
Detecting Passive Content Leaks and Pollution in Android Applications

Yajin Zhou Xuxian Jiang

Department of Computer Science

North Carolina State University

yajin zhou@ncsu.edu jiang@cs.ncsu.edu

Abstract

In this paper, we systematically study two vulnerabili-

ties and their presence in existing Android applications (or

“apps”). These two vulnerabilities are rooted in an unpro-

tected Android component, i.e., content provider, inside vul-

nerable apps. Because of the lack of necessary access con-

trol enforcement, affected apps can be exploited to either

passively disclose various types of private in-app data or

inadvertently manipulate certain security-sensitive in-app

settings or configurations that may subsequently cause se-

rious system-wide side effects (e.g., blocking all incoming

phone calls or SMS messages). To assess the prevalence of

these two vulnerabilities, we analyze 62, 519 apps collected

in February 2012 from various Android markets. Our re-

sults show that among these apps, 1, 279 (2.0%) and 871
(1.4%) of them are susceptible to these two vulnerabilities,

respectively. In addition, we find that 435 (0.7%) and 398
(0.6%) of them are accessible from official Google Play

and some of them are extremely popular with more than

10, 000, 000 installs. The presence of a large number of

vulnerable apps in popular Android markets as well as the

variety of private data for leaks and manipulation reflect

the severity of these two vulnerabilities. To address them,

we also explore and examine possible mitigation solutions.

1 Introduction

Smartphones are becoming increasingly popular. Ac-

cording to a recent report from Gartner [3], the worldwide

smartphone sales are increased by 47% in the fourth quar-

ter of 2011. From the same report, Google’s Android has

already taken over other competing mobile platforms to be-

come the market leader (by having more than 50% of smart-

phones shipped). Moreover, mobile platform vendors and

other relevant parties in the ecosystem (e.g., carriers) create

centralized marketplaces or app stores to streamline the dis-

tribution of mobile applications (or simply apps). Because

of these factors, the total number of apps available for users

to download is huge. For instance, as of September 2012,

there are around 675, 000 and 700, 000 apps available on

Google Play [4] and the Apple App Store [2], respectively.

In this paper, we present a systematic study of two vul-

nerabilities existing in a large number of Android apps.

Both of these vulnerabilities stem from a built-in Android

component, i.e., content provider, which is by default ac-

cessible by all running apps on the phone, including un-

trusted ones.1 Due to the open access, this particular com-

ponent could be potentially exploited to not only passively

disclose various types of private in-app data, but also in-

advertently manipulate certain security-sensitive in-app set-

tings or configurations that may subsequently cause serious

system-wide side effects (e.g., blocking all incoming phone

calls or SMS messages).

To elaborate, we consider the first vulnerability a

passive content leak as it can cause affected apps to pas-

sively disclose (private) in-app data. This kind of vulner-

ability is different from previous findings about legitimate

apps (e.g., Pandora [9]) as well as in-app advertisement

libraries [26] that may actively leak private information.

Also, we find the passive content leak vulnerability affects

a large number of mobile apps in current Android markets,

including the official Google Play. In fact, among 62, 519
Android apps we collected from various Android markets in

February 2012, 2.0% of them suffer from this vulnerability.

These vulnerable apps include popular mobile browsers,

widely-used instant messengers (IMs) and social network

apps, and even some popular mobile security apps.

Different from the first one, the second vulnerability, i.e.,

content pollution, can be potentially leveraged to further

manipulate certain in-app data managed by these vulnera-

ble apps. The manipulated data can be a part of security-

sensitive settings (e.g., firewall rules or job lists) that are be-

ing enforced or executed by affected apps. As a result, they

1With the latest release of Android 4.2 in October 2012, Android apps

that target API level 17 will have the default “exported” set to “false” for

content providers, hence reducing the attack surface for apps [1]. But prob-

lems remain for earlier Android versions and still affect apps that target

API level below 17.

1

may be “influenced” to cause undesirable side effects to the

system. Example side effects include allowing or denying

certain phone calls and SMS messages from specific phone

numbers chosen by attackers. Our study shows that this vul-

nerability is also widely present in real-world apps. Among

the same set of 62, 519 apps, 1.4% of them are affected by

this vulnerability.

To systematically assess the prevalence of these vulner-

able apps, we have designed and implemented a tool called

ContentScope. Our tool first examines a given app and

checks whether it exposes the public content provider in-

terfaces (represented as start functions). If yes, we then

locate those Android functions or routines that actually op-

erate on internal databases with private data (denoted as

terminal functions). After that, our tool performs path-

sensitive data-flow analysis along execution paths from

start functions to terminal functions, so that we can auto-

matically derive necessary constraints and prepare “appro-

priate” inputs to evaluate the presence of content leakage or

pollution vulnerabilities. The inputs will then be dynami-

cally fed into the app on a real phone for confirmation.

We have applied the ContentScope tool to 62, 519 apps

collected in February 2012 from various Android markets,

including the official Google Play. Using the tool, we

detected 1, 456 vulnerable apps (or 2.3% of our dataset).

Specifically, 1, 279 apps (or 2.0%) suffer from passive

content leaks, 871 apps (or 1.4%) are susceptible to

content pollution, and 694 apps (or 1.1%) contain both

vulnerabilities. Among these vulnerable apps, 435 (0.7%)

and 398 (0.6%) of them were downloaded from the official

Google Play.

After identifying these vulnerable apps, we further per-

form a break-down to better understand them. Specifically,

by analyzing apps with passive content leaks, we aim to

understand the types of personal information that may be

passively leaked. Our results show that the relevant per-

sonal information for leaks includes, but not limited to, (1)

incoming and/or outgoing SMS messages (268 apps); (2)

contacts stored in the phone (128 apps); (3) conversations

in popular IMs such as MSN (121 apps); (4) user creden-

tials such as user name, password and authentication tokens

of popular social network websites such as Facebook and

Twitter (80 apps); (5) browser history and bookmarks (70

apps); and (6) incoming and/or outgoing phone call logs

(61 apps). These vulnerable apps include popular mobile

browsers, widely-used instant messengers (IMs) and social

network apps, and even mobile security apps.

Similarly, when analyzing apps with the content

pollution vulnerability, we aim to understand possible side

effects from them. Our results show that by polluting in-

ternal databases, we could effectively manipulate certain

blacklists or whitelists (for outgoing/incoming phone calls

as well as SMS messages) that are maintained by vulnera-

ble apps. In other words, security-sensitive settings (such

as firewall rules) can be arbitrarily changed by any app on

the phone without any permission. Our results further show

that some vulnerable apps can be even exploited to down-

load additional unwanted apps (and other arbitrary types of

files) from remote servers in the background without user’s

awareness. (The downloaded app can be later automatically

triggered for installation, albeit with user approval.)

Among the detected vulnerable apps, some of them are

extremely popular, having been downloaded from Google

Play for more than 10, 000, 000 times. After identifying

them, since February 2012, we have been actively report-

ing our findings to the corresponding developers. Some de-

velopers have taken our reports seriously and immediately

followed our suggestions to fix their apps. However, we

also experienced some difficulties in communicating with

other developers, either by being unable to find their valid

contact information or by not receiving any response to our

reports.

We note that several recent works [15, 17, 19, 20, 27]

also attempted to examine potential risks and implications

from unprotected interfaces of Android apps. However, our

work differs from them by not focusing on invoking esca-

lated privileged operations (e.g., from an app without any

permission). Instead, we exclusively focus on the open

content provider interface of Android apps and study po-

tential risks that may lead to passive privacy leakage and

unintended manipulation of security-sensitive data. To the

best of our knowledge, our paper is the first to systemat-

ically study these two issues and quantitatively report the

prevalence of affected apps.

The rest of this paper is organized as follows: In Section

2, we elaborate the threat model and assumptions of this

work. We then present the overall system design in Section

3, followed by its implementation details in Section 4. After

that, we report the evaluation results in Section 5. We also

discuss possible solutions and improvements in Section 6.

Finally, we describe related work in Section 7 and conclude

the paper in Section 8.

2 Threat Model and Assumptions

In this paper, we assume the following adversary model.

