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Abstract
Bare-metal embedded systems usually lack security isolation.
Attackers can subvert the whole system with a single vulner-
ability. Previous research intends to enforce both privilege
isolation (to run application code at the unprivileged level)
and resource isolation for global variables and peripherals.
However, it suffers from partition-time and execution-time
over-privilege issues, due to the limited hardware resources
(MPU regions) and the improper way to partition a program.

In this paper, we propose operation-based isolation for
bare-metal embedded systems. An operation is a logically
independent task composed of an entry function and all
functions reachable from it. To solve the partition-time over-
privilege issue, we utilize the global variables shadowing
technique to reduce the needed MPU regions to confine the
access of the global variables. To mitigate the execution-
time over-privilege issue, we split programs into code com-
partments (called operation) that only contain necessary
functions to perform specific tasks, thereby removing the
resources needed by unnecessary functions. We implement
a prototype called OPEC, which contains an LLVM-based
compiler and a reference monitor. The compiler partitions
a program and analyzes the resource dependency for each
operation. With the hardware-supported privilege levels and
MPU, the reference monitor is responsible for enforcing the
privilege and resource isolation at runtime. Our evaluation
shows that OPEC can achieve the security guarantees for
the privilege and resource isolation with negligible runtime
overhead (average 0.23%), moderate Flash overhead (average
1.79%), and acceptable SRAM overhead (average 5.35%).
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1 Introduction
Bare-metal embedded systems have surged rapidly in recent
years. They run a monolithic software that provides both
system functionality and application logic without the in-
tervention of the operating system. Bare-metal embedded
systems are vulnerable due to the absence of security de-
fenses, such as privilege isolation, data execution prevention
(DEP), and address space layout randomization (ASLR) [1].
Those defenses are widely deployed in desktop systems, but
they cannot be directly adopted due to insufficient hard-
ware resources and limited hardware security extensions.
For instance, desktop systems implement resource isolation
with the hardware called Memory Management Unit (MMU).
However, bare-metal embedded systems have neither MMU
nor sufficient resources to support such isolation. Further-
more, there is no isolation between tasks, i.e., different exe-
cution stages of a program.

Nevertheless, the attack techniques targeting desktop sys-
tems can be easily transferred to bare-metal embedded sys-
tems. Attackers can get full control of the whole system
by exploiting a vulnerability in any task. Hence, enforcing
secure isolation on bare-metal embedded systems is an ef-
fective way to secure the devices.

Previous research provides security isolation to bare-metal
embedded systems. However, it either misses or has defects
in resource isolation. EPOXY [12] provides privilege isola-
tion by identifying and executing only sensitive instructions
at the privileged level. Still, EPOXY does not support flexible
resource isolation between tasks. MINION [22] implements
privilege and thread-level resource isolation for real-time
microcontroller systems. MINION predefines the accessible
memory range and permissions for each thread during the
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program compartmentalization. Nevertheless, the accessible
memory is oversized, and its permission is overset due to
hardware constraints, i.e., the limited number of MPU re-
gions. Additionally, threads are absent in many bare-metal
embedded systems, so MINION cannot be applied to bare-
metal embedded systems directly.
To enforce privilege isolation and more fine-grained re-

source isolation, ACES [11] adopts a code-module based strat-
egy that partitions a program based on the source files or
peripherals. However, ACES suffers from two over-privilege
issues. First, ACES allows a compartment to access unneces-
sary global variables. For a specific compartment, different
parts of its accessible global variables may be shared with
related compartments. Due to the limited number of MPU
regions, ACES directly grants all the related compartments
to all of these global variables (named partition-time over-
privilege issue in Section 3.1). Second, ACES partitions a pro-
gram without considering the control flow. ACES involves
unnecessary functions into a compartment to complete a spe-
cific task, e.g., unlocking a smart lock. Therefore, a compart-
ment can access unnecessary resources at runtime (named
execution-time over-privilege issue in Section 3.1). Further-
more, ACES limits the number of accessible peripherals of
a compartment due to the limited number of MPU regions,
which brings inflexibility when partitioning a program.

In this paper, we propose operation-based security isola-
tion. It provides both privilege isolation and resource iso-
lation to bare-metal embedded systems. An operation is a
logically independent task composed of an entry function and
all functions reachable by that entry function. For instance, as
shown in Figure 1, the PinLock application can be split to six
tasks (operations). As in Listing 1, when PinLock receives
the correct pin code, the operation Unlock_Task invokes the
function do_unlock to perform unlocking. When executing
inside one operation, the code can only access necessary
resources, i.e., the global data and peripherals needed to
complete the task. The code cannot access other resources.
This method provides the security guarantee that a vulnera-
ble task cannot compromise other ones or the whole system.
For the partition-time over-privilege issue, we solve it

through the global data shadowing technique. We make a
shadow copy of each shared global variable of one operation
and put it into a continuous memory space that is only acces-
sible by that operation. By doing so, the continuous memory
space only contains global data necessary for a specific op-
eration, which avoids incorporating redundant resources.
For the execution-time over-privilege issue, we mitigate it
through an approach that one operation only includes the
functions needed to perform a specific task. Indeed, a func-
tion may contain some basic blocks that are not executed
at runtime, which could also cause the execution-time over-
privilege issue. Furthermore, our system virtualizes the MPU
regions to use the MPU flexibly and facilitate the operation

1 void Unlock_Task() {
2 HAL_UART_Receive_IT(&PinRxBuffer);/*buggy*/
3 result = hash(PinRxBuffer);
4 if(compare(result, KEY))
5 do_unlock();
6 }
7
8 void Lock_Task() {
9 HAL_UART_Receive_IT(&PinRxBuffer);/*buggy*/
10 if(PinRxBuffer[0]=='0')
11 do_lock();
12 }
13
14 int main(void) {
15 System_Init();/*Task1: configure core peripherals*/
16 Uart_Init(); /*Task2: configure UART*/
17 Key_Init(); /*Task3: compute the hash of PIN,
18 and save it to KEY*/
19 Init_Lock(); /*Task4: Init lock*/
20 while (1)
21 {
22 Unlock_Task(); /*Task5: perform the unlock task*/
23 Lock_Task(); /*Task6: perform the lock task*/
24 }
25 }

Listing 1.Main logic of the application PinLock.

partitioning. Explicitly, our system supports reconfiguring
the MPU on demand at runtime.

We implement a prototype called OPEC. It consists of two
components, i.e., OPEC-Compiler and OPEC-Monitor. The for-
mer is an LLVM-based compiler that is responsible for parti-
tioning the program into different operations and identifying
needed resources for each operation. The latter is responsi-
ble for global data shadowing, stack isolation, and operation
switching. Specifically, OPEC-Compiler gets the application
source code and the operation entry function list specified
by developers. Then it performs a static analysis to identify
the global data and peripherals needed by each operation to
generate the operation policy. After that, it uses the operation
policy to produce the final program image. OPEC-Monitor is
linked to the image during the compiling time to enforce the
isolation policy. The operation switch is triggered by a soft-
ware interrupt (the SVC instruction), which will be handled
by OPEC-Monitor. OPEC-Monitor first performs data synchro-
nization based on the corresponding policy. Then, it enforces
resource access permissions by setting up the MPU.
We evaluate the effectiveness of OPEC with six repre-

sentative applications and the CoreMark benchmark [13].
The evaluation shows that our system effectively enforces
privilege isolation and reduces the resources that can be ac-
cessed for an operation at runtime. Compared to the vanilla
system, an average of 37.79% of the resources are accessible
at runtime. We further evaluate the performance overhead.
The average runtime overhead is 0.23%. OPEC consumes low
Flash and moderate SRAM resources, i.e., 1.79% and 5.35%
for Flash and SRAM, respectively.

In summary, the contributions of our work are as follows:

• We analyze the over-privilege issues of the previous
security isolation for bare-embedded systems, which
motivates our work (Section 3).
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Figure 1. Example of the operation partitioning, switching,
and runtime enforcement to PinLock. The PinLock can be
divided into six tasks, each task can be regarded as an op-
eration. At runtime, SVC instructions trigger the operation
switch, and the OPEC-Monitor of OPEC performs the switch
and updates the MPU configurations according to the policy
to enforce the security isolation.

• We propose operation-based security isolation and
solves or mitigates the over-privilege issues (Section 4
and Section 5).

