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Abstract. Modern smartphone apps tend to contain and use vast amounts
of data that can be broadly classified as structured and unstructured.
Structured data, such as an user’s geolocation, has predefined semantics
that can be retrieved by well-defined platform APIs. Unstructured data,
on the other hand, relies on the context of the apps to reflect its meaning
and value, and is typically provided by the user directly into an app’s
interface. Recent research has shown that third-party apps are leaking
highly-sensitive unstructured data, including user’s banking credentials.
Unfortunately, none of the current solutions focus on the protection of
unstructured data.

In this paper, we propose an owner-centric solution to protect unstruc-
tured data on smartphones. Our approach allows the data owners to spec-
ify security policies when providing their unstructured data to third-party
apps. It tracks the flow of information to enforce the owner’s policies at
strategic exit points. Based on this approach, we design and implement
a system, called DataChest. We develop several mechanisms to reduce
user burden and keep interruption to the minimum, while at the same
time preventing the malicious apps from tricking the user. We evaluate
our system against a set of real-world malicious apps and a series of
synthetic attacks to show that it can successfully prevent the leakage of
unstructured data while incurring reasonable performance overhead.

1 Introduction

Smartphone apps tend to contain vast amounts of sensitive data. In many cases,
such data items have predefined structure and consistent access semantics across
different apps. These data items, such as user’s location or contact information,
are often regulated by the mobile platform that provides apps access to these
items via well-defined platform APIs. For example, apps can retrieve user’s ge-
olocation from phone’s GPS sensor and subsequently provide location-aware fea-
tures to users. We classify such data as structured data. With the need to protect
sensitive information in structured data, a wide variety of security mechanisms

* Part of the work was done when the first author was an intern at IBM T.J. Watson
Research Center.
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have been developed by the platform developers as well as the research commu-
nity [19][24]]27][30].

At the same time, the apps also alternatively consume data collected directly
from the users using the application-controlled visual interfaces (i.e., the users act
as data owners in this environment). The underlying platform renders minimum
to no control in the collection of such data. This type of data, classified as
unstructured data, relies on the context of the app to reflect its meaning and
values. One such example is the data collected using an user input box that
can have different semantics in different apps. For instance, user can provide his
bank credentials in the user input box of one app while he can type the hobbies
in another app.

In recent years, there have been several known real-world instances in which
apps have leaked unstructured data both intentionally and unintentionally. In
January 2010, several fake banking apps that aim to collect banking credentials
were identified [4] in official Android Market. Later in the same year, a fake ver-
sion of the Netflix app was found to leak user’s Netflix credentials to adversary’s
servers [6]. Besides intentional leaks by these fake (and malicious) apps, genuine
apps with vulnerabilities can be exploited to unintentionally leak unstructured
data. Recent studies have revealed several instances of benign apps leaking sen-
sitive information, such as user’s email login identifier and password [28]. While
privacy threat to users is always a major concern, certain information when
leaked, can result in serious financial losses.

Unfortunately, all the previous efforts [19][27][30] were focusing on securing
structured data. The protection of unstructured data has been largely ignored
and left at the mercy of third-party apps. As a result, the owners of unstructured
data, i.e., users of third-party apps, have to blindly trust these apps and pro-
vide security-sensitive data to them. However, the growing number of real-world
threats and the sensitive nature of the data that have been leaked emphasize
the urgent need for a system-driven solution to protect such unstructured data.

In this work, we are concerned with protecting unstructured data in the
presence of untrusted third-party apps. To this end, we propose an owner-centric
approach in which the data owners can determine the security policies for their
contributed data. Our solution is based on the insight that data owners could
best understand the semantics and sensitivity of their data and hence are best
suited to determine who can have access to the data.

Accordingly, we design and implement a system, called DataChest, that en-
ables data owners to associate security policies to their data being fed to the
untrusted third-party apps. Our system subsequently tracks the flow of the data
and applies data owners’ policies at strategic exit points in the system. Any
policy violation will result in immediate halting of the data transmission.

To encourage real-world acceptability of DataChest, we develop several mech-
anisms to reduce user efforts in specifying policies for user-provided data. In
particular, DataChest provides persistent policies for statically generated input
data elements. For dynamically generated elements, our system automatically
applies the policies based on user’s intent. Furthermore, our system provides
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semantic-aware tag (or policy) suggestions. All these mechanisms reduce user
burden and interruption as much as possible, while at the same time guarantee-
ing that the user’s data security is never compromised.