In order to launch the above-mentioned passive content

leaks and/or pollution attacks, a malicious app needs to be

installed on the same smartphone as the vulnerable app. Af-

ter installation on the phone, we do not assume the mali-

cious app will request any dangerous permission2 to launch

2A dangerous permission means the permission is defined at the dan-

gerous protection level [27] and will need to be explicitly approved by

users before being granted to third-party apps. In the following, for sim-

plicity, we will use permission to present dangerous permission if not oth-

erwise specified.

2

Determine

Vulnerable Apps Vulnerable Apps

Classify

ContentScope

Step 1 Step 2 Step 3

Candidate Apps

Select
Statistics

Vulnerability
Android

Markets

App

Repository

Figure 1. The ContentScope design

the attack. Even so, the malicious app can manage to ob-

tain private or confidential data (such as contacts, SMS mes-

sages or browser histories) that may be maintained by vul-

nerable apps. Further, the malicious app can potentially

manipulate certain in-app data that could be a part of secu-

rity settings or configurations to introduce unintended side-

effects in the running system. We note that to transport the

stolen private data to a remote server under the attacker’s

control, the malicious app does need the corresponding IN-

TERNET permission.

3 Design

To analyze these two vulnerabilities and assess their

prevalence in existing apps, we design the ContentScope

system to scalably and accurately examine a large number

of apps from existing Android markets. In particular, we

consider a passive content leak occurs when an app does not

properly protect its internal (private) database and allows it

to be freely accessible to any running apps. Similarly, con-

tent pollution happens if any app without necessary autho-

rization or permission can manipulate another app’s internal

database or settings, which can be security-sensitive.

In Figure 1, we show the overall architecture of the

ContentScope system, which involves several steps to de-

termine vulnerable apps. The first step is to select candidate

apps that may potentially be susceptible to these two vulner-

abilities. For that purpose, we extract essential vulnerabil-

ity characteristics to significantly reduce the number of apps

that need to be subsequently examined. In other words, the

selected candidate apps are expected to be a small portion

of all existing apps. After that, the second step is to analyze

candidate apps and determine whether they are indeed vul-

nerable. Finally, to further assess the threat level of these

vulnerable apps, we accordingly examine them and present

a break-down on the types of leaked or polluted content as

well as the associated side effects. In the following, we il-

lustrate each step in detail.

3.1 Candidate App Selection

To select candidate apps, our strategy is to extract es-

sential characteristics of these two vulnerabilities. Specifi-

cally, these two vulnerabilities share a similar nature of hav-

ing an exploitable content provider interface. Note that the

content provider interface in Android is designed to con-

cisely encapsulate a structured set of local data (typically

in the form of SQLite databases) while providing neces-

sary mechanisms to regulate the accesses to encapsulated

data. By default, this interface is open so that any app can

leverage it to communicate with each other. In the mean-

time, an app can protect its interface by (1) either setting

a property named exported to false in its manifest file (or

more precisely AndroidManifest.xml) to ensure that the in-

terface is only available to itself or others with the same user

ID or (2) defining custom permissions to expose them only

to apps that are granted these custom permissions. More-

over, each (custom) permission has a protection level, which

determines how dangerous the permission is and the way

this permission can be granted to other apps. A certain

protection level (i.e., signatureOrSystem) is reserved for

pre-loaded apps in the phone firmware while others (i.e.,

normal, dangerous, and signature) can be requested by

third-party apps. If there is no protection level specified

for a custom permission, the default protection level normal

will be used.

In this paper, we focus on existing third-party apps avail-

able in various Android markets. Therefore, we mainly

target custom permissions with normal, dangerous, and

signature protection levels. It is also important to note

that for a permission at normal protection level, any app

can request it and the Android runtime will automatically

grant access, without asking for user’s explicit approval.

This differs from permissions at the dangerous level, which

demand explicit approval from users, or at the signature

level, which require apps to be signed with the same devel-

oper key.

In Figure 2 we show a manifest file which de-

fines a content provider named ExampleProvider. Be-

cause it does not specify the exported property explic-

itly, this content provider is open to all apps on the

phone by default. The app defines a custom permis-

sion com.example.app.permission to protect this content

provider. However the protectionLevel property of this

custom permission is normal, which means this permission

will be automatically granted to any app that requests it.

3

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/
3 apk/res/android" package="com.example.app">
4 ...
5 <application ...>
6 <provider
7 android:name=".ExampleProvider"
8 android:authorities="com.example.app.provider"
9 android:permission="com.example.app.permission">
10 </provider>
11 </application>
12 <permission
13 android:protectionLevel="normal"
14 android:name="com.example.app.permission">
15 </permission>
16
17 </manifest>

Figure 2. An example AndroidManifest.xml
file that defines a content provider

Accordingly, to locate those candidate apps, our sys-

tem first parses their manifest files to determine whether

there is any content provider component defined. If yes,

we extract the corresponding attributes. The first one is

the exported property as it specifies whether or not the

content provider is accessible by other apps. (If it is not

defined, the default true value is assumed, which means

any app can access it.) The second one is to detect the

presence of any custom permission(s) to regulate the read

or write accesses to the content provider. More specifi-

cally, there are three closely-related ones: readPermission,

writePermission, and permission. The readPermission

and writePermission explicitly specify the respective per-

mission used to query and make changes to the data

managed by content provider. If they are missing, the

permission attribute will be used.

In other words, our system chooses those apps as candi-

dates if they explicitly export a content provider by setting

true in its exported attribute or implicitly export this in-

terface without specifying this attribute. In addition, our

system also selects those apps, which may have custom

permissions, but the corresponding protection level(s) are

not defined or defined at the normal level. After that, for

bookkeeping purposes, we further extract other attributes of

the content provider component from these candidate apps,

including the name property, which specifies the specific

class implementing the content provider interface, as well as

authorities, which is used by the Android runtime to lo-

cate the content provider itself. All these relevant attributes

will be collected along with the app information and saved

into a local database for subsequent analysis.

3.2 Vulnerable App Determination

After selecting candidate apps, our next step is to ana-

lyze them to locate vulnerable ones. In order to effectively

manage a structured set of data in a local SQLite database,

the Android framework provides well-defined APIs to ease

the creation and maintenance of content providers. Specif-

ically, these APIs are provided in a number of system-

wide classes, including SQLiteDatabase (which contains

the methods to create, delete and execute SQL commands)

and SQLiteQueryBuilder (which helps build SQL queries).

In other words, content providers can leverage these meth-

ods to implement their own standardized APIs that can

be invoked to query and make changes to records in lo-

cal databases. To simplify our discussion, we call these

Android APIs that actually manipulate local databases

terminal functions.

From another perspective, the content provider compo-

nent essentially encapsulates local content and exports them

through standardized APIs. For instance, one standard-

ized API is query() that accepts one parameter URI to pin-

point which table to query and other parameters to spec-

ify query conditions (e.g., the conditions used in the where

clause). Another API is insert() which handles requests

to insert new content into local databases. Consequently,

these Android APIs become the actual entry points of con-

tent providers to other apps. We call them start functions.

Figure 3 shows the implementation of a content provider

named ExampleProvider. It implements the query() (line

17), insert() (line 29) and openFile() (line 37) inter-

faces which can be invoked by other apps to operate on

the internal SQLite database and internal files. Hence these

three functions are start functions. In order to manipu-

late the data maintained by the internal SQLite database, it

leverages the methods provided by SQLiteDatabase class

to perform SQL query (line 25) or insert data (line 33) into

database. Hence these two methods are terminal functions.

Similarly, the function used to open internal files (line 41)

is classed as a terminal function.

A passive content leak vulnerability exhibits if certain

inputs can trigger an execution path from a start function

to a terminal function. Accordingly, we generate a func-

tion call graph of a given app to help determine reachabil-

ity from the public content provider interfaces (i.e., start

functions) to the low-level database-operating routines (i.e.,

terminal functions). More specifically, we first generate

the whole program function call graph for the app and find

all the functions containing terminal functions. Then for

each start function, we identify all potential paths from

it to corresponding terminal functions. Although the con-

struction of whole program function call graph is a well-

studied topic, there are certain aspects unique to Android.