• We prototype our system OPEC and evaluate it with
six representative applications on two different de-
velopment boards. The experiment shows that OPEC
enforces privilege isolation and resource isolation for
bare-metal embedded systems with a negligible impact
on performance. (Section 6).

2 Background
2.1 Memory Address Space and Privilege Levels
OPEC works towards bare-metal embedded systems [12],
whose system libraries and application code are statically
linked and executed on low-end microcontrollers, e.g., ARM
Cortex-M CPU families. In this paper, we use the popular
ARMv7-M architecture [4] as a reference to describe our
system. This choice complies with previous work [11, 12].

The address space of the ARMv7-M architecture contains
code, data, peripherals, and so forth., as shown in Figure 2.
For instance, the code usually resides in the lower 512MB
address space, ranging from 0x00000000 to 0x1FFFFFFF. The
program data, including the stack and global variables, are
in the SRAM region. For peripherals, they are either at the
peripheral region or the external device region. Despite a
large address space, only a small portion is used in a real
system. A bare-metal embedded system usually has a few
MBs of Flash and KBs of SRAM.
The ARMv7-M architecture has two privilege levels for

software execution, i.e., privileged and unprivileged levels.
The program can execute some security-sensitive instruc-
tions at the privileged level, such as configuring the hardware
directly. The unprivileged level is reserved for the applica-
tion code. The unprivileged application can execute a SVC
instruction to make a supervisor call to escalate to the privi-
leged level. Although the microcontroller supports privilege
isolation, it is not fully leveraged by bare-metal embedded
systems. Both system libraries and applications are running

Flash SRAM Peripheral External
RAM
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Vendor Specific
Memory

1GB512MB

External
Device

1GB 1MB 511MB

Code Data, Stack

512MB 512MB
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0

0x
FF

FF
FF

FF

Figure 2.Memory layout of the ARMv7-M architecture.

at the privileged level. Our system intends to provide privi-
lege isolation. Note that only privileged software is allowed
to access memory range within Private Peripheral Bus (PPB),
where core peripherals such as MPU and SysTick timer re-
side. Unprivileged access will trigger a bus fault.

2.2 Memory Protection Unit (MPU)
Memory Protection Unit (MPU) is used to provide physical
memory access control. It defines several regions by speci-
fying the base address, size, and access permissions at the
privileged and unprivileged levels. Each region is labeled
with a number. If two memory regions have an overlapped
memory range, the access to this range is confined by the re-
gion labeled with the highest number. Accessing the memory
range prohibited by the MPU will trigger a memory man-
agement fault. However, there are some restrictions on the
region configuration. The region size must be the power of
two, and the smallest permitted region size is 32 bytes. The
region’s base address must be aligned with its size. Therefore,
it is challenging to enforce precise access control for a large
number of scattered address spaces by the limited number
of MPU regions. One MPU region can be further split into
eight equal-sized sub-regions, and each can be enabled or
disabled individually. If a sub-region of a region is disabled,
a lower-numbered MPU region that overlaps this memory
range confines the memory access to it.

3 Overall Design and Threat Model
3.1 Motivation
Our system intends to provide security isolation to bare-
metal embedded systems. By doing so, one compromised task
cannot access arbitrary resources (data and peripherals). The
data may contain security-critical system states. Peripherals,
as the interface between the device and the outside world,
may directly impact the physical world. For instance, by
writing a special peripheral register, the attacker can control
a robot arm’s movement speed causing safety issues.

Though the previous system ACES [11] intends to provide
security isolation, it suffers from two over-privilege issues.
We use two examples derived from the PinLock application
to illustrate two different types of over-privilege issues. In
this paper, we refer to an isolated partition as a domain, i.e.,
an operation in our paper and a compartment in ACES.
Partition-time Over-privilege results from the limita-
tion ofMPU. Figure 3 shows the partition-time over-privilege
issue when using the MPU to isolate global variables. ACES
solves the over-privilege caused by the size and alignment re-
striction of the MPU region by rearranging the addresses of
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Figure 4. Example of the execution-time over-privilege issue
derived from the PinLock.

global variables. However, it fails to solve the over-privilege
issue caused by limited MPU regions. Different compart-
ments may share variables, and most of the shared variables
would become a separate region. It leads to exceeding the
available MPU regions when a compartment has too many
shared variables among different compartments. Therefore,
ACES merges some regions to solve this issue at the cost of
introducing the over-privilege issue. In Figure 3(a), compart-
ment C2 groups V1 and V3 to save the use of regions. It leads
to the over-privilege issue for compartment C3 since C3 only
needs to access V1.
Our system solves this problem through the global data

shadowing technique that each compartment has a shadow
copy of the shared global variables (Figure 3(b)). These vari-
ables are rearranged inside a continuous memory range that
is confined by one MPU region.
Execution-time Over-privilege is caused by including
unnecessary code when executing a task. As shown in Fig-
ure 4, the compartment C1 contains multiple functions. How-
ever, when performing a task (e.g., unlocking a smart lock),
only the function F1 in the compartment C1 executes. Re-
sources that are accessed by other functions in compartment
C1 become redundant. If the code in compartment C1 is com-
promised, it can access these redundant resources, which
leads to execution-time over-privilege.

Moreover, the code-module based way to divide compart-
ments [11] also induces frequent compartment switches be-
cause the execution flow of a specific task may cross multiple
compartments. For instance, when performing task two in
Figure 4, five compartment switches between compartments

are needed. Our system considers the execution flow when
partitioning a program. It mitigates the execution-time over-
privilege issue while reducing the overhead of compartment
switches simultaneously.

3.2 System Overview
The workflow of our system is shown in Figure 5. It consists
of two key stages, compiler-assisted operation partition and
hardware-assisted operation isolation. These two stages are in-
volved by the following two components, i.e., OPEC-Compiler
and OPEC-Monitor, respectively. The former is an LLVM-
based compiler, which analyzes the program and builds the
image with the operation isolation property. The latter en-
forces privilege and resource isolation between operations at
runtime. It is linked to the application code during compiling.

3.3 Assumptions and Security Benefits
Our system assumes a strong threat model that the attacker
can gain the arbitrary code execution capability to construct
the primitives to read from and write to arbitrary memory
locations. These primitives could be achieved through hi-
jacking the control flow of the program, e.g., corrupting
function pointers, and then by leveraging Return-Oriented
Programming (ROP) to construct powerful attack primitives.
However, attackers cannot inject code since the writable
memory regions are not executable. We also assume the
program is buggy, which may contain vulnerabilities that
attackers can exploit to compromise the whole system. Note
that intra-domain protections to control-flow integrity and
data integrity are orthogonal to our work.
We assume that the hardware has two privilege levels

(privileged and unprivileged) and a memory protection unit
(MPU). In addition, we assume that the system is a bare-metal
one whose program image is a statically linked binary. It does
not support dynamically linked libraries. It is consistent with
the bare-metal embedded systems in the real world. These
assumptions comply with the previous system [11].

OPEC enforces the least-privilege principle to bare-metal
embedded systems and provides the following protections.
First, it ensures the isolation between operations. The com-
promise of one operation cannot directly take over the whole
system. Second, it enforces the least-privilege principle of
operation. The compromise of one operation can only ma-
nipulate the resources that are accessible in that operation.
Third, the sanitization of changes to global data alleviates
the cross-domain threat that corrupts safety-critical global
variables 1. Our system reduces the security consequences
of bare-metal embedded systems after being compromised,
providing a practical defense with a powerful threat model.

1Note that if attackers can directly manipulate safety-critical peripherals
that are accessible in a compromised operation, the sanitization cannot
prevent this attack.
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Figure 5. The workflow of OPEC.
4 Compiler-assisted Operation Partitioning
This section presents how OPEC-Compiler partitions opera-
tions and generates the program image with our isolation
property. Our system takes the program source code and the
list of operation entry functions as inputs to produce the
final image (Figure 5). In our prototype, the OPEC-Compiler
is built on LLVM 9.0 [28], with new passes to perform the
program analysis and instrumentation.

4.1 Call Graph Generation
An operation is a specific task of the bare-metal system.
From the program’s perspective, an operation is a subtree in
the call graph, with a developer-provided function as the root.
With the call graph, we can easily traverse all the functions
from the root node. However, building a precise call graph
is challenging due to the indirect function calls (icalls for
short) [29]. OPEC-Compiler leverages the Andersen point-to
analysis implemented by SVF [38] to determine the poten-
tial legal targets of function pointers. Nevertheless, there
are some icalls that cannot be resolved by SVF. In this case,
we use type-based analysis to find the potential targets. We
consider two function types identical if the number of argu-
ments, the type of the structure argument, the type of the
pointer argument, and the type of the return value are the
same. The indirect function call edges are then added to the
call graph to ensure its soundness. Note that the results of the
point-to analysis are conservative and over-approximated,
which contains false positives. Otherwise, an unsound call
graph will bring dependency miss to operations.