Many of our design choices to reduce user burden have been derived from
techniques that have been well proven to be usable in other work streams. For
example, the semantic-aware tag suggestion feature based on user’s input value
(Section 3.4) has been extensively used in search engines, albeit for suggesting
related search topics. Other choices are self-intuitive, e.g. if the GUI shown to the
user does not change, it is safe to apply previously-specified tags (Section 3.3 and
Section 3.5). Usability can be further improved by leveraging additional knowl-
edge, e.g. policies can be pre-specified by trusted authorities such as corporate
administrators, and reputation of external entities can be automatically applied
using blacklisting databases.

We demonstrate the effectiveness of DataChest in tracking unstructured data
by analyzing it against popular benign apps from multiple categories. We further
evaluate our system against real-world malicious apps and synthetic attacks to
show that our system can successfully prevent the unstructured data from being
leaked to both (malicious) remote servers and unintended third-party apps. With
a CPU-bound benchmark, the results also show that our system has a relative
low runtime overhead of 14% with respect to the unmodified Android system.
Moreover, the extra time needed to initialize the GUI interface is around 40 ms
for a representative real-world scenario, which is a negligible latency that users
can actually perceive.

In summary, the paper makes the following contributions:

— To the best our knowledge, we are the first to address the challenge of protect-
ing unstructured data on smartphones. Our system takes an owner-centric
approach and engages the data owners to explicitly specify the security poli-
cies for their data that are subsequently enforced by our system.

— To minimize user burden, we develop mechanisms to address the challenges
of distinguishing both statically- and dynamically-generated input elements,
so that they can be effectively tagged with minimum to no user intervention.

— We develop a proof-of-concept system, called DataChest, and evaluate its
protection capabilities against real-world, malicious mobile apps as well as
some synthetically-generated attacks. Our results illustrate that DataChest
can successfully prevent all such attacks. Our performance results further
demonstrate that DataChest’s protection mechanism incurs reasonable per-
formance overhead with negligible perceived latency for the end users.

2 DMotivating Examples

In contrast to structured data that has well-defined semantics, the semantics of
unstructured data can vary substantially in different app contexts. One example
of unstructured data is the data entered into input boxes. The exact type of data
that users would enter into the boxes cannot be determined without knowing
the context of apps. The APIs (EditText.getText() in Android platform) used
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Fig. 1. High-level system architecture of DataChest

to retrieve the values in these input boxes cannot be directly leveraged to under-
stand their semantic meanings. In fact, these values could range anywhere from
security-sensitive data such as user’s password or SSN to less sensitive data such
as user’s hobbies.

Since the context of an app is unknown to the underlying Android framework,
it does not understand the semantics of any unstructured data entered into the
app. As a result, the framework cannot enforce any access control policies (or
permissions) that correspond to unstructured data. This further implies that an
app can freely access and leak unstructured data without any constraints from
the framework. For example, a malicious app can launch phishing attacks by
masquerading itself as a banking app [4] and consequently steal users’ banking
credentials potentially leading to financial loss for the users.

Our work is motivated by real-world threats and aims to provide protection
to user-provided unstructured data by means of an owner-centric approach.

3 Design

Figure 1 shows the high-level architecture of our DataChest system. When data
owners (i.e., the users) provide data to third-party apps, they also include policies
that specify how their data can be used and shared with other apps and remote
servers. DataChest subsequently retrieves these policies and tracks the flow of
unstructured data at runtime. Our system will enforce corresponding policies
when such data is shared with other apps (E1 in Figure 1) or remote servers
(E2 and E3 in Figure 1). In the following, we will describe the associated design
challenges and how these challenges are addressed in our system.

3.1 Design Challenges

With an owner-centric approach, our system requires additional efforts from data
owners to specify policies. In order to make the system more user friendly and
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thereby enhance its acceptability, we need to reduce the burden and interruption
for users as much as possible, while at the same time, we also need to make sure
malicious apps cannot trick users and compromise the security of their data.

Our system leverages TaintDroid [13] to track the information flow of un-
structured data. However, TaintDroid only supports limited number of taints
(32), which is not sufficient for our system. In our system, we need to track
user-provided data for each individual input element. Since these items can sig-
nificantly vary in number based on the app, we need to support a large number
of taints.