One example is the resolution of object references, which is

the Android counterpart to traditional points-to analysis in

binary analysis, as the exact type of a class object needs to

be determined before we can actually obtain the list of func-

tions it may invoke. The second one is the call graph dis-

continuity introduced by the event-driven nature of Android

apps (e.g., with extensive use of callbacks or event registra-

tions). As an app may register various callback functions

4

1 public class ExampleProvider extends ContentProvider {
2
3 private static class DatabaseHelper extends SQLiteOpenHelper {
4 public void onCreate(SQLiteDatabase db) {
5 db.execSQL("CREATE TABLE example_table ...");
6 db.execSQL("CREATE TABLE private_table ...");
7 }
8 }
9
10 private static final UriMatcher sUriMatcher;
11 static {
12 sUriMatcher.addURI("com.example.app.provider", "example_table", 1);
13 }
14
15 private DatabaseHelper dbHelper;
16
17 public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String sortOrder) {
18 if (sUriMatcher.match(uri) != 1)
19 throw new IllegalArgumentException("Unknown URI " + uri);
20 return internalQuery(uri, projection, selection, selectionArgs, sortOrder);
21 }
22
23 private Cursor internalQuery(Uri uri, String[] projection, String selection, String[] selectionArgs, String sortOrder) {
24 SQLiteDatabase db = dbHelper.getReadableDatabase();
25 Cursor c = db.query("example_table", projection, selection, selectionArgs, null, null, sortOrder);
26 return c;
27 }
28
29 public Uri insert(Uri uri, ContentValues initialValues) {
30 if (sUriMatcher.match(uri) != 1)
31 throw new IllegalArgumentException("Unknown URI " + uri);
32 SQLiteDatabase db = dbHelper.getWritableDatabase();
33 long rowId = db.insert("example_table", null, initialValues);
34 ...
35 }
36
37 public ParcelFileDescriptor openFile(Uri uri, String mode) {
38 try {
39 String newPath = uri.getPath();
40 File newFile = new File(newPath);
41 return ParcelFileDescriptor.open(newFile,ParcelFileDescriptor.MODE_READ_ONLY);
42 }
43 ...
44 }
45 }

Figure 3. The source code of a content provider implementation

that can be executed at certain events by the Android run-

time, these registered callbacks may not show up in the gen-

erated function call graph. To solve these problems, we take

a conservative approach by annotating these callback reg-

istration routines and reconnecting callback routines back

to the generated call graph. For example we annotate the

methods in class Thread and Handler and reconnect the

function Thread.run() to Thread.start() and the function

Handler.sendMessage() to Handler.handleMessage(). In

Figure 3, we show the possible execution paths from start

functions to terminal functions as dotted lines.

After identifying possible paths from start functions to

various terminal functions, we then need to generate cor-

responding inputs as evidence to show the feasibility of one

particular execution path. To this end, we first generate a

control flow graph (CFG) for each function along the path,

then leverage data-flow analysis to obtain necessary con-

straints that may guide the execution path for a specific in-

put. The collected constraints will be fed into a constraint

solver to generate the appropriate inputs that satisfy these

constraints. Our approach to generate corresponding in-

puts is summarized in Algorithm 1. Unfortunately, there

also exists certain Android-specific aspects that make this

process challenging. First of all, content providers heav-

ily use Android-specific APIs to process inputs. For ex-

ample, an uri input of both query() and insert() func-

tions is processed by UriMatcher to return an integer value,

which indicates a mapping between the uri and the re-

turn value. Without the knowledge of this mapping, a con-

straint solver will not be able to resolve this constraint. For

example, the mapping between uri and the return value

is “content://com.example.app.provider/example table” to

1 for the content provided shown in Figure 3. Secondly,

certain string-related operations in content provider can

also introduce problems to derive the associated constraints.

Specifically, without understanding the semantics of these

string operations, it is hard to generate the constraints for

the values involved in these operations. To address that,

we choose to model or summarize the operations in Java

String class and directly take them into account for con-

straint extraction. Thirdly, in certain cases, we may not

be able to model the internals of specific functions. To

accommodate them, we conservatively explore all paths if

the return values of these functions are used as constraint

variables. For the code shown in Figure 3, the generated

input for parameter uri which can trigger the execution

from start function ContentProvider.query() (line 17)

to terminal function SQLiteDatabase.query() (line 25) is

5

Algorithm 1: Generating inputs for start functions

Input: set of start functions, set of terminal

functions, function call graph

Output: generated inputs for start functions

paths = []

starts = [start function]

terminals = [terminal function]

callGraph = [path in function call graph]

foreach s ∈ starts do

foreach t ∈ terminals do

if (s, t) ∈ callGraph then
paths.add(s, t);

constraints = []

foreach path ∈ paths do
constraints.add(genConstraint(s, t));

inputs = []

foreach constraint ∈ constraints do
inputs.add(genInput(constraint));

return inputs

“content://com.example.app.provider/example table”.

Our static analysis approach is conservative and will

likely introduce false positives when generating inputs to

an execution path. To address that, we further have a dy-

namic execution module to confirm the calculated inputs.

The dynamic execution module is based on a test app that

runs in a real Android phone and takes these generated in-

puts to invoke the exposed content provider interfaces. The

test app then records and analyzes the return values to deter-

mine the existence of the vulnerabilities. For example if the

invocation to ContentProvider.query() returns a concrete

Cursor object, then we can confirm that the content provider

interface (or the app) is vulnerable to passive content leaks.

Similarly, if the invocation of ContentProvider.insert()

returns a concrete URI object, then the app is susceptible to

content pollution.

3.3 Leaked/Polluted Content Break­down

After identifying the set of vulnerable apps, we want to

assess the level of threats by classifying the types of leaked

content as well as possible side effects caused by the pol-

luted content. For this purpose, we leverage again the earlier

function call graph and CFG. More specifically, in order to

identify the types of content leaked by an exposed content

provider interface, we need to know the types of content

that have been saved in the content provider before. Cor-

respondingly, if there is a possible execution path between

an Android API that returns certain type of private informa-

tion (such as contacts) and another API that is used to insert

private information into the content provider, then we can

know the type of content stored in the content provider. As

a result if this app is vulnerable to a passive content leak,

we can infer the specific type of private information may be

leaked. Similarly, we apply this approach to infer possible

sides effects caused by the polluted content.

In Particular, for a given vulnerable app, if there is an

execution path from a contact-retrieving API to an API that

inserts data into the content provider, we can infer that

the type of data stored in content provider could be con-

tacts. Consequently, the type of private content that may

be leaked is also contacts. Similarly, if there is an execu-

tion path from the query() function (of a content provider)

to an Android API that blocks incoming SMS messages

(abortBroadcast()), we may consider this app could block

certain SMS messages according to the content or filtering

rules injected by attackers.

We stress that the above method will introduce false pos-

itives (as the presence of an execution path in the call graph

does not guarantee it is actually executed at runtime). As a

result, there is still a need to manually verify the findings.

Fortunately, the reported execution paths significantly speed

up the analysis. Moreover, our prototyping experience also

shows that the context information of apps is helpful to un-

derstand the semantics or types of information that may be

organized in local databases. For example, an instant mes-

senger (IM) app might use the content provider interface

to maintain its accounts, buddy list, and conversation logs.

In this case, we do not have well-defined Android APIs to

infer the relationship between the app and the type of pri-

vate information saved on the vulnerable content provider.

Fortunately we can leverage context information to classify

different types of private information.

4 Implementation

We have implemented a ContentScope prototype as a

mix of Python scripts and Java code. The first two steps in

our system, i.e., candidate app selection and vulnerable app

determination, were developed using Python with 3, 813
source lines of code (SLOC). The last step, i.e., vulner-

able apps classification, was developed using Java, which

extends the open source baksmali disassembler tool (1.2.6)

and introduces additional 2, 800 SLOCs.