4.2 Resource Dependency Analysis
After constructing the call graph, the next step is to analyze
the needed resources of each function. The resources include
global variables and peripherals. OPEC-Compiler leverages
state-of-the-art static analysis techniques to perform a con-
servative analysis.
Global Variables OPEC-Compiler leverages the forward
slicing to identify accessed global variables in each function.
Global variables can be accessed directly and indirectly. Our
system processes them differently.
Direct accesses can be identified by recognizing all the

load and store instructions that use the global variables as

operands. OPEC-Compiler uses the built-in def-use analysis
of the LLVM to identify. Indirect access happens when a vari-
able is accessed through a pointer. OPEC-Compiler performs
an inter-procedural point-to analysis using the state-of-the-
art tool SVF [38]. The analysis identifies local and global
variables targets of a pointer. We further filter out the local
targets pointed to by pointers and leave the global ones. Note
that the size of an array pointed to by data pointers should
be determined at compile time. We have not encountered
arrays with statically unknown sizes.

OPEC-Compiler also records the pointer fields of a global
variable by leveraging its type. This information is further
used for updating pointer fields of shadow variables when
switching an operation (Section 5.3).

Peripherals are accessed through memory-mapped ad-
dresses (Figure 2) in bare-metal systems. For a specific System-
on-Chip (SoC), memory addresses of peripherals are constant.
OPEC-Compiler uses this information to identify peripheral
access. We obtain the addresses of peripherals from the SoC
datasheet. OPEC-Compiler uses the backward slicing at IR
level to examine whether the operand of a load/store instruc-
tion contains a constant memory address. It then compares
the address with a predefined list of peripheral addresses
retrieved from the datasheet to check whether the address
is peripheral. If so, the OPEC-Compiler marks it as a periph-
eral accessible by the function where the store/load the
instruction belongs to. Furthermore, we divide the accessible
peripherals into two lists for general peripherals and core pe-
ripherals, since accessing core peripherals (on PPB) requires
the code to run at the privileged level (Section 2).

4.3 Operation Partitioning
This step aims to partition a program into operations and
identify all resources needed by each operation. OPEC-Compiler
depends on the entry functions list provided by the develop-
ers to partition a program (Figure 5). The process of selecting
the entry function of an operation is straightforward. Take
the application PinLock as an example (Listing 1). This appli-
cation can be divided into six tasks. We can treat each task
as an operation and choose the root node of each task in the
call graph as the entry function. Apart from the operations
generated through the entry function list, OPEC-Compiler
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also considers the function main as a default operation. The
default operation can access the resources necessary to the
function main. Note that the operation entries cannot be
functions having variable-length arguments or within an
interrupt handling routine.

For each entry function, OPEC-Compiler performs theDepth-
First-Search (DFS) algorithm to traverse the call graph from
the entry function to determine the functions that operation
contains. When reaching another operation entry function,
the OPEC-Compiler performs backtracking. Note that two dif-
ferent operations can share functions. Our system supports
recursion since it can be grouped into one operation.

After that, the OPEC-Compiler groups all the member func-
tions callable from one operation entry to an operation and
merges all needed resources to produce the resource de-
pendency. In our design, each peripheral is protected by an
individual MPU region. To save the use of the limited MPU
regions, OPEC-Compilerwill first sort the peripherals needed
by one operation at the ascending order of their start ad-
dresses. Then the adjacent peripherals will be merged and
protected by an individual MPU region. Even so, one opera-
tion may need regions exceeding the limitation of the MPU
to access the peripherals. In this scenario, OPEC virtualizes
the usage of MPU regions to solve this issue. The details are
in Section 5.2. Alternatively, the developers can choose to
split one large operation into smaller ones since smaller op-
erations may access fewer peripherals and need fewer MPU
regions. Finally, OPEC-Compiler generates a policy file that
contains accessible resources of each operation.

4.4 Program Image Generation
After partitioning the program, the OPEC-Compiler generates
the operation data sections and MPU configurations, then
instruments the program to produce the final image.

Operation Data Section OPEC uses the global data shad-
owing technique to isolate global variables. Specifically, each
operation has an exclusive operation data section that con-
tains all the global variables it needs. An operation can access
global variables only within its operation data section. Each
operation data section is confined by one MPU region pre-
venting variables from being corrupted by other operations.

Our system divides the global variables into two types,
internal and external. The internal ones are accessed by only
one operation and directly placed into the corresponding
operation data section. The external ones are accessed by
two or more operations. Each external variable has shadow
copies in corresponding data sections. Those shadow copies
are accessed through a variables relocation table. Specifically,
the OPEC-Compiler creates a data pointer for each external
variable at the variables relocation table. The data pointer
either points to the original variable or the shadow copy. We
will discuss the details of using the relocation table for data
accessing in Section 5.2.
In our design, each operation data section is protected

by one MPU region. However, the MPU has a rigid address
alignment requirement (Section 2). Improper placement of
operation data sections will cause external memory frag-
ments. To reduce the external fragments, the OPEC-Compiler
first sorts the operation data sections according to their sizes
in descending order. Then it calculates the start addresses of
these sections and places them accordingly.

OperationMetadata The metadata of each operation con-
tains five parts, i.e., MPU configurations, stack information,
sanitization value of critical global variables, a peripheral
list, and a variable relocation table. The MPU configurations,
which are generated by the OPEC-Compiler after the building
of operation data sections, are used to confine the memory
access permissions of each operation. The stack information
and sanitization value are provided by the developers. The
former is used to annotate the pointers in the entry function
arguments, which facilitates the OPEC-Monitor performing
stack synchronization during the operation switching. The
latter is used for global variables sanitization. The peripheral
list is used as an allow list when accessing the peripherals.

Code Instrumentation OPEC-Compiler inserts the initial-
ization routines before entering the function main of the
application. We will illustrate the initialization in Section 5.1.
Moreover, the OPEC-Compiler inserts SVC instructions before
and after the call site of each operation entry function. The
application code will escalate to the privileged level after
executing the SVC instruction. After that, the control flow
will be transferred to the operation switch routine. When the

322



OPEC: Operation-based Security Isolation for Bare-metal Embedded Systems EuroSys ’22, April 5–8, 2022, RENNES, France

A

B

C

D

(b) Switching from B to C(a) Execution flow (c) Switching from C to B

Pub. Data Sec. Rel. Tbl.

Var.

a

d

e

Range

[4, 6]

[2, 99]

[0, 1]

Operation Data Sections

Ptr.

pa

pd

pe

pb

pc

b NULL

c [0, 60]

1
3
5

2
4
6

7 8
9

Pub. Data Sec. Rel. Tbl.

Var.

a

d

e

Range

[4, 6]

[2, 99]

[0, 1]

Ptr.

pa

pd

pe

pb

pc

b NULL

c [0, 60]

9

1
3

4
2

5
67
8

Operation Data Sections

A Data Sec.

a

c

d

B Data Sec.

b

c

d

C Data Sec.

d

e

e

D Data Sec.

a

b

C Data Sec.

d

e

e

D Data Sec.

a

b

B Data Sec.

b

c

d

A Data Sec.

a

c

d

Figure 7. External global variables synchronization.

program enters into or exits from an operation, the opera-
tion switch is invoked to set the new execution environment
or recover from the previous execution context. After in-
strumentation, the library that contains the OPEC-Monitor is
linked to the application code to produce the final image.

5 Hardware-assisted Operation Isolation
This section illustrates the OPEC-Monitor. It enforces privi-
lege isolation, resource isolation, and operating switching
based on the policy generated in the previous stage.

5.1 Initialization
OPEC-Monitor initializes the system before running the ap-
plication code. First, it initializes the operation data section
of each operation by copying the initial value of each global
variable to its shadow copy. Second, it enables the exception
handling of the supervisor call (SVC), memory management
fault, and bus fault. Finally, it drops the privilege and runs the
unprivileged application code to ensure privilege isolation.