3.2 In-context User Policies

Users can specify their security policies in the context of apps, i.e., users specify
policies at the time when they actually type their data in the input boxes of a
particular app. Since users are entering the data based on their own perception
of the app’s visual interface, they know the semantics and values of the data
they are providing and hence are the best suited to specify the policies based
on the context of user inputs. However, the major challenge here is that users
need to explicitly identify the external entities® before data items are actually
sent out. Users may have no idea of the remote server(s) that are used in the
apps and which one should be allowed in advance.

In DataChest, we address this challenge by allowing users to specify policies in
the context of users’ inputs without explicitly providing external entities. Specif-
ically, when typing content into user input boxes that may contain sensitive
data, users can tag the content with meaningful, user-specific, labels. This can
help users maintain the context of particular user inputs. For example, user can
tag the input box that accepts his Paypal password as Paypal.password. The flow
of tagged information entered into the user input boxes is tracked in the system.
When such data is being sent out to remote servers, our system alerts users with
the destination and data labels. By showing users the data labels, they can know
the types of user inputs that are currently being sent out. Subsequently, users
can specify their policies by allowing or disallowing such data transmission tem-
porarily or permanently. For example, they can allow the data with particular
label Paypal.password to transmit to paypal.com permanently while disallowing
such data transmission to evil.com.

3.3 Persistent User Policies

In order to make our system more user-friendly, we want to reduce user’s burden
and interruption as much as possible. Note that visual elements, such as user
input boxes, can either be statically defined by XML layout files [2] or dynam-
ically generated by apps at runtime in Android. In this section, we will discuss

3 External entity in our system means remote servers or apps with the different de-
veloper’s signature.
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our approach to handle the static user input boxes and leave the dynamically
generated ones for Section 3.5.

For static user inputs, we provide persistent tags and policy settings so that
users need to tag input boxes and specify the policies only once. Subsequently, for
each user input box that has been tagged with labels and associated with policies,
the same labels and policies will be applied to this input box automatically every
time it is instantiated in the system. A malicious developer might attempt to
trick our system by first making the users to enter low-sensitive data into an
input box and subsequently tricking the user into entering high-sensitive data
into the same input box. However, our system is resistant against such attacks
as it compares visual layouts of Android apps (Section 3.5) in order to determine
if the input box in question is a mere instance of a previously-tagged box and
only applies persistent tags if the visual layout remains same. The malicious
developer would need to modify the visual screen shown to the user to make the
user enter a different value for the same input box and in such a case, persistent
tags would not be applied thus preventing the attack.

One design consideration is to decide whether we need to maintain the old
policies associated with an app when the app is upgraded. From a user-friendly
design perspective, we should keep the policies so that users do not need to
specify policies again for the app. However, apps are untrusted in our system
and blindly applying old policies opens up potential avenues for a malicious
app to trick the user into giving away sensitive information. For instance, the
malicious app can replace an input box with less restricted policies in the older
version with an input box that can accept more sensitive data in the new version,
thereby enabling the app to leak this sensitive data. In DataChest, we take a more
restrictive approach and preserve old policies for newly installed app if and only
if it has same package name and same hash as the older one. We understand that
it limits usability in case only minor changes are made between two versions of
the app and the semantics of user input boxes are the same. However, it is a
trade-off that we made between security and usability. Moreover, the semantic-
aware tag suggestion feature described in the next section can make the policy
specification for the new app version much easier.

3.4 Semantic-aware Tag Suggestion

We further reduce user burden by providing semantic-aware tag suggestions, i.e.,
suggestions based on the value of the data being entered. Note that when users
tag an input box, they actually correlate the content of their input with the
particular label (and its corresponding policies). Therefore, it is possible to infer
a user’s choice of label for an input box based on the current content of the box.
For instance, if the user has tagged an input box with label SSN and entered
a value of 111-22-3333, we can suggest the same label to the user when he is
entering same value into another input box (in the same app). The suggestion is
displayed at the bottom of the input box. The user can accept this suggestion by
simply clicking on it and consequently this label (and its corresponding policies)
will be automatically applied to the input box.
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This feature is particularly useful for the case of upgraded version of an
app. In previous section, we discussed that the old policies and tags would be
discarded after app upgrading. Users can benefit from this feature while using
the new version of the app since our system can provide accurate tag suggestions
to them based on the content they have provided in the old version.