To detect the passive content leak vulnerability, our

prototype focuses on two different types of start functions

in content provider that could leak private data: one is

standard ContentProvider.query() that supports struc-

tured data maintained in internal SQLite databases and the

other is ContentProvider.openFile() that returns a file

descriptor to access a file in the app’s private data directory.

These two entry points, if not protected, can be exploited

6

by malicious apps to retrieve either arbitrary data stored di-

rectly in local SQLite database or any file accessible to the

vulnerable app, including those in its private data directory

(such as the local SQLite database file itself). For each of

them, we then choose the corresponding terminal func-

tions that either query the data from internal database or

open a file on the phone. The terminal functions supported

in our current prototype for ContentProvider.query() and

ContentProvider.openFile() are SQLiteQueryBuilder.

query(), SQLiteDatabase.query(), SQLiteDatabase.

rawQuery() (which are used to submit the SQL query

into internal database) and ParcelFileDescriptor.open()

(which is used to read a file object directly and return the

corresponding file descriptor).

After determining the start and terminal functions,

our prototype builds the function call graph (with intra-

method control flow graph), extracts the execution paths

from start to terminal functions, derives necessary con-

straints along those paths and eventually generates corre-

sponding inputs that satisfy these constraints. As an exam-

ple, the method signature of one start function for pas-

sive content leak detection is ContentProvider.query (Uri

uri, String[] projection, String selection, String[]

selectionArgs, String sortOrder). The parameter uri is

used to determine which type of information needs to be re-

turned or which table in the database needs to be queried.

Hence, by enumerating different uri values that satisfy the

constraints, we can explore different code paths between

the ContentProvider.query() (start function) and other

terminal functions to retrieve private data maintained in

different tables.

Our experience shows that exhaustively exploring all

code paths between the ContentProvider.query() func-

tions and terminal functions may be limited to only query

the tables specified in the content provider, not others. In

other words, if there exist other tables that are not speci-

fied in this content provider, their data may not be queried.

To address that, we extend our system to launch SQL

injection attacks [8] in an attempt to obtain accesses to

those tables. Specifically, SQLiteDatabase.query() lever-

ages SQLiteQueryBuilder.buildQueryString() to con-

struct the final SQL strings by concatenating several param-

eters together. For example, for the query function in line

25 of Figure 3, the final query string constructed is “select

projection from example table where selection = selec-

tionArgs order by sortOrder;”. As a result the attackers

can pass the special projection parameter with “∗ from

private table;” to query() function so that the final query

string will become “select ∗ from private table; from ex-

ample table where selection = selectionArgs order by sor-

tOrder;”. In Android platform, all the SQL statements af-

ter the first special character “;” will not be executed, so

the effective SQL statement executed is “select ∗ from pri-

vate table;”, which essentially returns all the data in table

named private table. Note that the SQL injection attack

will not work when the content provider explicitly checks

the column names in parameters [8] before issuing SQL

queries. However, the use of SQL injection extends the

reach to other (private) data that may be otherwise missed.

In fact, we have identified such apps where private data can

only be leaked through SQL injection (Section 5).

Similarly, to detect content pollution vulnerabil-

ity, we use start functions (e.g., ContentProvider.

insert(), ContentProvider.update()) with correspond-

ing terminal functions (e.g., SQLiteDatabase.insert(),

SQLiteDatabase.insertOrThrow(), SQLiteDatabase.

insertWithOnConflict(), SQLiteDatabase.update(), and

SQLiteDatabase.updateWithOnConflict()). Different

from the passive content leak case, one additional challenge

here is that we need to generate appropriate data that will

be injected into the content provider, which requires prior

knowledge of the table scheme. In our prototype, we obtain

it by inferring the SQL statements used to create table in

method SQLiteOpenHelper.onCreate(). In many cases,

the SQL statements are constant strings or concatenated

with constant strings. For example, the SQL statements

used to create tables for the content provider in Figure 3

are shown in line 5 and 6. If not, we will then run the apps

in an Android emulator with a customized framework with

hooks in class SQLiteOpenHelper to record the detailed

SQL strings used to create the table. Another related

challenge is how to choose the right value for each column

in the table. The insertion will fail if the chosen value

happens to be in conflict with existing ones for the primary

key column. In our prototype, we make ten different

attempts with each attempt having different random values

to minimize the chance of a conflict.

To confirm the detected vulnerabilities, we developed a

test app that runs on a real phone. For automation, this app

accepts inputs in a configuration file and uses them to in-

voke each individual content provider interface in the vul-

nerable app. If the related ContentProvider.query() in-

vocation returns a valid Cursor object for database access

or the ContentProvider.openFile() invocation returns a

valid ParcelFileDescriptor, we will consider this app is

indeed vulnerable to passive content leaks. Similarly, if

the invocation of ContentProvider.insert() returns a new

URI object, we will mark the app as vulnerable to content

pollution. To help the automation of this process, we also

develop a shell script to install each potentially vulnerable

app, execute our test app (with app-specific configuration

file), and retrieve the test results.

Finally, to classify the confirmed vulnerable apps, our

current prototype automatically generates the suspect exe-

cution paths and aims to classify the type of information

saved in local database. Meanwhile, there is a need to

7

Total

Apps

Candidate

Vul. Apps
Vulnerable Apps

62, 519 3, 018
Passive Content Leak Content Pollution

1, 279 871

Table 1. Overall detection results in our

dataset

fall back to manual efforts for confirmation. Fortunately,

these generated execution paths greatly facilitate this pro-

cess. Our experience shows that it took a single co-author

less than three days to classify all 1, 456 vulnerable apps.

We stress that our manual efforts are only needed to clas-

sify the types of private information that might be leaked or

polluted. The selection and confirmation of vulnerable apps

are still mostly an automated process. Moreover, the inter-

mediate results (such as function call graph and CFG) can

be leveraged to greatly reduce the classification overhead.

5 Evaluation

To assess the level of threats from these two vulnerabili-

ties, we have collected 62, 519 (free) apps from various An-

droid markets in February 2012. Among these apps, 35, 047
were downloaded from the official Google Play and the rest

were fetched from ten other popular third-party ones. From

these apps, as described in Section 3, our system first iden-

tifies apps with exported content provider interfaces as can-

didates. In our dataset, our system reports 3, 018 (or 4.8%)

candidate apps (Table 1). The reduction from the initial

62, 519 apps to these 3, 018 candidate apps is helpful to

exclude unrelated ones for processing. Also we find that

among 62, 519 apps, 4994 of them have content providers

and only 1976 (39.6%) of them explicitly protect them ei-

ther by not exporting them or by declaring dangerous per-

missions. This fact indicates that if one interface is open by

default, many developers will do so even without realizing

this. After that, for each candidate app, our system analyzes

it to confirm whether it is indeed vulnerable. In total, our

system detects 1, 279 and 871 apps that suffer from passive

content leak and content pollution vulnerabilities, re-

spectively. Among these vulnerable apps, 435 and 398 apps

were downloaded from Google Play. As mentioned earlier,

some of them are popular, with more than 10, 000, 000 in-

stalls from the official Google Play market.

Some apps were not automatically confirmed by our sys-

tem. Upon manual analysis, we discovered this was due to

the following reasons: (1) In some of these apps, the re-

turn value of start functions such as ContentProvider.

query() depends on the internal logic of the app. If cer-

tain internal logic is not satisfied, the start function will

simply return an unexpected value, based on which our

system will mark it as not vulnerable. For instance, the

ContentProvider.query() function of MiTalk Messenger

(version: 2.1.365/365)3 will check whether there is a regis-

tered user account. If not, it will directly return null to our

test app. Accordingly, we manually add these apps back to

the list of vulnerable apps. (2) Certain apps may enforce

an access policy in the start functions and deny the re-

quest from our test app. However, due to improper enforce-

ment, the access policy may be bypassed. One concrete

example is the QQ Browser (version: 3.0/35), which checks

the package name of calling app in its ContentProvider.

query() function. If the package name of the calling app

is in a predefined list, it will honor the request and re-

turn a valid Cursor object. Note that this access policy

blocked our test app’s first try. However, after analyzing

the app and accordingly changing the package name of our

test app, we can still successfully retrieve data from this

app. (3) Other apps may also check the signatures of call-

ing apps. In this case, they are not vulnerable as the signa-

ture used to sign the app is supposed to be unique and not

leaked to others. (4) Some apps may not be properly devel-

oped and will essentially throw an exception when running.