5.2 Resource Isolation
Figure 6 shows the memory layout and the access permis-
sions of the final image generated by OPEC-Compiler. The
data of OPEC-Monitor and the relocation tables of each oper-
ation are placed in the memory region that is only writable
at the privileged level. It prevents the isolation policy from
being tampered with by a compromised unprivileged opera-
tion. The operation metadata excluding relocation tables is
stored in the read-only memory.

The eight MPU regions are arranged as follows. Region 0
sets all memory ranges as read-only. Region 1 enables the
execution of the unprivileged application code. Region 2 and
3 enforce read and write permissions to the stack and the
operation data section. Region 4 to 7 are reserved for pe-
ripheral access. Note that unprivileged adversaries cannot
execute security-sensitive instructions of OPEC-Monitor be-
cause of the privilege isolation as described in Section 5.1.
In the following, we will present how our system enforces
resource isolation at runtime.

Global Variables OPEC-Monitor synchronizes shared vari-
ables in operation data sections and modifies the variable
relocation table to ensure that the program accesses correct
shadow copies. The data synchronization process during the
operation switch is illustrated in Figure 7. When entering
into or returning from one operation, OPEC-Monitor first
identifies whether the global variable needs to be synchro-
nized. As shown in Figure 7(b)(c), global variable a, b, c, e,
and f are shared variables. When entering into C from B,
OPEC-Monitor first writes back the value of b, c, and d from
their shadow copies in B’s data section to the public data sec-
tion (➀⇒➁, ➂⇒➃, and ➄⇒➅). Then OPEC-Monitor further
copies the value of d and e from the public data section to
their shadow copies in C’s data section (➅⇒➆ and ➇⇒➈).
When returning to B from C, OPEC-Monitor first writes back
the value of d and e from C’s data section to the public data
section (➊⇒➋ and ➌⇒➍). Then the value of b, c, d is fur-
ther copied to their shadow copies in B’s data section (➍⇒➎,
➏⇒➐, and ➑⇒➒). Note that OPEC-Monitor does not syn-
chronize a during the operation switch because neither B
nor C accesses a.

Before synchronizing, OPEC-Monitor performs data saniti-
zation to check whether the value is legitimate by comparing
the value with the developer-provided valid value range. If
the check fails, there may exist data corruption inside the
operation. OPEC-Monitorwill abort the program and prevent
the value of the corrupted shadow copy from propagating
to other operations. This sanitization ensures that the new
value is in safe ranges specified by developers. For instance,
the speed of a moving robotic arm should be limited.

Stack The challenge of stack protection stems from ac-
cessing local variables on the previous stack frame of an-
other operation. ACES [11] handles this challenge by using
a micro-emulator. It uses one MPU region to enforce the
access permission for the stack and disables as many sub-
regions of this MPU region as possible to prevent access to
previous portions of the stack. When the program accesses
the previous portion of the stack, a memory access fault oc-
curs. Then it invokes the micro-emulator to check against
an allow list and enables this access. However, this solution
requires profiling the program to get the precise stack access
information, which may be imprecise.

OPEC implements precise protection for the stack by lever-
aging the sub-region feature of the MPU and the data relocat-
ing technique. In our design, the stack is protected by an indi-
vidualMPU region. OPEC-Monitor divides the stack into eight
equally sized portions. Each portion of the stack corresponds
to a sub-region of the MPU region. The OPEC-Compiler ana-
lyzes the parameters of the entry function of each operation
to get the size of the arguments saved on the stack and the
size of data pointed by the pointer-type arguments. If these
data need to be accessed by the new operation but saved in
the previous operation’s stack, OPEC-Monitor will relocate
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Figure 8. Illustration of stack protection by OPEC.
them when switching to a new operation. Note that the stack
information (including the number of arguments and size of
the buffer) is provided by the developers (Figure 5).

Specifically, OPEC-Monitor first copies the data pointed by
the pointer-type arguments along with the arguments saved
on the stack to the first available sub-region of the stack.
Next, it redirects the pointer-type arguments to point to their
duplicated copies on its stack. OPEC-Monitor disables the pre-
vious sub-regions of the stack to protect the stack from being
corrupted by other operations. Then it saves the previous
stack pointer and updates its value. Finally, OPEC-Monitor
disables the sub-regions corresponding to the previous stack
frame to prevent access. The current prototype of our system
cannot handle nested pointer-type arguments of operation
entry functions. In the future, the deep copy can be leveraged
to solve this issue. Note that pointer-type arguments can be
aliased. However, this can lead to duplicated copying and
incur extra runtime overhead.

Figure 8 shows an example of the data relocation process
during the operation switching. The default operation has a
local variable buf which is saved at address 0x2F88. Before
entering into the operation Foo, the last two arguments of
the entry function are pushed into the stack (others are saved
in registers). One is the start address of buf, another is its size.
Note that an operation can use multiple sub-regions of the
stack. This strategy significantly mitigates the issue of insuf-
ficient stack space. In Figure 8(c), the operation Foo occupied
three sub-regions. After exiting from the Foo, OPEC-Monitor
copies back the data pointed by pointer-type arguments, i.e.,
copying back the array pointed by buf, and restores the stack
pointer as shown in Figure 8(e).
Peripherals OPEC reserves four MPU regions for each
operation to access four peripherals and protect every pe-
ripheral by an individual MPU region. However, one op-
eration may need more than four MPU regions for access-
ing peripherals because: 1) the operation may need to ac-
cess multiple peripherals; 2) one peripheral may need two
more MPU regions due to the MPU region alignment require-
ment. To solve this problem, OPEC-Monitor virtualizes the
MPU regions. OPEC-Monitor uses the memory management

fault handler to update the MPU configurations dynamically.
Before updating the MPU, OPEC-Monitor verifies whether
it is legitimate access by checking the peripheral address
against the peripheral list of the current operation. If so,
OPEC-Monitor will select one of the four reserved MPU re-
gions and update its configurations. Note that OPEC-Monitor
uses the round-robin algorithm to determine which MPU
region should be swapped out.
Generally, memory access to code, the operation data

section, and stack occurs more frequently than peripher-
als. Therefore, virtualizing the MPU regions that confine
memory access to those three types of memory needs re-
configuring the MPU frequently. It leads to OPEC-Monitor’s
involvement to switch context from the user space to the
kernel space frequently and incurs runtime overhead.

For core peripherals that trigger a bus fault when accessed
by unprivileged code, OPEC-Monitor emulates the execution
of the store/load instructions. Similarly, OPEC-Monitor uti-
lizes the bus fault handler to handle bus faults triggered by
those instructions. OPEC-Monitor first checks whether the
fault is triggered by unprivileged access to core peripher-
als. Then it examines whether the address (the target or
source address of the store or load instructions) causing
this fault is permitted to access by the current operation.
After that, OPEC-Monitor emulates the load or store instruc-
tions to read from or write to values to those core periph-
erals. More specifically, to emulate a store/load instruction,
OPEC-Monitor parses the target/source address from the in-
struction, writes the value to/reads the value from the parsed
address, and updates the corresponding registers finally.

Heap OPEC-Compiler cannot determine which part of the
heap memory is used by a function statically. Therefore, if
one function uses a variable that resides in the heap memory,
the whole heap memory is allowed to be accessed by this
function. Moreover, OPEC-Monitor places the heap memory
into a separate section rather than operation data sections,
which reduces performance overhead by avoiding copying
or writing back its content when switching the operation.
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5.3 Operation Switch
Operation switch is triggered by executing SVC instructions
before and after the call site of each operation entry func-
tion. Then OPEC-Monitor handles the SVC and executes the
operation switch routine. OPEC-Monitor uses the operation
context to save the context of previous operations so that the
context can be restored. The operation context information
includes MPU configurations, the stack pointer value, and
the peripheral list. This operation context is only writable at
the privileged level, protecting it from unauthorized changes.

When entering into a new operation, OPEC-Monitor copies
global shadow variables and relocates variables on the stack.
In the meanwhile, OPEC-Monitor examines the pointers field
information recorded by OPEC-Compiler (Section 4.2). Specif-
ically, OPEC-Monitor checks whether these pointers point to
the shadow variables of another operation’s data section. If
so, OPEC-Monitor redirects those pointers to the shadow vari-
ables of the new operation. After that, it configures the MPU
and returns to the first instruction of the new operation.

When exiting from one operation, OPEC-Monitor sanitizes
and synchronizes the shadow variables of the current opera-
tion. Next, it recovers the stack for the previous operation
and clears the value of general-purpose registers. Finally, it
gets the saved context information of the target operation
from the operation context and restores the MPU configura-
tion. Therefore, task dependencies are ensured by synchro-
nizing shared global variables and relocating stacks.