3.5 Dynamic User Input Elements

Dynamic input elements, such as the input boxes, are created at app runtime and
are not predefined in the XML layout file of the app. We cannot assign unique
IDs to such dynamically-generated input boxes and consequently have no way
to uniquely distinguish them. Therefore, it is not possible to provide persistent
tags and policies to such elements. However, requiring users to explicitly tag the
user input boxes and specify corresponding policies every time they use the app
is a major usability limitation and might not be acceptable. We need to find a
better solution to address this challenge.

An effective solution would be to apply tags and policy settings to user input
boxes based on their wvisual layouts that are presented to the users, and not
solely based on their IDs. For statically-generated user input boxes, their visual
layouts are predefined and fixed, hence the IDs of the input boxes effectively
reflect their visual layouts. However, it is not the case for dynamically-generated
input boxes. If we find a way to compare two visual GUI layouts in one app in
different runs, we can automatically apply the same tag settings to them if they
are visually same.

However, effective comparison of two visual layouts of GUI is challenging and
requires an understanding of how GUI elements are created, instanced and how
their visual positions are determined. Similar to the DOM objects in browsers,
the GUI elements in Android are organized as a tree. All the nodes in this tree are
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View or ViewGroup objects [5]. The difference between View and ViewGroup objects
is that ViewGroup is the container that can embody other View or ViewGroup
objects. Therefore, all the leaf nodes in this tree are View objects while inner
nodes are ViewGroup objects.

Figure 2 shows the screenshot of an activity with dynamically-generated GUI
elements and its visual layout. The corresponding view tree is shown in Figure
3. The root node of the view tree is a special component DecorView, which is
an internal framework class and represents the top window. It contains a single
LinerLayout (subclass of ViewGroup) object, which has two FrameLayout (subclass
of ViewGroup) children. One of them holds the title of current activity while
the other holds the main content of the current activity (another LinerLayout
object). This LinerLayout object contains two TextView objects which hold the
text “Name:” and “SSN:”, two EditText objects which can receive user inputs
and another Button object. For each node in the tree, it knows the relative offset
to its parent. For example, in Figure 2(b), we can get the relative left, right, top
and bottom potion of Ul elements to its parent (LinerLayout object) in dotted
lines.

When being initialized, all the objects in the view tree are drawn from the
root node to the last leaf node. All the GUI elements are subsequently laid out
and positioned on the screen. For each View and ViewGroup object, it maintains
the relative position in four dimensions, i.e., left, right, top and bottom, to its
parent. Since the view tree represents the visual layout of an activity, we can
compare the view trees of two activities to check whether the visual layouts of
them are identical. To this end, for each view tree, we generate the corresponding
signature. If the signatures of two view trees are same, then the visual layouts
rendered by these two trees are identical. The algorithm to generated the sig-
nature of a view tree is summarized in Algorithm 1. It recursively generates
the signature for each sub-tree (inner node) and leaf node and concatenates the
generated signature as a string.

One challenge here is how to generate the signature for the leaf nodes, which
are the actual Ul elements such as TextView, EditText and Button. In our system,
we include the properties of a View object that can impact its visual layout
to generate its signature. For example, we use the actual text values and the
four dimensional relative positions to its parents to generate the signature for
TextView object.
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Algorithm 1 Signature generation for a view tree

1: procedure GENTREESIGNATURE(viewT'ree)
2: for all child in viewTree do

3: genNodeSignature(child)

4: if (child is inner node) then
5: genTreeSignature(child)
6: end if

7 end for

8:

end procedure

When users specify policies for dynamically generated user inputs in an ac-
tivity at first time, our system generates and saves the signature of current view
tree along with the specified policies. After that if there is a match between the
signature of a new view tree with a saved one, our system will automatically
apply the saved policies to the dynamic user inputs in the new view tree.

Our technique to generate and compare view tree signatures ensures that if
two view trees are same, their corresponding visual layouts are identical. How-
ever, there are instances in which visual layouts could be same even when the
view trees are not identical. For example, two TextView objects with text value
“Na” and “me” placed next to each other on the screen may have same visual
layout as that of one TextView with text value “Name”. In such scenarios, we
cannot automatically apply the tag settings even the visual layouts of two activ-
ities are same. Our approach is conservative in such cases as we err on the side
of security by not allowing malicious apps to trick the users. At the same time,
we can still reduce user burden when using benign apps.