For example, we find cases where the authority attribute

specified in manifest file is different from the one used in

URIMatcher. In this case, the Android runtime fails to find

the corresponding content provider. (5) Finally, some apps

may use specific Android classes which cannot be returned

to another process (or app). For example, some apps re-

turn a CursorWrapper to ContentProvider.query() func-

tion. However this object may not be passed to another app

(i.e., our test app) and an UnsupportedOperationException

will be thrown at runtime.

After identifying these vulnerable apps, starting from

February 2012, we spent a considerable amount of time on

reporting them to the corresponding developers. Some of

them fixed the vulnerabilities and released the patched ver-

sion quickly.4 Some developers did not respond but fixed

the bugs silently. Yet others did not response and chose to

completely ignore our report.

5.1 Passive Content Leaks

In our dataset, we detected 1, 279 apps that are vulnera-

ble to passive content leaks. In the following, we organize

them into several main categories. The overall results are

summarized in Table 2. In the table, we show the number

of vulnerable apps in each category and the detailed infor-

3In this paper, we use versionName and versionCode in its manifest file

to uniquely specify an app. For example the versionName and versionCode

of MiTalk Messenger app is 2.1.365 and 365, respectively.
4For example, the developers of Maxthon Mobile Web Browser re-

sponded within less than one day and released a patched version in two

weeks. And the developers of Match.com - #1 Dating Site acknowledged

our reports and kept us updated about their process of this vulnerability.

8

Category
of

Apps

Representative Apps (Available on Google Play)

App Name Package Name Version # of Installs

SMS messages 268

Message GOWidget
com.gau.go.launcherex.

gowidget.smswidget
2.3/17 1, 000, 000 - 5, 000, 000

Pansi SMS com.pansi.msg 2.06/226 500, 000 - 1, 000, 000

Youni SMS com.snda.youni 2.1.0c/67 100, 000 - 500, 000

Blovestorm com.blovestorm 3.2.1/28 100, 000 - 500, 000

Contacts 128

mOffice - Outlook sync com.innov8tion.isharesync 3.0/21 100, 000 - 500, 000

WaliSMS cn.com.wali.walisms 3.2.2/39 100, 000 - 500, 000

Shady SMS 3.0 PAYG
com.project.

memoryerrorthreepayg
1.78/228 50, 000 - 100, 000

360 Kouxin com.qihoo360.kouxin 1.51/96 1, 000 - 5, 000

Private information

in IM apps
121

GO SMS Pro com.jb.gosms 4.32/69 10, 000, 000 - 50, 000, 000

Messenger WithYou
miyowa.android.

microsoft.wlm

2.0.76/

2000076
10, 000, 000 - 50, 000, 000

Nimbuzz Messenger com.nimbuzz 2.0.10/2091 1, 000, 000 - 5, 000, 000

MiTalk Messenger com.xiaomi.channel 2.1.365/365 100, 000 - 500, 000

User credentials 80

Youdao Dictionary com.youdao.dict
2.0.1(2)/

2000102
1, 000, 000 - 5, 000, 000

GO FBWidget
com.gau.go.launcherex.

gowidget.fbwidget
2.2/15 1, 000, 000 - 5, 000, 000

Netease Weibo com.netease.wb 1.2.2/12 10, 000 - 50, 000

Netease Cloudalbum com.netease.cloudalbum Ver 2.2.0/7 5, 000 - 1, 000

Browser history

or bookmarks
70

Dolphin Browser HD
mobi.mgeek.

TunnyBrowser
7.3.0/116 10, 000, 000 - 50, 000, 000

Maxthon Android

Web Browser
com.mx.browser 2.4.6/2811 500, 000 - 1, 000, 000

Boat Browser Mini com.boatgo.browser 3.0.2/1611 500, 000 - 1, 000, 000

Mobile Security

Personal Ed.

com.trendmicro.

tmmspersonal
2.1/31 50, 000 - 100, 000

Call logs 61

Droid Call Filter com.droiddev.blocker 1.0.23/24 100, 000 - 500, 000

Tc Assistant cn.com.tc.assistant 4.3.0/19 10, 000 - 50, 000

Anguanjia com.anguanjia.safe 2.58/57 10, 000 - 50, 000

Private information

in social

network apps

27

GO TwiWidget
com.gau.go.launcherex.

gowidget.twitterwidget
2.1/14 1, 000, 000 - 5, 000, 000

Sina Weibo com.sina.weibo 2.8.1 beta1/154 100, 000 - 500, 000

Tencent WBlog com.tencent.WBlog v3.3.0/25 10, 000 - 50, 000

Table 2. Main types of passively­leaked private information and their representative vulnerable apps

mation of representative apps available on Google Play (in-

cluding the number of installs – the last column in the table

– from Google Play when we confirmed the vulnerability.)

5.1.1 SMS Messages

The first category contains 268 apps that passively leak in-

coming or outgoing SMS messages stored in the phone. It

has been known that sensitive information such as mTANs

used in online banking [10] may be present in these SMS

messages. Hence, their leaks could pose serious privacy

and security threats. As a concrete example, the Message

GOWidget (version: 2.3/17) app is a widget used in a popular

launcher app, i.e., GO Launcher EX, which can conveniently

display your incoming SMS messages in a desktop widget.

Internally, it maintains a database to cache all incoming

SMS messages, including their originating addresses and

message contents. Unfortunately, this internal database is

not properly protected and can be accessed from a public

content provider named .DataProvider.

Pansi SMS (version: 2.06/226) is another example. It

is a messaging app that arguably provides more features

than the built-in Messaging app. By storing both in-

coming and outgoing SMS messages in the phone and

exporting them through an unprotected content provider

.provider.MsgSummaryProvider, any (untrusted) app in the

phone can obtain them, i.e., all SMS messages, without any

permission.

In our study, we also notice that some vulnerable apps

provide private SMS message functionality. With that, mo-

bile users can specify certain phone numbers as private so

that all SMS messages from these private phone numbers

9

(a) Our test app requests no permis-

sion

(b) GO FBWidget displays Face-

book posts

(c) Our test app “steals” Facebook

posts

(d) Our test app “steals” Facebook

AuthToken

Figure 4. Passive content leaks on GO FBWidget

will not show in the built-in Messaging app. This feature

adds an extra level of privacy for users. Unfortunately, some

of these apps define unprotected content providers through

which all the private SMS messages in the phone can be dis-

closed to any app! In other words, private SMS messages

are not private any longer but open to all apps. One such

app is com.tencent.qqpimsecure (version: 3.1.1/40).

5.1.2 Contacts

The second category involves private contacts information.

One representative app is mOffice - Outlook sync (ver-

sion: 3.0/21), a full-suite productivity app on Android. It

can sync contacts, calendars, and tasks with remote desk-

tops. To manage these data for synchronization, it uses an

internal database accessible via an open content provider

.dao.DBProvider. As a result, any app can obtain various

types of data saved in this database.

Shady SMS 3.0 PAYG (version: 1.78/228) is another ex-

ample app in this category. It has the feature of con-

figuring certain contacts in the phone as private con-

tacts. Similar to in the first category, SMS messages and

phone calls from private contacts will not show in the

built-in Messaging or Phone app, thus achieving a higher

level of privacy. Unfortunately, these private contacts

in this app are fully leaked via an open content provider

com.project.database.ContactsContentProvider. Be-

cause of a passive content leak vulnerability, using this app

does not protect your private contacts, but rather put your

privacy at risk.

5.1.3 Private Instant Messaging (IM) information

The third category contains personal information in various

IM apps. Instant messaging is a convenient form of commu-

nication for users and some of them are extremely popular

such as Skype, MSN, and ICQ. We found some of these

popular IM apps on Android do not protect their data at all.

As a result the list of friends in the IM, conversation history,

as well as detailed chat messages are all passively leaked.