6 Evaluation
In this section, we evaluate our OPEC prototype to answer
the following three research questions:

• R1: What are the security benefits provided by OPEC?
• R2: What is the performance overhead of OPEC?
• R3: What are the advantages of OPEC compared to
the state-of-the-art security isolation?

We test OPECwith six representative IoT applications and
the CoreMark benchmark [13] on two boards, a STM32F4-
Discovery [37] development board and a STM32479I-EVAL
evaluation board [35]. Both boards have an ARM Cortex-M4
core. The STM32479I-EVAL board has diverse peripherals,
such as a camera and an ethernet interface. Whereas five
applications are implemented by STMicroelectronics [36],
PinLock is adopted from the tested applications used by
ACES [11]. PinLock is a smart lock running on the STM32F4-
Discovery board. It first prompts the user to enter the pin
code to lock. Then the program receives the input pin from
the serial port. After that, PinLock hashes the input pin
and compares the result to a correct pin. Finally, it sends a
message to the serial port to indicate whether the result is
correct or not. Animation reads pictures from an SD card
and displays those pictures on an LCD screen to demonstrate
a moving butterfly. FatFs-uSD implements a FAT file system
on an SD card. Then it writes some fixed content to a newly

created file in the file system. After that, it reads the file and
checks whether the content is correct. LCD-uSD presents the
pictures pre-stored in an SD card with fade-in and fade-out
visual effects. TCP-Echo runs a TCP echo server based on
lwIP [15], which is a lightweight implementation of TCP/IP
protocol. It receives TCP packets sent from a client running
on a desktop and replies to them. Camera uses the camera
on the STM32479I-EVAL board to take a photo after the user
presses the button. The picture is saved to a USB flash disk.
CoreMark measures the performance of microcontrollers.
It contains implementations of algorithms, including list
processing, matrix manipulation, and state machine.

We generate two individual binaries for each application.
The first one built from the vanilla application serves as the
baseline, and the second one is built with OPEC. To evalu-
ate our system, we first use the PinLock application as the
case study to illustrate how OPEC constrain a compromised
operation, whereas ACES cannot. Then, we evaluate the ef-
fectiveness of the security isolation of OPEC through several
static metrics. Next, we measure the performance overhead
induced by OPEC and compare it with ACES to show how
lightweight OPEC is. After that, we evaluate the partition-
time and execution-time over-privilege issues of OPEC and
ACES. Finally, we measure the efficiency of resolving the
icalls.

6.1 PinLock Case Study
Weuse the PinLock application as an example to demonstrate
how OPEC solves the partition-time over-privilege issue and
protects the system from a compromised compartment. As il-
lustrated in Listing 1, the PinLock has six tasks. Virtually, task
Unlock_Task and Lock_Task are two independent tasks that
should be divided two into different compartments (or oper-
ations). Both Lock_Task and Unlock_Task invoke the func-
tion HAL_UART_Receive_IT, which is defined in the vendor-
provided Hardware Abstraction Libraries (HAL), to receive a
user input pin from the serial port. We assume there is a vul-
nerability in the function HAL_UART_Receive_IT. An attacker
with the arbitrary memory write ability can exploit this vul-
nerability to overwrite the correct pin. The pin is finally
saved to a global buffer PinRxBuffer. For the Unlock_Task
function, it hashes the global variable PinRxBuffer. The hash
result is then compared to a global variable KEY, which is
the hash value of the correct pin. If the input pin is correct,
the function do_unlock will be called. For the Lock_Task
function, it checks whether the first byte of the PinRxBuffer
is 0 and performs locking by invoking do_lock. Therefore,
PinRxBuffer is shared by these two compartments.
To save the MPU regions usage, ACES groups the two

global variables PinRxBuffer and KEY into one data region,
which leads to the partition-time over-privilege issue (Sec-
tion 3.1). Once Lock_Task is compromised, attackers can
overwrite KEY and perform unlocking directly to break the
isolation. However, OPEC prevents the compromised task
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Table 1. The metrics of the security evaluation. The percent
in the parentheses is compared to the baseline; a smaller
number is better. #OPs.: the number of operations. #Avg.
Funcs: the average number of functions in an operation.
#Pri. Code: the size of code runs in the privileged level. #Avg.
GVars: the average size of the accessible global variables.
Application #OPs #Avg. Funcs #Pri. Code(%) #Avg. GVars(%)

PinLock 6 14.00 8344(8.86) 72.86(44.43)

Animation 8 85.00 8398(5.10) 1422.44(35.61)

FatFs-uSD 10 77.00 8364(7.39) 1134.09(52.07)

LCD-uSD 11 67.82 8362(4.55) 1126.50(34.19)

TCP-Echo 9 57.67 8646(5.76) 14989.2(45.82)

Camera 9 61.11 8428(3.75) 1428.40(28.52)

CoreMark 9 17.11 8414(12.87) 1100.50(48.10)

Average 8.86 54.24 8422.29(6.90) 3039.14(41.25)

from accessing unneeded resources since its operation data
section does not contain the shadow copy of KEY.

6.2 Security Evaluation

PrivilegedCode OPEC enforces privilege isolation by run-
ning the application code at the unprivileged level, whereas
running OPEC-Monitor at the privileged level. Note that all
the code executes at the privileged level in baseline because
there is no privilege isolation. OPEC reduces the privileged
code running at the privileged level. As the results show in
Table 1, the average percentage of the privileged code size is
6.60% compared to the baseline.

As we discussed in Section 5.2, reading or writing the core
registers requires the code to run at the privileged level. To
solve this issue, ACES lifts the compartment to the privileged
level if this compartment needs to access the core peripherals,
which executes application code at the privileged level.

Accessible Global Variables We measure the accessible
global variable size of each operation to understand the ef-
fectiveness of resource isolation. As shown in Table 1, OPEC
can effectively confine the average percentage of accessi-
ble global variables of each operation to 41.25%. Specifically,
FatFs-uSD’s average percentage of accessible global vari-
ables is high. FatFs-uSD implements a FatFs file system on
an SD card to manage its storage. The program has two large
structure variables, MyFile and SDFatFs, which are used as
a file object and a file system object, respectively. These two
variables are shared among several operations, which leads
to the large average percentage of this metric of this appli-
cation. PinLock, TCP-Echo, and CoreMark have a relatively
high value in this metric. For PinLock, all its writable global
variables are shared. For TCP-Echo, the large-size variables
used for handling incoming packets are shared among four
operations because of the false positives induced by point-to
analysis. Besides, the memory pools used for allocating mem-
ory are shared among five operations. For Coremark, there
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Figure 9. Performance overhead of OPEC.

are two large buffers shared among operations, incurring
the average accessible global variables.

6.3 Performance Overhead

Runtime Overhead Since bare-metal embedded systems
are resource-constrained devices, a lightweight security iso-
lation scheme can protect the availability of the devices and
save energy compared to the previous isolation scheme. To
measure the runtime overhead caused by OPEC, we record
the timestamp before and after executing the code. The exe-
cuted time is the difference value between these two times-
tamps.We take advantage of a peripheral named DataWatch-
point and Trace (DWT) [5] to measure the runtime overhead.
In particular, DWT measures the number of used clock cy-
cles at a specific point. We first record the number of clock
cycles used by the baseline and the application built with
OPEC. After that, the latter is further divided by the former
to calculate the final ratio. Note that DWT does not influence
the execution time of applications.
PinLock stops profiling after 100 successful unlocks and

locks. It receives correct and wrong pin code sent alternately
from a desktop. Animation shows 11 pictures from the SD
card one by one on the LCD screen and stops profiling. LCD-
uSD stops profiling after displaying all 6 pictures from the
SD card. It displays each picture in a short time. FatFs-uSD
finishes profiling once it reads a previously written message
from the created file. TCP-Echo stops running after han-
dling 5 valid TCP packets and 45 invalid packets. Moreover,
Camera stops running after the program saves the captured
picture into the USB flash disk. CoreMark stops profiling
after the benchmark executes the finish function. As illus-
trated in Figure 9, the average runtime overhead induced
by OPEC is 0.23%, and the maximum overhead is 1.1%. The
results show that OPEC incurs a low runtime overhead. The
first reason is thatOPEC adopts an operation-based partition
methodology that follows the execution flow of the appli-
cation, which avoids frequent domain switching. Second,
OPEC synchronizes only shared variables during the opera-
tion switch. Third, all tested applications except CoreMark
wait on I/O, which incurs the execution time of the base-
line binaries. Note that the evaluation of TCP-Echo does not
comply with ACES, which tests TCP-Echo with 1000 TCP
packets, due to the SRAM limit. The overhead incurred by
OPEC would be about 75% if TCP-Echo is tested with 1000
TCP packets as well as 9000 invalid packets.
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Flash Overhead To measure the overall increased mem-
ory, we use a tool readelf [7] to collect each section’s memory
information of the final binary. The result is further divided
by the Flash size of the device to get the increased memory
ratio. The Flash size of the STM32F4-Discovery board and
the STM32479I-EVAL board is 1 MB and 2 MB, respectively.
As shown in Figure 9, OPEC causes a minimal Flash over-
head. The average Flash overhead induced by OPEC is 1.79%,
and the maximum is 3.33%. Note that the operation meta-
data used by the OPEC-Monitor accounts for the most Flash
overhead to six applications.