4 Implementation

We have implemented a working prototype of DataChest by extending Taint-
Droid [13] (based on Android 2.3.4%) and Android framework in several signifi-
cant ways. In this section, we illustrate the details of our system implementation.

4.1 User-provided Unstructured Data

As discussed in Section 3.2, users associate security policies with user inputs
within the app context by first tagging user input boxes with custom, user-
defined labels that reflect the semantics of the input boxes. In our current im-
plementation, we supplement the default user input method (i.e. the on-screen
keyboard) with a special tag button to allow users to provide labels to the input
boxes. We believe that it is a convenient approach for the users as they can enter
values and their corresponding labels from a single UT (input method). However,
the default UI cannot be leveraged for providing labels if the app uses its own

4 The latest version of TaintDroid is based on Android 4.3. We leave the porting of
our prototype to this version of TaintDroid as our future work.
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custom input method. In such a case, our system provides an alternate way to
enter labels using a Ul that is triggered when a user keeps his finger focused on
the input box for a relatively longer period.

To support semantic-aware tag suggestions for reducing user burden, we save
the mapping between the data label and the hash value of the content entered
by the user into the input box. Note that we do not save the user’s input as
plaintext for privacy concerns. To this end, we monitor the content of the tagged
user input boxes by hooking onTextChanged () method and update the hash value
accordingly. For the untagged user input boxes, we also hook the onTextChanged ()
method to compare the hash value of currently typed content with the saved
ones. If there is a match, we display the corresponding saved data label under
the current input box as a suggestion to users.

For dynamically-generated user inputs in one app, we automatically apply
the tag settings if their visual layouts do not change in different runs. When users
tag the dynamic user inputs, we save the current view tree and the tag settings,
i.e., data labels for this view tree. The saved data labels will be automatically
applied to a new activity (in the same app) if its view tree is identical to a saved
one. For this purpose, we generate the signature for the view trees by recursively
generating the signatures of both inner nodes and leaf nodes in the view tree. In
the Android platform, function ViewGroup.performTraversals() is called when
current GUI is drawn or redrawn. We hook into this function to generate the
signature for the whole view tree.

4.2 System-wide Information Tracking

4.2.1 Taint Tag Format Our system needs to track the flow of user-provided
data. For this purpose, we extend TaintDroid [13] in our system. Note that our
system design is not restricted to only TaintDroid and we can readily leverage
other information tracking systems if such systems are available in the future.
In the following we leverage TaintDroid as an example to describe information
flow tracking in our system.

As previously stated, one major challenge of using TaintDroid to track infor-
mation flow is that it only supports a limited number of taints. Specifically, it
encodes the taints into a 32-bit tag, in which each bit denotes a taint. However,
in our system, any user input box represents a different taint and needs to be
tracked independently. That is because during program execution, the data from
different sources (different user input boxes from different apps for example) can
be combined together and we need to know the exact source of the data (e.g.,
from which user input box in which app) and check the policies when combined
user inputs are being sent out.

In DataChest, we extend the format of TaintDroid’s original taint tag to
support large number of taints. Figure 4 shows the format of taint tag used in
our system. Instead of directly using the 32-bit taint tag to place taints, we use
a linked list to store the actual taint tags. To distinguish from the original taint
tags, we call the actual taint tag as policy tag in our system. For each policy
tag, we need to store the source information of data that our system is tracking.
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Such source information is denoted as the identification of data source, such as
the ID of a user input box, and this identification is directly encoded into the
policy tag (data-id field).

4.2.2 Taint Propagation During program execution, the taints will be prop-
agated through the whole system. This makes sure that even the tainted data is
converted to other format, it is still being tracked. TaintDroid propagates taints
by extending the Dalvik virtual machine and applying taint propagation rules.

Because of the differences between the format of taint tags, the original rules
used to propagate taints need to be changed accordingly. Specifically, for the op-
eration of result := data; + datas, TaintDroid can directly combine two tags
together using or operation (tag(result) = or(tag(datai), tag(datas))). How-
ever, in our system, we have to merge two linked lists of policy tags together
and place the address of new linked list into the hash map. Finally, the index of
new linked list in hash map is encoded into the taint tag.

we also extended TaintDroid to add other features that were required for
our implementation. One such example scenario is that TaintDroid propagates
taints in native methods of system libraries. In particular, TaintDroid uses a
method profile (a list of (from, to) pairs) to indicate information flow between
variables, which may be method parameters, class variables, or return values in
the same native method. However, this method profile may miss the information
flow that crosses different native methods without any use of a variable. On such
example is the Md5MessageDigest class in which the taint should propagate from
the parameters of a void function void update(byte[] input) to the return value
of byte[] digest() that has no parameters. The original method profile cannot
handle this. We extend the method profile that can propagate taints across
different methods without using variables.