GO SMS Pro (version: 4.32/69) is one such instant mes-

saging app with more than 10, 000, 000 downloads from

Google Play. Besides the enhanced SMS messages func-

tionality, it also provides instant messaging functionality to

allow users to communicate with each other. By registering

an account (using email address or phone number), users

can find their friends and communicate with them on-line.

However we find that the friends information and all the

conversation content between friends are leaked via a con-

tent provider interface, i.e., ImContentProvider. Interest-

ingly, in this particular app, we find four content providers

and three of them are well protected with the exported at-

tribute defined to be false. However, the remaining one is

not protected, which leaks all internal data.

Messenger WithYou (version: 2.0.76/2000076) is an al-

ternative Windows Live Messenger (MSN) app on An-

droid. By using this app, users can chat with their

MSN contacts. Similar to the previous app, all the ac-

count information and conversation logs are managed in

an internal database. Although this app does not have

a content provider defined to manage this database, our

analysis shows that there exists another unrelated con-

tent provider MiyowaExplorerContentProvider that imple-

10

ments an openFile() routine. This openFile() routine

does not check the given file path and thus allows for ac-

cessing arbitrary files in the app-specific directory, includ-

ing the database file.

5.1.4 User Login Credentials

The fourth category includes user login credentials such

as username and (plaintext) password of popular websites.

These leaked login credentials trivially allow attackers to

log into victim’s social network accounts. For example,

Youdao Dictionary (version: 2.0.1(2)/2000102) is a pop-

ular dictionary app with more than 1, 000, 000 downloads

from the Google Play. This app allows users to synchro-

nize their favorite words withe the Cloud using a so-called

Netease account. The username and password of this ac-

count are saved in plaintext in a local database, which can

be leaked via an open content provider. In other words, a

malicious app can simply steal the user name and password

of the account. It’s worth mentioning that this Netease ac-

count can also be used to log into user’s email service pro-

vided by Netease, a NASDAQ company providing service

to more than 500 million users [6].

Besides username and password, this category also in-

cludes related authentication tokens or simply AuthTokens

from popular social network sites (e.g., Facebook). Note the

authentication token can be used to automatically sign into

a remote website without the inconvenience of typing pass-

words every time. Hence by stealing the AuthToken, the at-

tackers can effectively sign into victim’s social network ac-

counts and steal all the personal information. GO FBWidget

(version: 2.2/15) is one such app that saves a user’s AuthTo-

ken of Facebook in a database. Unfortunately this database

can be accessed by any untrusted app without any permis-

sion. In Figure 4(a), we show a test app that does not request

any permission but takes the input from our system to steal

the AuthToken from GO FBWidget. The leaked AuthToken

is shown in Figure 4(d). This particular vulnerable app al-

lows user to make posts to Facebook (Figure 4(b)) and these

posts are similarly leaked (Figure 4(c)).

Similar to this particular app, we also identify others: GO

TwiWidget (version: 2.1/14) leaks Twitter authentication to-

kens and Sina Weibo (version: 2.8.1 beta1/154) passively

discloses Sina Weibo authentication tokens [7]. Sina Weibo

is a popular blog service with more than 300 million regis-

tered users.

5.1.5 Browser History and Bookmarks

The fifth category refers to a common problem in third-

party mobile browser apps. They usually implement a con-

tent provider to manage browser history and bookmarks.

However, the content provider is not properly protected

(a) Dolphin browser visits Facebook (b) Our test app “steals” the browser

history

Figure 5. Passive content leaks on Dolphin

browser HD version (based on a successful
SQL injection attack)

and can be exploited to leak browser history and book-

marks. For example, Dolphin Browser (version: 2.2/26)

is a popular one available on Google Play. The mini ver-

sion implements a vulnerable content provider .bookmarks.

BookmarkProvider, from which the browser history and

bookmarks can be retrieved by any app on the phone. The

HD version, i.e., Dolphin Browser HD (version: 7.3.0/116),

similarly leaks the browser history and bookmarks. Unlike

the mini version, the HD version does not directly leak the

browser history. Instead we need to leverage a SQL in-

jection attack (Section 4) to retrieve it. More specifically,

we use “∗ from history;” as the projection parameter in

query() method. In this case, we can obtain all the data (in-

cluding browser history) stored in the table history. Figure

5(a) is the screenshot of Dolphin Browser HD visiting Face-

book website and Figure 5(b) shows the leaked browser his-

tory to our test app. Maxthon Android Web Browser (ver-

sion: 2.4.6/2811) is another app that suffers from a simi-

lar SQL injection attack to leak the browser history. Other

vulnerable mobile browsers include Circles Web Browser

(version: 0.4.3/18), ML-Browser (version: 1.0/1) and Mchina

Browser (version: 2.6/4).

Interestingly, we also found a security app Mobile

Security Personal Ed. (version: 2.1/31) from TrendMi-

cro that leaks the browser history as well. This security app

has a feature to enable safe browsing by detecting poten-

tially malicious URLs. The app collects the visited URLs

as well as their risk scores into a local database managed

by a vulnerable content provider, which essentially opens

11

up access to others. Another mobile browser app, i.e., UC

Browser (version: 7.9.3/43), encrypts the browser history.

While such information is still passively leaked, the encryp-

tion makes it harder to recover the original browser history.

5.1.6 Call Logs and Others

The sixth category includes those apps with features to

manage call logs. For example, Tc Assistant (version:

4.3.0/19) aims to be an assistant to users by managing var-

ious phone bills. It logs every outgoing call into a local

database, which can be queried and unfortunately leaked to

any other app. Another one is Droid Call Filter (version:

1.0.23/24), which helps users to block unwanted (or harass-

ing) calls and SMS messages. It maintains a black list and

blocks the calls from numbers on this black list. All blocked

phone calls will be logged into a local database, which can

be retrieved by others. Note that leaking call logs from num-

bers in a black list seems less risky. However, this blacklist

can be manipulated via content pollution – as shown in

Section 5.2.

Besides the above categories, we also found other vul-

nerable apps such as GO Email Widget (version: 1.81/18)

and 139Email client (version: 5.54 /554) leak user’s

emails; Match.com - #1 Dating Site (version: 2.2.0/25)

leaks private information about the persons whom the user

wants to date with (including related mail address, phone

number, location, income, jobs, interests and others) as

well as the entire search history on match.com; Google

Music (version: 4.1.513/513) leaks the songs and artists the

users have listened to and Astrid Task/To-do List (ver-

sion: 3.9.2.3/210) leaks the private todo list and other per-

sonal notes. When compared with other types of leaked

information, the todo list in Astrid Task/To-do List may

seem less risky. However, the vulnerable app even accepts

a raw SQL as input that will be executed in the internal

database. As a result, the attackers can inject and execute

arbitrary SQL commands such as deleting and updating ta-

bles in the databases.

5.2 Content Pollution

In our dataset, we also detected 871 apps that are sus-

ceptible to content pollution attacks. In the following,

we categorize our findings. The first category includes

apps that are developed to block SMS and/or phone calls

from certain numbers. For example, DW Contacts & Phone

& Dialer (version: 2.0.9.1-free/198) allows for blocking

phone calls based on a blacklist maintained in an internal

database. Unfortunately, the interface (e.g., insert()) is

not protected and allows an attacker to insert arbitrary num-

bers into the blacklist. In other words, any phone call can

be potentially blocked without the user’s awareness.

To our surprise, we even found some well-known and

popular security apps vulnerable to this attack. For exam-

ple, qqpimsecure (version: 3.1.1/45) is a security app with

more than 500, 000 installs. The app has similar function-

ality to block both SMS messages and phone calls from

spammers whose numbers are maintained in a database.

By polluting the database or its blacklist, any number can

be inserted and the app will blindly recognize it as a spam

number to block any SMS message or phone calls from it.

We point out that blocking certain SMS messages is a com-

mon practice [44] in existing malware (e.g., to avoid show-

ing the charged billing information to users). As a result,

by launching the content pollution attack, stealthy malware

can be created as the questionable behaviors do not exist

in malware themselves but with the help of other legitimate

or even reputable security apps. Other security apps shar-

ing similar vulnerabilities include 360mobilesafe (version:

2.2.0/123) and Anguanjia (version: 2.58/57).