SRAM Overhead We measure the SRAM overhead by
calculating the increased memory caused by operation data
sections. The final results are divided by the size of the SRAM.
The SRAM size of the STM32F4-Discovery board and the
STM32479I-EVAL board is 192 KB and 288 KB, respectively.
As illustrated in Figure 9, OPEC causes a moderate SRAM
overhead. The maximum SRAM overhead is 7.62%. The av-
erage SRAM overhead is 5.35%. The operation data sections
and their fragments required by the MPU region account
for the most SRAM overhead. As discussed in Section 2, the
MPU region size must be the power of two. This limitation
leads to the internal fragments of operation data sections, i.e.,
one operation data section probably contains some unused
memory. Such SRAM overhead is hard to eliminate.

6.4 Comparison to ACES
We compare OPECwith ACES [11], the state-of-the-art secu-
rity isolation, for the over-privilege issues and performance
overhead. We use five applications evaluated by ACES for
comparison and evaluate the three supported partition strate-
gies, i.e., filename (ACES1), filename without optimization
(ACES2), and peripheral (ACES3).

Partition-time Over-privilege This issue is caused by
shared global variables between compartments and the lim-
itation of the MPU. We use a new metric, partition-time
over-privilege value (PT for short), to quantitatively measure
the degree of the partition-time over-privilege issue. The PT
of a domain (a compartment or an operation) is the percent-
age of the size of the global variables that are unneeded by
it to the size of its accessible global variables. We consider
one global variable unneeded by a domain if and only if no
function within the domain has a data dependency on this
variable. Note that some domains may not need to access any
global variable but can access unneeded ones. Using the ratio
rather than the numerator of PT can cover this situation.
The PT value can be calculated by this equation:

𝑃𝑇 =

∑𝑛
𝑖 𝑣𝑎𝑟2𝑠𝑖𝑧𝑒 (𝑢𝑛𝑛𝑒𝑒𝑑𝑒𝑑_𝑣𝑎𝑟 𝑓 𝑖 )∑𝑛
𝑖 𝑣𝑎𝑟2𝑠𝑖𝑧𝑒 (𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒_𝑣𝑎𝑟 𝑓 𝑖 )

(1)

where 𝑓𝑖 is a function of a domain, 𝑛 is the number of func-
tions that a domain contains, and 𝑣𝑎𝑟2𝑠𝑖𝑧𝑒 is the function
that calculates the size of a set of variables. If a domain does
not access any global variable or it does not suffer from the
partition-time over-privilege issue, its PT is 0.

We evaluate the PT of each compartment of the five appli-
cations used by ACES [11] under the three different partition
strategies. Figure 10 presents the cumulative ratio of PT for
the compartments of different applications. Take Figure 10(b)-
ACES1 as an example. The ratio of compartments whose PT
is smaller than 0.2 is nearly 40%. The ratio of compartments
having 0.8 PT is nearly 40% (i.e., 1-0.6). The results reveal
that all strategies supported by ACES, except for the applica-
tion PinLock partitioned by the strategy ACES2 and ACES3,
suffer from the partition-time over-privilege issue. Note that
our system avoid this issue because OPEC adopts the global
variables shadowing technique, which avoids incorporating
unneeded global variables into the operation data section.
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Table 2. Comparison of RuntimeOverhead, FlashOverhead,
Sram Overhead, and Privileged Application Code between
OPEC and ACES.

Application Policy RO(X) FO(%) SO(%) PAC(%)

PinLock

OPEC 1.00 0.74 1.40 0.00
ACES-1 1.00 1.03 0.28 40.9
ACES-2 1.01 0.94 0.25 3.42
ACES-3 1.00 0.99 0.18 4.51

Animation

OPEC 1.00 1.88 6.30 0.00
ACES-1 1.19 2.51 1.21 12.13
ACES-2 5.70 3.53 4.30 0.34
ACES-3 1.13 2.71 0.95 0.23

FatFs-uSD

OPEC 1.00 1.92 7.62 0.00
ACES-1 1.90 1.57 0.43 13.86
ACES-2 1.95 2.04 0.43 0.64
ACES-3 1.25 1.59 0.42 0.44

LCD-uSD

OPEC 1.00 2.10 7.28 0.00
ACES-1 1.78 2.52 4.44 23.95
ACES-2 5.69 2.90 0.91 0.56
ACES-3 1.72 2.10 1.24 0.45

TCP-Echo

OPEC 1.01 3.65 6.56 0.00
ACES-1 2.17 3.67 0.64 10.75
ACES-2 3.69 0.94 6.28 0.64
ACES-3 1.22 0.99 0.49 0.52

Execution-time Over-privilege This issue is caused by
including unnecessary code when executing a task (Sec-
tion 3). Similarly, we use a new metric, execution-time over-
privilege value (ET for short), to measure the degree of the
execution-time over-privilege of a task. The basic idea is to
calculate the used global variables when running a specific
task. The ET of a task is the percentage of the size of the global
variables that are actually unused by it during execution to
the size of its needed global variables. We do not consider
measuring the code that may execute since all unprivileged
code is executable at runtime. If one function is executed in
that task, the global variables needed by this function are
used. Otherwise, they are unused. Note that some tasks may
not use global variables but need them. Using the ratio rather
than the numerator of ET can cover this situation.
To evaluate the execution-time over-privilege of a task

under different partitioning strategies, we need to measure
the size of its used global variables and its needed global
variables. A task’s used global variables are all the global
data dependency of the functions executed in the task. For
OPEC, since each operation is actually a task, the needed
global variables of a task are all the global data dependency
of the operation. For ACES, the needed global variables are
all the global data dependency of the functions within the
compartments involved during execution. We can calculate
the ET of a task under a specific partitioning methodology
by the following equation:

𝐸𝑇 = 1 −
∑𝑛

𝑖 𝑣𝑎𝑟2𝑠𝑖𝑧𝑒 (𝑢𝑠𝑒𝑑_𝑣𝑎𝑟𝑑𝑖 )∑𝑛
𝑖 𝑣𝑎𝑟2𝑠𝑖𝑧𝑒 (𝑛𝑒𝑒𝑑𝑒𝑑_𝑣𝑎𝑟𝑑𝑖 )

(2)

Table 3. Efficiency of icall analysis. #Icall: the number of
icalls. #SVF: the number of resolved icalls by the point-to
analysis. Time(s): the time used to perform the point-to
analysis. #Type: the number of resolved icalls by the type-
based analysis. #Avg.: the average number of targets of the
icalls. #Max: the maximum number of targets of the icalls.
Application #Icall #SVF Time(s) #Type #Avg. #Max

PinLock 1 0 0.06 1 1.00 1

Animation 18 12 0.34 6 1.33 2

FatFs-uSD 18 12 0.25 6 1.72 3

LCD-uSD 19 11 0.33 0 0.58 1

TCP-Echo 29 15 5.26 13 1.28 5

Camera 35 30 6.45 5 1.77 5

CoreMark 1 1 0.12 0 2.00 2

where 𝑑𝑖 is the domain that a task involves, 𝑛 is the number
of domains that a task involves.