4.2.3 Taint Sources and Sinks For user-provided unstructured data, when
one input box is tagged with a particular label, our system treats this input box
as a taint source and creates corresponding taint tags (and policy tags) for the
data retrieved from this input box.

When the data with taint tags is reaching certain exit points, our system
checks and enforces the corresponding policies. In our system, we treat such
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Table 1. List of apps that leak user-provided unstructured data

[App/Malware Name[Malware?[Type of Unstructured Data]

FakeNotflix v Netflix Login Identification
and Password
Repackaged v Paypal Username
Paypal and Password
Youdao N Netease Username
Dictionary and Password

exit points as taint sinks. Similar to TaintDroid, the network interface is one
taint sink in our system. If no policy has been specified, we block the current
network operation (using Linux pipe) and display a popup window (through a
management system app) to let users make decision. Besides network interface,
there is another new taint sink in our system. That is the point where one app
is sharing the data with another app through the binder interface. By checking
and enforcing policies (see E1, E2 and E3 in Figure 1) at taint sinks, our system
can prevent the app from sharing (tainted) unstructured data with unauthorized
external entities.

5 Evaluation

In this section, we present our evaluation of the effectiveness and performance
overhead of DataChest.

5.1 Effectiveness

To demonstrate the effectiveness of DataChest, we downloaded 50 popular benign
apps from Google Play and subsequently selected 23 apps that collect sensitive
user-provided unstructured data, such as login credentials. We use these apps
to evaluate the effectiveness of our system in tracking the information flow of
sensitive user-provided unstructured data.

Our evaluation shows that all of the user-provided unstructured data to these
apps can be successfully tracked by our system. Note that even in cases where
the app does not use the default EditText class to accept user inputs, our sys-
tem still can successfully track the unstructured data provided by users. One
such example is the search input box in Amazon Mobile app that implements its
own class (SearchEditText) to accept user inputs. This class extends the de-
fault EditText class (which is a subclass of the base GUI class View) to include
some app-specific features. Our system mainly hooks the functions in the base
framework GUI class (View) and all other classes that extend from this class
automatically inherit these hooked functions. If these hooked functions in View
class are overwritten in subclasses and not called from the subclasses, the GUI
will not be successfully initialized.

To demonstrate the capability that our system can prevent user-provided
sensitive unstructured data from being leaked by malicious apps, we evaluated
it against two malware samples that leak sensitive data to remote servers. The
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first app is the FakeNetflix [6] malware that was discovered in October 2011.
It disguises itself as the real Netflix app and leaks the user’s Netflix credentials
to a remote server. This malware only masquerades the Ul of the Netflix app
and does not provide any real functionality of video streaming. Another app
is a repackaged Paypal app that we developed in-house for our evaluation. In
contrast to the previous app, this repackaged Paypal app is more stealthy since it
has the same functionalities as the real Paypal app. However, in the background,
it leaks the user’s Paypal username and password to a remote server.

Moreover, besides intentional leakage of unstructured data by malicious apps,
some benign apps have been found to be vulnerable and can be exploited to leak
unstructured data. We also use one such app, Youdao Dictionary [7], for our
evaluation. This app has an open content provider that stores the username and
password of a Netease account in plain text [28]. Any malicious app on the phone
can access the stored account information through the open content provider.
The apps and the corresponding types of unstructured data that could be leaked
are shown in Table 1.

Our experiments show that DataChest can successfully prevent data leaks by
these malicious and vulnerable apps. In particular, when using these apps, we tag
the input boxes that accept user’s credential with specific labels (paypal . password
for example). Figure 5(a) shows our enhancements to the default on-screen key-
board to include a special tag button to tag user input boxes for the repackaged
Paypal app. The flow of data from these tagged user inputs will be tracked in
the whole system. As a result, when such tagged user inputs are being leaked
to remote servers, the user would be notified using a pop up notification. This
prompt includes the destination of this data transmission and the data label
that provides the semantics of the data. Users can make decisions to allow or
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Fig. 6. Evaluation results from the Caffeine benchmark

block this data transmission temporally or permanently. Figure 5(b) shows this
pop up window. Note that users only need to tag input boxes and make their
decision only once since all the tagged user inputs (with their data labels) and
users’ decisions (or policies) will be saved (see Section 3.3).