The second category contains apps that allow for back-

ground downloading of apps for installation. Specifically,

these apps have the functionality to download apps in the

background and then pop up a dialogue asking users to

install them. From our analysis, the event to trigger the

downloading and installing behavior can be a normal inser-

tion operation into a local database. With these vulnerable

apps, such insertion operations can be launched by any (un-

trusted) app on the phone. As a result, a malicious app can

inject a malicious URL into the table so that the malware

will be automatically downloaded and then popped up for

user’s installation. Compared with known infection tech-

niques by mobile malware [44], such installation behav-

ior is more stealthy and can be easily abused to launch an

update-attack by automatically downloading and installing

malware which is disguised as the updated version of an

existing app. Example apps in this category include Qihoo

browser (version: 1.5.0 Beta/6) and Baidu Appsearch (ver-

sion: 0.8.1 beta/16777516).

6 Discussion

Our study reveals the prevalence of two vulnerabilities

in existing Android apps, which motivated us to further ex-

amine their root causes and explore possible solutions. As

discussed earlier, these two vulnerabilities are rooted in the

Android built-in content provider component and develop-

ers may fail to fully understand the associated security risks.

Specifically, for those content providers that do not explic-

itly disable the exported attribute, earlier Android frame-

works (versions before 4.2) by default open them up to any

untrusted apps. As a result, if a developer includes a content

provider in its app, it implicitly allows others to access – a

poor security design.

To fix that, there are two main approaches. From

the platform provider’s perspective, the default setting

12

of exported attribute should be false – so that content

provider by default will be exported only to the app it-

self. From the app developer’s perspective, each needs to

be aware of potential security risks and properly adopt secu-

rity mechanisms to protect their content providers. Exam-

ple security mechanisms include not exporting the content

provider or defining custom permissions with dangerous

or even signature protection level. Both approaches

have pros and cons. The former requires an over-the-

air (OTA) Android platform update on the default setting

of the exported property, which may introduce compat-

ibility problems for existing apps. (Notice that with the

latest release of Android 4.2 in October 2012, content

providers by default are no longer exported if developers

set targetSdkVersion to 17 or higher in the manifest file

[1].) The latter does not have the compatibility issue but

needs to involve numerous app developers to update their

apps to include necessary security checks, which could be a

time-consuming process.

In our study, we observe some app developers did at-

tempt to protect their content providers. However the ways

they used are not secure and can be readily bypassed. For

example, some developers define custom permissions to

protect the content provider interface. But the protection

level of these custom permissions is normal, which means

the permission can be granted to any app requesting it

(without user’s explicit approval). Other developers check

the package names of calling apps, which is rather frag-

ile and can be trivially bypassed. One such example is QQ

Browser (version: 3.0/35), which ensures the calling apps

have the pre-defined names, such as “com.tencent.mtt”,

“com.tencent.qqpim” or “com.tencent.bookmarktest”. As

shown in Section 5, such protection can be simply cir-

cumvented. Meanwhile, we point out that some reputable

security apps are also vulnerable. The Mobile Security

Personal Ed. app (version: 2.1/31) developed by Trend-

Micro suffers from the first vulnerability, i.e., passive con-

tent leaks. The qqpimsecure app (version: 3.1.1/45),

360mobilesafe (version: 2.2.0/123) and Anguanjia (ver-

sion: 2.58/57) are susceptible to both attacks, in not only

leaking personal SMS text messages and phone call logs,

but also blocking text messages and phone calls from spe-

cific phone numbers chosen by attackers. Moreover, based

on our reporting experience to the developers of vulnerable

apps, in a time window of three months only approximately

one third of them are actually keen to follow up to issue

the patches, which indicates an OTA update may be a better

choice.

From another perspective, our current prototype to detect

vulnerable apps is still limited and can be improved. For ex-

ample, we take a conservative way to automatically select

candidate vulnerable apps, which may introduce unneces-

sary false positives. Encouragingly, this selection step still

results in a substantial reduction (with only 4.8% remaining

apps for subsequent analysis). Also, the lack of context in-

formation or internal logic of particular apps could lead to

false negatives as well. Specifically, in our current proto-

type, the dynamic execution module is based on invocation

result of start functions to determine whether the app is

vulnerable. The invocation return may well depend on the

internal logic of the app (e.g., the presence of a user ac-

count in MiTalk Messenger), which can be missed by our

prototype. To remedy this, we need to manually confirm

them and infer potential side effects. Fortunately, our sys-

tem automatically generates intermediate results, i.e., inter-

method function call graph and intra-method control-flow

graph, which greatly speed up our manual analysis. Nev-

ertheless, there is still a need for us to explore innovative

ways to overcome these limitations and achieve better au-

tomation.

7 Related Work

Smartphone privacy has recently attracted lots of atten-

tions. For example, earlier researches identified worrisome

privacy leaks among mobile apps available on both An-

droid [22] and iOS [21] platforms. A few systems have

been accordingly proposed to mitigate this problem by re-

vising or extending the framework for better privacy protec-

tion. Examples include Apex [34], MockDroid [13], TISSA

[46], AppFence [30], Dr. Android [31] and Aurasium [40].

Specifically, they extend the Android framework or repack-

age the app to provide finer-grained privacy control over an

app’s access to potentially sensitive information at runtime.

Most recently, research results show that in-app adver-

tisement libraries [26] can also actively leak private infor-

mation. To mitigate that, AdDroid [35] separates the ad-

vertisement functionality from host apps by introducing a

new set of advertising APIs and permissions. AdSplit [38]

moves the advertisement code into another process. More-

over, mobile malware may also aggressively collect per-

sonal information and upload to remote servers [44]. Our

work differs from earlier efforts in identifying and quantify-

ing vulnerabilities that allow for passive (instead of active)

information leaks.

In addition, another line of research aims to deal with

the classic confused-deputy problem or permission leaks

[29] on Android. Examples include ComDroid [17] and

Woodpecker [27], which employ static analysis to identify

such problems in either third-party apps or preloaded apps.

QUIRE [20] and Felt et al. [25] propose solutions to mit-

igate them by checking IPC call chains to ensure unautho-

rized apps cannot invoke privileged operations. Bugiel et

al. [15] proposes a run time monitor to regulate commu-

nications between apps. Our work is similar to them in

exposing possible vulnerability present in unprotected An-

13

droid components. However, our work differs from them by

focusing on passively leaking or manipulating internal data

managed by apps, not invoking privileged operations with-

out permission. A more recent system CHEX [33] takes a

static method to detect component hijacking vulnerability

that can be exploited to gain unauthorized access to pro-

tected or private resources. Although CHEX can be used

to statically determine potential leak paths from start to

terminal functions, it can not generate the inputs auto-

matically and can not dynamically confirm the potentially

vulnerable apps. Also our detailed break-down of leaked

and polluted content reflects the severity of the problem and

practicality of our system.

Beyond each individual mobile app, researchers also aim

to measure or study overall security of existing apps in mar-

ketplaces. For example, Enck et al. [23] studies 1, 100 top

free apps to better understand the security and privacy char-

acteristics of existing apps. Felt et al. surveys 46 malware

samples from three different mobile platforms to analyze

their incentives, and discuss possible defenses. Stowaway

[24] is proposed to understand over-privileged apps, which

request additional permissions beyond their normal func-

tionalities. DroidMOSS [43] and PiggyApp [42] aim to de-

tect repackaged apps in existing mobile app marketplaces.

DroidRanger [45] and RiskRanker [28] are two systems that

are designed to detect malicious apps in existing Android

markets. MalGenome [44] reports a relatively large collec-

tion of Android malware and presents various characteris-

tics of them, which will be helpful to guide the develop-

ment of effective anti-malware solutions. Peng et al. [36]

use probabilistic generative models to rank the risks of An-

droid apps. Our work is different by primarily focusing on

one built-in Android component i.e., content provider, and

studying the prevalence of vulnerable apps in current An-

droid markets.