To acquire the executed functions within a task, we need
to trace the execution of the tested applications. Note that
we need to trace the execution at the function granularity.
We use the GDB [16] to single-stepping the whole program.
Specifically, we use a script for GDB to automatically execute
the tested application step by step and record the execution
information, such as the line number of the source code
to the logs. After that, we parse the logs and extract the
executed functions.
As the results illustrated in Figure 11, our system effec-

tivelymitigates the execution-time over-privilege issue. How-
ever, there are some tasks in LCD-uSD and TCP-Echo par-
titioned by OPEC that have higher ET value than ACES. The
reason is that those tasks contain more unnecessary code,
which can be divided into two categories. The first category
is the untaken branch. This category is prevalent, including
error handling code and unmatched peripheral configuring
functions. The second category is the spurious icall target.
Due to the over-approximation of the point-to analysis, there
are false positives when resolving the icalls. Thus these func-
tions will not execute at runtime.
Performance Overhead As illustrated in Table 2, OPEC
incurs overall lower runtime overhead than ACES. Moreover,
the Flash overhead of OPEC is slightly smaller than the ACES.
Our system incurs more SRAM overhead than ACES because
OPEC uses a global variable shadowing technique. On the
contrary, ACES moves global variables and merges them into
a separate region, which does not increase global variables.
Privileged Application Code As presented in Table 2,
ACES runs some application code at the privileged level. The
reason is that this code needs privilege to access core periph-
erals (Section 2). However, the unprivileged application is
vulnerable and may be compromised by attackers to break
the security isolation. OPEC avoids it through the store/load
instruction emulation technique (Section 5.2).
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6.5 Efficiency of the Icall Analysis
This section evaluates the efficiency of our icall analysis
because it affects building a precise function call graphwhich
is essentially important in the operation partitioning stage
(Section 4). However, it is infeasible to get the ground truth
of the targets for each icall by running the tested applications
because even legitimate targets may not execute at runtime.
Therefore, we use the average and maximum targets for
each application to measure the efficiency of icall analysis.
Table 3 presents the results. In summary, the time cost for
performing the point-to analysis via SVF is less because all
the tested applications have a small code size. As previously
discussed, for those icalls that SVF cannot resolve, we use the
type-based analysis to analyze the potential targets. Among
the applications, the maximum number of targets of those
icalls is 5 (in TCP-Echo and Camera). For the average targets
of the icalls, the maximum average is 1.77 (in Camera). Note
that there are still some unresolved icalls. For LCD-uSD,
there are eight unresolved icalls in an IRQ handler function
running at the privileged level, which does not interfere
with the unprivileged operations. For TCP-Echo, there is
one unresolved icall in the function udp_input. Since TCP-
Echo processes only TCP packets, some source files related
to handling UDP packets are removed manually. Besides,
TCP-Echo will not execute this icall. The results show that
the false positives of the icalls’ targets have a limited impact.

7 Discussion and Future Work

Confused Deputy Attacks Attackers may compromise
and manipulate an ordinary operation to feed malicious in-
puts to a critical operation, such as the Unlock_Task opera-
tion of PinLock, to trigger the execution of security-sensitive
functions. Security isolation is vulnerable to this kind of
attacks [9] [18]. OPEC provides data sanitization to shared
variables between operations to mitigate such attacks.

Defects of Static Analysis OPEC uses static analysis to
build a sound function call graph and to determine the re-
source dependency of each function. For icalls and implicit
data usage through pointers, OPEC leverages the point-to
analysis to find out their potential legitimate targets. In par-
ticular, we use the SVF [38] to conduct the point-to analysis.
However, the SVF guarantees soundness but sacrifices preci-
sion, i.e., the results are over-approximated and contain false
positives. Although itmay introduce the execution-time over-
privilege issue, it avoids program execution errors caused
by missing dependency. If one of the operation entry func-
tions is wrong, the resource dependency of that operation
will be incomplete. When accessing those missed resources
confined by the MPU, a memory management fault will be
triggered (Section 2.2). The failure of static analysis leads
to either incomplete or redundant dependency. The former
case triggers a memory management fault. The latter case

worsens the isolation. The static analysis is not the contribu-
tion of our work, and the improvements of the static analysis
could be transparently integrated into OPEC.
Heap As discussed in Section 5.2, OPEC supports dynamic
memory allocation, i.e., heap. However, if the program uses
the heap implemented by the static libraries, e.g., glibc [6],
OPEC-Compiler cannot identify such access. If the program
uses such kind of heap, it needs to be modified by replacing
dynamically allocated memory objects with global variables.
In our experiment, four-sevenths of the tested applications
use the heap implemented by the static libraries to allocate
memory. We can replace heap objects with global variables
among the three-fourths of applications because each appli-
cation requests heap memory only once. The last application
TCP-Echo uses memory pools to allocate memory dynami-
cally. OPEC can exclude unneeded memory pools from one
operation’s resource dependency. Only correlative memory
pools are placed in a separate data section. In the future,
OPEC can adopt a secure heap allocator to protect the heap.
Concurrency Our system is aimed to provide security
isolation to bare-metal embedded systems, which execute
single monolithic programs with a single thread. To support
multi-threading systems, OPEC needs extra engineering ef-
forts. For the single-core systems, during the context switch,
OPEC needs to: (1) write back the shadow copies of the pre-
vious thread’s operation and synchronize the shadow copies
of the new thread’s operation; (2) reconfigure the MPU.
For multi-core systems, OPEC also needs to ensure the

consistency of global variables shared by operations of two
different threads since each thread has independent shadow
copies. There are two different solutions: (1) OPEC synchro-
nizes the shared global variables after/before the thread en-
ters/leaves the critical section; (2) the OS scheduler binds the
threads sharing global variables to the same CPU core.
Other Hardware Platforms Applying OPEC to other
hardware platforms faces three main challenges. First, the
target hardware platform is required to have a memory
protection unit, which has enough regions enforcing the
physical memory permissions similar to the ARM MPU, e.g.,
RISC-V PMP [33]. Second, the target architecture should be
supported by the LLVM. Third, developers need to modify
the exception handlers to adjust the load/store instruction
emulation and the operation switch procedures.

8 Related Work
Besides being related to the research on enforcing security
isolation on bare-metal embedded systems, OPEC is also as-
sociated with the work towards providing security defenses
and ensuring the correct execution of the embedded systems.
Security Isolation Clements et al. [12] proposes EPOXY,
which enforces privilege isolation on bare-metal embedded
systems by executing sensitive instructions at the privileged
level. However, EPOXY neglects resource isolation. Kim et
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al. [22] proposes MINION, which extends the previous work
and enforces thread-level memory isolation on real-time
microcontroller systems. Furthermore, Clements et al. [11]
proposes ACES that enforces privilege isolation and sub-
thread level memory isolation. Huo et al. [21] extends ACES
by adopting a machine learning-assisted compartmentaliza-
tion scheme. TrustLite [24] introduces execution-awareMPU
to isolate and prevent trusted components from unautho-
rized modifications. TyTAN [8] provides security isolation by
using the hardware extensions proposed by TrustLite. How-
ever, they require a customized hardware extension which is
difficult to deploy. There are other works that enforce secu-
rity isolation on commodity software [10, 17, 26, 27, 40, 41].
Alejandro et al. [30] enhances existing isolation schemes by
securing DMA operations of embedded applications. OPEC
proposes privilege isolation and improved resource isolation
to bare-metal embedded systems.

Security Protection Techniques Various systems intend
to deploy protection or mitigation techniques widely used on
desktop systems to deeply embedded systems. EPOXY [12]
uses DEP and a modified SafeStack to prevent control-flow
hijacking attacks. It also uses diversification to introduce
uncertainty to the produced firmware, which raises the cost
of attackers to analyze the firmware. Abbasi et al. [1] quan-
titatively investigate the mitigation techniques adopted in
deeply embedded systems. It further proposes uArmor that
implements DEP and stack canaries for those systems. Kwon
et al. [25] realizes an efficient eXecute-Only-Memory on
Cortex-M microcontrollers by leveraging the unprivileged
memory instructions of the ARMv7-M architecture. Zhou
et al. [46] also takes advantage of this feature to design a
shadow stack on low-end embedded systems. Almakhdhub et
al. [3] proposes uRAI to protect the return address integrity
of microcontroller-based embedded systems. Moreover, it
enforces software fault isolation (SFI) on the privileged ex-
ception handlers. ARMTrustZone-M provides a secure world
for isolating security-sensitive memory and peripherals for
ARMv8-M architecture microcontrollers. However, it is in-
sufficient to isolate multiple tasks only with this hardware
feature. Rust [34] ensures memory safety. However, it can-
not solve partition-time over-privilege and execution-time
over-privilege issues (Section 3.1). These advanced security
protection techniques are orthogonal to the security isola-
tion provided by OPEC. They can be integrated into our
system to protect the code and data inside one operation.