5.2 Performance Overhead

In this section, we study DataChest’s performance overhead. All the evaluations
are performed on Google Nexus S running Android 2.3.4 that is modified for
DataChest.

5.2.1 Dalvik Microbenchmark DataChest extends TaintDroid’s internal
taint tag format and taint propagation logic in Dalvik virtual machine. There-
fore, we want to study the performance overhead introduced by this extension.
To this end, we used an Android port of the standard CaffeineMark 3.0 [1] bench-
mark and reported the scores of this benchmark running on original Android,
TaintDroid and our system in Figure 6. The x-axis shows the different operations
performed by this benchmark and y-axis shows the corresponding score of each
operation. These scores are useful for relative comparisons.

The benchmark results are consistent with the results reported in Taint-
Droid. The String operations of both TaintDroid and DataChest have higher
performance overhead than arithmetic and logic operations due to the addi-
tional memory comparisons [13]. The overall score of Android is 893 while it is
798 and 760 for TaintDroid and DataChest, respectively. It basically implies that
DataChest has a 14% overhead with respect to the unmodified Android system
and 5% overhead with respect to TaintDroid.

5.2.2 GUI Microbenchmark To reduce the user burden in DataChest, we
generate the signature of a view tree and use this signature for visual layout com-
parison (see section 4.1). In this section, we evaluate the performance overhead
due to this signature generation and comparison. For this purpose, we developed
a testing app which dynamically creates 40 TextView objects and 40 EditText
objects in an activity. Additionally, we used a real library (Paypal mobile pay-
ment Library [3]) which dynamically generates its UL. We calculate the time
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Table 2. The evaluation results of GUI Microbenchmark (time is in milliseconds)

[ [#1[#2[#3[#4[#5[average]
Signature generation
(Our testing app)
Signature generation
(Paypal payment library)
Signature comparison 0

Policy retrieval 2
Policy insertion 4

99193 |76(133|139| 108

6365 (29|13 |32 40

Olw|lo
alw| o
[ =
N o
DN O

used to generate the signature for the view tree and the time to compare two
view trees. For each evaluation, we measure 5 times and report the results in
Table 2. We find that the time used to generate signature of a view tree is around
100 ms for our testing app and 40 ms for Paypal payment library. Note that our
testing app has 80 dynamic GUI elements that is considerably more than the
number of GUI elements of a typical app. Surprisingly, the time used to com-
pare two signatures is nearly zero. This is because the comparison is merely a
string comparison. Moreover, in exiting points, our system needs to retrieve the
policies from another separate app which is responsible for maintaining policies.
We also evaluate the time latency that was introduced by this operation. The
experiments show that the time used to retrieve and insert a policy is 2 ms and
6 ms, respectively. We believe that the time latency introduced by our system
is negligible that users can actually perceive and is within the acceptable range
of 50-150ms [25].

6 Discussion

In this section, we discuss the current limitations of our system and propose
possible solutions.

Although the system is effective in preventing data leaks, it might be limited
against certain advanced attacks. One possible attack would be the side-channel
attack. For example, instead of getting the contents of user input boxes and then
sending them to the remote server, the attackers continuously take a screenshot
of the current activity and send these screenshots to the remote server. The
current solution cannot handle such side-channel leaks. Another possible attack
is the man-in-middle attack to steal data if the data is being sent out without any
encryption. In our work, we do not consider such attack and trust the network
infrastructure.

The current policies in our system use the host name as an identifier for
external entity, which may be ineffective for a proxied network connection. In
this case, all the connections will go to this proxy first, not the real remote
servers. In the presence of a proxy, users have no idea of the real destination
of the data transmission and hence cannot make an informed decision. Users
may have similar situation in the case of remote servers without meaningful
domain names. Nevertheless, users can still protect their data by blocking all
transmissions of the tagged user inputs, though this may break the legitimate
functionalities of some benign apps.
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For user-provided data, our system requires users to specify the policies.
However there are some potential ways to reduce user’s burden when specifying
policies. For instance, one user’s policies of one app could be shared online with
other users so that other users do not need to specify the policies for that app
again. In the scenario of BYOD, all the policies could be specified and pushed by
enterprise device management platform, instead of users. From the perspective
of usability, our system provides several ways to reduce user burden (Section 3.3,
Section 3.4 and Section 3.5). We believe that there is still potential room for im-
provement by better understanding the system’s usability (e.g. via user studies)
and we plan to explore this as part of our future work.

