89198433422f751beee7f0f52dbed55/sre/fuzz.rs

Solana. 2024. Solana Security Advisories. https://github.com/solana-labs/solana/
security/advisories

Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and
Toshio Nakatani. 2001. A dynamic optimization framework for a Java just-in-time
compiler. ACM SIGPLAN Notices 36, 11 (2001), 180-195.

Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024.
Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program.
(2024).

The Clang Team. 2024. Undefined Behavior Sanitizer. https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html

V8 Team. 2023. V8’s Fastest Optimizing JIT. https://v8.dev/blog/maglev

Vbpf. 2024. eBPF verifier based on abstract interpretation. https://github.com/
vbpf/ebpf-verifier

Vbpf. 2024. PREVAIL eBPF verifier issue list. https://github.com/vbpf/ebpf-
verifier/issues

Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacifico, Elerson RS Santos,
Eduardo PM Camara Jinior, and Luiz FM Vieira. 2020. Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications. ACM Computing
Surveys (CSUR) 53, 1 (2020), 1-36.

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh
Nagarakatte. 2022. Sound, precise, and fast abstract interpretation with tristate
numbers. In 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 254-265.

Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. 2023.
Fuzz]IT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler. In 32nd
USENIX Security Symposium (USENIX Security 23). 1865-1882.

Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).

Rui Yang and Marios Kogias. 2023. HEELS: A Host-Enabled eBPF-Based Load Bal-
ancing Scheme. In Proceedings of the 1st Workshop on eBPF and Kernel Extensions.
77-83.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283-294.

Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu,
Guannan Wei, and Xiangyu Zhang. 2024. ParDiff: Practical Static Differential
Analysis of Network Protocol Parsers. Proceedings of the ACM on Programming
Languages 8, OOPSLA1 (2024), 1208-1234.

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf
Cidon. 2022. XRP: In-Kernel Storage Functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX
Association, Carlsbad, CA, 375-393. https://www.usenix.org/conference/osdi22/
presentation/zhong

Shiyao Zhou, Muhui Jiang, Weimin Chen, Hao Zhou, Haoyu Wang, and Xiapu Luo.
2023. WADIFF: A Differential Testing Framework for WebAssembly Runtimes. In
2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 939-950.

https://ebpf.io
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows
https://github.com/google/syzkaller
https://github.com/google/buzzer
https://github.com/google/buzzer
https://docs.kernel.org/bpf/verifier.html
https://github.com/microsoft/retina
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://msrc.microsoft.com
https://github.com/microsoft/ebpf-for-windows/tree/b9d6cb6b7edcc5314413d866a63d36ebc41ab14d/tests/libfuzzer
https://github.com/microsoft/ebpf-for-windows/tree/b9d6cb6b7edcc5314413d866a63d36ebc41ab14d/tests/libfuzzer
https://github.com/microsoft/ebpf-for-windows/tree/b9d6cb6b7edcc5314413d866a63d36ebc41ab14d/tests/libfuzzer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23066
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23066
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-2163
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-2163
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-46102
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-46102
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-26588
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-26588
https://github.com/iovisor/bpf-fuzzer
https://github.com/iovisor/ubpf/issues
https://github.com/iovisor/ubpf
https://github.com/qmonnet/rbpf/issues
https://github.com/qmonnet/rbpf
https://github.com/qmonnet/rbpf
https://scannell.io/posts/ebpf-fuzzing
https://scannell.io/posts/ebpf-fuzzing
https://github.com/solana-labs/rbpf/issues
https://github.com/solana-labs/rbpf/blob/f3758ecee89198433422f751beee7f0f52dbcd55/src/fuzz.rs
https://github.com/solana-labs/rbpf/blob/f3758ecee89198433422f751beee7f0f52dbcd55/src/fuzz.rs
https://github.com/solana-labs/solana/security/advisories
https://github.com/solana-labs/solana/security/advisories
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://v8.dev/blog/maglev
https://github.com/vbpf/ebpf-verifier
https://github.com/vbpf/ebpf-verifier
https://github.com/vbpf/ebpf-verifier/issues
https://github.com/vbpf/ebpf-verifier/issues
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 eBPF
	2.2 Motivation

	3 DESIGN
	3.1 Constraint-based Test Case Generator
	3.2 Differential Testing Engine

	4 Evaluation
	4.1 Effectiveness of Test Case Generator (RQ1)
	4.2 Effectiveness of BpfChecker(RQ2)
	4.3 Analysis of implementation flaws(RQ3)

	5 Discussion and Limitation
	5.1 Suggestions for developers.
	5.2 Limitation

	6 Related Work
	7 Conclusion
	References