Correctness Assurance Some research that focuses on
diagnosing embedded systems. Kim et al. [23] proposes MAY-
DAY to facilitate the post-accident analysis of drones. Fang et
al. [14] uses the record and replay technique to troubleshoot
the errors of embedded systems. Niesler et al. [31] propose
HERA that exploits a hardware feature named Flash Patch
and Breakpoint unit to hotpatch the real-time embedded sys-
tems. Yi et al. [19] proposes RapidPatch that ports the eBPF

virtual machine to embedded systems, which allows hetero-
geneous devices to apply patches generated from the same
patch source file. Similar works [42–44] also introduce hot
patching to embedded systems. Xu et al. [45] and Huber et
al. [20] aim to recover the embedded systems even when they
are compromised. Another category of research enables re-
mote attestation to ensure the code integrity, control-flow in-
tegrity, and data integrity of the embedded systems [2, 32, 39].
OPEC enforces the operation isolation on bare-metal embed-
ded systems and constrains the compromised component.

9 Conclusion
In this paper, we propose lightweight and fine-grained se-
curity isolation for bare-metal embedded systems. We pro-
totype our system, OPEC, which enforces privilege isola-
tion and fine-grained resource isolation. At compile time,
OPEC-Compiler partitions the program into operations and
generates the policy file, which describes the resource depen-
dency of each operation. At runtime, OPEC-Monitor enforces
the hardware-assisted security isolation by applying the pol-
icy through the MPU.
OPEC solves the partition-time over-privilege via global

variable shadowing. OPEC-Compiler creates shadow copies
for shared global variables in the corresponding operation
data section at compile time, and OPEC-Monitor synchronizes
the value during operation switch. To confine the access
to peripherals scalably, OPEC virtualizes the MPU regions
reserved for general peripherals and emulates store/load
instructions accessing core peripherals. The instruction emu-
lation avoids executing unprivileged application code at the
privileged level. OPEC mitigates the execution-time over-
privilege through operation-based program partitioning.
To evaluate our prototype, we test OPEC with six IoT

applications and the CoreMark benchmark on two different
boards. We propose two different metrics for evaluating the
partition-time over-privilege issue and execution-time over-
privilege issue, respectively. The results demonstrate the
security benefits of our system. Moreover, OPEC induces
low runtime overhead and moderate memory overhead.
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A Artifact Appendix
A.1 Abstract
Our artifact includes the source code of OPEC, a docker
image containing the compiled OPEC, and the experimental
scripts to reproduce the tables (Table 1, 2, and 3) and the
figures (Figure 9, 10, and 11) in Section 6.

A.2 Description & Requirements
A.2.1 How to access.

• The repository that contains the source code of OPEC
and its experimental scripts is publicly available at
GitHub: https://github.com/XiaZhouZero/OPEC.

• Archived (DOI): https://zenodo.org/badge/latestdoi/
452701528.

• The docker image that contains the compiled OPEC
is publicly available at DockerHub: https://hub.docker.
com/r/zhouxzju/opec.

A.2.2 Hardware dependencies.
• One desktop with 6 CPU cores, 16GB memory, and
60GB free hardware disk.

• One STM32F407 board and one STM32479I-Eval board.

A.2.3 Software dependencies.
• Ubuntu 18.04 and its packages: zlib1g-dev, git, build-
essential, gcc-arm-none-eabi, make, texinfo, bison, flex,
cmake, ninja-build, libusb-dev, python3-pip, texlive-
full, clang, libusb-dev, openocd

• Python 3.6.9 and its packages: networkx==2.5, pydot,
matplotlib, serial, pydotplus, prettytable

A.2.4 Benchmarks.
Weevaluate theOPEC prototypewith the CoreMark bench-

mark: https://www.eembc.org/coremark/.

A.3 Set-up
Please follow the instructions, which are available at https://
github.com/XiaZhouZero/OPEC/blob/main/README.md, to
set up the experimental environment and build OPEC.

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1): OPEC enforces privilege isolation for bare-metal
embedded systems. This is proven by the security eval-
uation in Section 6.2 whose results are presented in
Table 1.

• (C2): OPEC enforces resource isolation by confining
the access to peripherals and global variables. The
confinement to accessing peripherals are described
in Section 5.2. The average reduced accessible global
variables of each tested application is evaluated in
Section 6.2 whose results are presented in Table 1.

• (C3): OPEC is a lightweight security isolation scheme
for bare-metal embedded systems. This is proven by

the performance evaluation in Section 6.3 (whose re-
sults are illustrated in Figure 9) and the comparison to
ACES in Section 6.4 (whose results are illustrated in
Table 2).

• (C4): OPEC solves the partition-time over-privilege
issue (whose results are depicted in Figure 10) and
reduces the execution-time over-privilege issue (whose
results are depicted in Figure 11).

• (C5): OPEC performs point-to analysis to resolve the
indirect function calls (icall for short) in the programs.
The evaluation of the icall analysis efficiency is in
Section 6.5 whose results are in Table 3.

A.4.2 Experiments.

Experiment (Security Evaluation): [20 human-minutes +
20 computer-minutes]: This experiment measures some met-
rics of each tested application: the number of operations,
the average number of functions of operations, the size of
privileged code, and the average size of accessible global
variables of operations.

[How to]
[Preparation] Build all the tested applications.

[Execution] Enter into the experiments/table1 directory and
run make command on the shell.

[Results] Table 1 will be printed on the console.

Experiment (Performance Evaluation): [1 human-hour +
1 computer-hour]: This experiment measures the runtime
overhead, flash overhead, and SRAM overhead incurred by
OPEC.

[How to]
[Preparation] Build all the tested applications. Run each
tested application on the STM32F407 board or the STM32479I-
Eval board to collect the runtime results. Note that only the
runtime overhead results are pre-stored in the directory.
Please contact the authors if one has any trouble in setting
up the testing environment and evaluating the runtime over-
head by himself.

[Execution] Enter into the experiments/figure9 directory
and run make command on the shell.

[Results] Figure 9 will be generated in the experiments/-
figure9 directory.
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Experiment (Partition-time Over-privilege Evaluation):
[20 human-minutes + 20 computer-minutes]: This exper-
iment measures the partition-time over-privilege issue of
OPEC and ACES.

[How to]
[Preparation] Build all the tested applications.

[Execution] Enter into the experiments/figure10 directory
and run make command on the shell.

[Results] Figure 10 will be generated in the experiments/fig-
ure10 directory.

Experiment (Execution-time Over-privilege Evaluation):
[20 human-minutes + 20 computer-minutes]: This experi-
ment measures the execution-time over-privilege issue of
OPEC and ACES.

[How to]
[Preparation] Build all the tested applications.

[Execution] Enter into the experiments/figure11 directory
and run make command on the shell.

[Results] Figure 11 will be generated in the experiments/fig-
ure11 directory.

Experiment (Comparison to ACES): [20 human-minutes +
20 machine-minutes]: This experiment compares the perfor-
mance overhead between OPEC and ACES.

[How to]
[Preparation] Build the five tested applications evaluated
by ACES. Note that the runtime overhead results of ACES
are acquired from ACES’s paper https://www.usenix.org/
conference/usenixsecurity18/presentation/clements.

[Execution] Enter into the experiments/table2 directory and
run make command on the shell.

[Results] Table 2 will be printed on the console.

Experiment (Icall Evaluation): [20 human-minutes + 20
machine-minutes]: This experiment evaluates the efficiency
of the icall analysis.

[How to]
[Preparation] Build all the tested applications.

[Execution] Enter into the experiments/table3 directory and

run make command on the shell.

[Results] Table 3 will be printed on the console.

A.5 Notes on Reusability
Function do_region_switch performs the virtualization of
MPU regions reserved for peripherals. Its code is in the
operation-rt.c file at the compiler/operation-rt directory.
Function do_peripheral_rw emulates the execution of

load/store thumb2 instructions that access core peripherals
on the private peripheral bus. Its code is in the operation-rt.c
file at the compiler/operation-rt directory.
The source files of the LLVM pass used for analyzing

resource dependency are at the compiler/analysis/def-use
directory.

The source files of the LLVM pass used for instrumenting
the program are at the compiler/llvm directory.
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