Since we extend TaintDroid to track the flow of unstructured data, our sys-
tem is also limited by some of TaintDroid’s inherent limitations. First of all,
TaintDroid only tracks data flows (i.e., explicit flows) and does not track control
flows (i.e., implicit flows) as demonstrated in ScrubDroid [23]. As a result, it is
possible that malicious app may use implicit flow to leak unstructured data to
remote servers. To solve this problem, static analysis may be deployed to ana-
lyze the apps. Secondly, the taint propagation between different apps and files
is still coarse-grained. For example, the whole TPC message between different
apps shares one taint tag, which may cause data to be over tainted. Thirdly,
TaintDroid does not support native code in third-party apps. To prevent mali-
cious apps from using native code to leak unstructured data, we do not execute
the third-party apps with native libs and thus may cause compatibility issues.
Fortunately, the number of apps with native code is only around 5% [29]. We
leave the work of extending TaintDroid to provide information flow tracking in
native code as our future work. As mentioned before, our system design is not
bound to TaintDroid and we can leverage advanced information tracking system
on Android if such system is available in the future.

7 Related Work

Smartphone privacy issues have attracted a lot of interest in recent times. Pre-
vious research works reveal that third-party apps [12, 13] along with in-app ad-
vertisement libraries [15] are actively leaking user’s private information. To deal
with this problem, researchers propose solutions to provide fine-grained con-
trol of private information on smartphones. Such solutions include TISSA [30],
Apex [21], Aurasium [27], AdDroid [22] and AdSplit [24]. Our work has a differ-
ent focus from these works since their main focus is to protect structured data
while our work is dedicated to the protection of unstructured data.

At the same time, the classic confused-deputy [18] problem or capability
leaks are identified on Android. Examples include ComDroid [10], CHEX [20]
and Woodpecker [16]. They employ static analysis to identify such problems in
third-party apps and pre-loaded apps. Accordingly, possible solutions [8][11][14]
are proposed to mitigate such threats. Our work does not intend to detect such
problems. But our system can be used to prevent the unintentional data leak by
the apps with this problem.
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Among the most related ones, AppFence [19] leverages TaintDroid to track in-
formation flow and protects private data from being leaked. However, AppFence’s
focus is on structured data, while our system is protecting unstructured data.
TaintEraser [31] shares a similar design to prevent unwanted information ex-
posure, including user inputs. Our system provides more fine-grained polices to
let data owners specify the external entities that the data can be shared with.
D2Taint [17] expands TaintDroid to track the information coming from Internet
sources. Our system tracks and protects unstructured data coming from users.

A recent system called DataSafe [9] allows data owners to specify particu-
lar policies to protect their data. Our system has several key differences from
DataSafe. First, the target platforms are different. Our system is concerned with
the protection of unstructured data on smartphones while DataSafe aims to pro-
tect sensitive data on desktop or cloud computing servers. Second, our system
addresses the challenge of user-friendly policy specification and provides several
mechanisms to reduce user burden, which is critical for smartphone platforms,
while DataSafe does not address this challenge. Third, DataSafe is based on
hardware-assisted information flow tracking while ours is software-based track-
ing. The requirement of custom hardware is a challenge for deployment. Another
system CleanOS [26] evicts the sensitive data such as user-provided password,
from the phone and keeps a clean environment all the time. Our system in-
stead ensures that such sensitive data cannot be obtained by unintended (and
potentially malicious) external entities.

8 Conclusions

We presented the design of a system, called DataChest, that offers protection of
unstructured data in the presence of untrusted third-party apps. Our system
develops an owner-centric approach in which data owners (i.e., users) can deter-
mine the security policies of their contributed data. We enhance the usability
of the system by developing several mechanisms to reduce user burden, while
ensuring the security of the system is never compromised. Our evaluation shows
DataChest is effective in preventing leakage of unstructured data against a variety
of attacks and incurs reasonable performance overhead.
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