In parallel to the above efforts, researchers are also ap-

plying security technologies used on desktops into smart-

phones (e.g., to achieve better isolation or defense against

mobile malware). For example, L4Android [32] and Cells

[11] take a virtualization-based approach to isolate differ-

ent virtual phones. In other words, multiple virtual smart-

phones can run on one single physical phone side-by-side

with necessary isolation. Also related, MoCFI [18] is a

framework to enforce control-flow integrity in iOS apps at

run time without requiring access to the app’s source code.

Similar to the systems used for malware analysis on desk-

top, DroidScope [41] is a system that can be used to analyze

Android malware.

To assess the prevalence of vulnerabilities reported in

this paper, our system shares a similar spirit with earlier

systems that are designed to detect vulnerabilities in desk-

top software. For example, BitBlaze [39] is a binary anal-

ysis framework upon which practical tools can be devel-

oped to discover buffer-overflow bugs [37] or detect zero-

day exploits [14]. KLEE [16] is a symbolic execution tool

that can automatically generate test cases with high cov-

erage. The generated test cases can be used to detect po-

tential bugs existed in programs. AEG [12] is designed to

automatically generate exploits for control-flow hijacking

attacks. Our system is designed to achieve similar goals for

automatically discovering and even generating the inputs

(or exploits) to trigger these vulnerabilities. However, our

key contributions are not in the tool development itself, but

in identifying these two vulnerabilities and measuring their

prevalence in existing apps. Moreover, certain differences

in the running environments as well as targeted applications

between these systems and ours lead to unique considera-

tions in our system design and implementation (Section 3).

From another perspective, Java PathFinder [5] is a model

checking tool proposed to test Java programs with a custom

Java virtual machine. Our system is developed to analyze

Dalvik bytecode, which is substantially different from Java

bytecode. Nevertheless, these proposed techniques are ap-

plicable to enhance our tool for better automation and cov-

erage.

8 Conclusion

In this paper, we present two types of vulnerabilities that

are rooted in the unprotected content providers of vulnera-

ble apps. The first one, i.e., passive content leak, allows

private information managed by a vulnerable app to be pas-

sively leaked to any other app without any dangerous per-

mission; the second one, i.e., content pollution, allows

for unauthorized changes on the internal data managed by

vulnerable apps. To assess the extent of these two vulnera-

bilities, we analyze 62, 519 apps collected in February 2012

from various Android markets. Our results show that among

these apps, 1,279 (2.0%) and 871(1.4%) of them are suscep-

tible to these two vulnerabilities, respectively. Also we find

that among the vulnerable apps, 435 (0.7%) and 398 (0.6%)

of them are downloaded from Google Play. The informa-

tion being passively leaked ranges from personal contacts,

login credentials, call logs, SMS messages, browser histo-

ries, etc. Also, the unauthorized manipulation of vulnerable

apps’ data can be leveraged to block certain phone calls and

SMS messages from specific numbers chosen by attackers

or download unwanted apps for installation. The presence

of a large number of vulnerable apps as well as a variety

of private data for leaks and pollution reflect the severity of

these two vulnerabilities.

Acknowledgements We would like to thank our shep-

herd, David Wagner, and the anonymous reviewers for their

comments that greatly helped improve the presentation of

this paper. We also want to thank Michael Grace, Wu Zhou,

Minh Q. Tran, Lei Wu and Kunal Patel for the helpful dis-

14

cussion. This work was supported in part by the US Na-

tional Science Foundation (NSF) under Grants 0855297,

0855036, 0910767, and 0952640. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the NSF.

References

[1] Android 4.2 APIs. http://developer.android.

com/about/versions/android-4.2.html.

[2] App Store (iOS). http://en.wikipedia.org/

wiki/App_Store_(iOS).

[3] Gartner Says Worldwide Smartphone Sales Soared in Fourth

Quarter of 2011 With 47 Percent Growth. http://www.

gartner.com/it/page.jsp?id=1924314.

[4] Google Play. http://en.wikipedia.org/wiki/

Google_Play.

[5] Java PathFinder. http://babelfish.arc.nasa.

gov/trac/jpf.

[6] Number of Web users in China Hits 513 Million. http://

latimesblogs.latimes.com/technology/

2012/01/chinese-web-users-grow-to-513-

million.html.

[7] Sina Weibo. http://en.wikipedia.org/wiki/

Sina_Weibo.

[8] The Risk You Carry in Your Pocket. https://media.

blackhat.com/bh-ad-10/Nils/Black-Hat-

AD-2010-android-sandcastle-slides.pdf.

[9] Your Apps Are Watching You.

http://online.wsj.com/article/

SB10001424052748704694004576020083703574602.

html.

[10] ZeuS-in-the-Mobile - Facts and Theories. http://www.

securelist.com/en/analysis/204792194/

ZeuS_in_the_Mobile_Facts_and_Theories.

[11] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J. Nieh.

Cells: A Virtual Mobile Smartphone Architecture. In Pro-

ceedings of the 23rd ACM Symposium on Operating Systems

Principles, SOSP, 2011.

[12] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley.

AEG: Automatic Exploit Generation . In Proceedings of the

18th Annual Symposium on Network and Distributed System

Security, NDSS, 2011.

[13] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mock-

Droid: Trading Privacy for Application Functionality on

Smartphones. In Proceedings of the 12th International

Workshop on Mobile Computing System and Applications,

HotMobile, 2011.

[14] D. Brumley, J. Newsome, and D. Song. Sting: an end-to-end

self-healing system for defending against internet worms. In

Book chapter in ”Malware Detection and Defense”, Editors

Christodorescu, Jha, Maughn, Song, 2007.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.

Sadeghi, and B. Shastry. Towards Taming Privilege-

Escalation Attacks on Android. In Proceedings of the 19th

Annual Symposium on Network and Distributed System Se-

curity, NDSS, 2012.

[16] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex

Systems Programs . In Proceedings of the 8th USENIX Sym-

posium on Operating Systems Design and Implementation,

OSDI, 2008.
[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. An-

alyzing Inter-Application Communication in Android. In

Proceedings of the 9th Annual International Conference on

Mobile Systems, Applications, and Services, MobiSys, 2011.
[18] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,

R. Hund, S. Nurnberger, and A.-R. Sadeghi. MoCFI: A

Framework to Mitigate Control-Flow Attacks on Smart-

phones. In Proceedings of the 19th Annual Symposium on

Network and Distributed System Security, NDSS, 2012.
[19] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.

Privilege escalation attacks on android. In Proceedings of

the 13th international conference on Information security,

ISC, 2010.
[20] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.

QUIRE: Lightweight Provenance for Smart Phone Operat-

ing Systems. In Proceedings of the 20th USENIX Security

Symposium, USENIX Security, 2011.
[21] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: De-

tecting Privacy Leaks in iOS Applications. In Proceedings

of the 18th Annual Symposium on Network and Distributed

System Security, NDSS, 2011.
[22] W. Enck, P. Gilbert, B.-g. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth. TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on Smart-

phones. In Proceedings of the 9th USENIX Symposium on

Operating Systems Design and Implementation, USENIX

OSDI, 2010.
[23] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A

Study of Android Application Security. In Proceedings of

the 20th USENIX Security Symposium, USENIX Security,

2011.
[24] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. An-

droid Permissions Demystified. In Proceedings of the 18th

ACM Conference on Computer and Communications Secu-

rity, CCS, 2011.
[25] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.

Permission Re-Delegation: Attacks and Defenses. In Pro-

ceedings of the 20th USENIX Security Symposium, USENIX

Security, 2011.
[26] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe

Exposure Analysis of Mobile In-App Advertisements. In

Proceedings of the 5th ACM Conference on Security and

Privacy in Wireless and Mobile Networks, WiSec, 2012.
[27] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic De-

tection of Capability Leaks in Stock Android Smartphones.

In Proceedings of the 19th Annual Symposium on Network

and Distributed System Security, NDSS, 2012.
[28] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.

RiskRanker: Scalable and Accurate Zero-day Android Mal-

ware Detection. In Proceedings of the 10th International

Conference on Mobile Systems, Applications and Services,

MobiSys, 2012.
[29] N. Hardy. The Confused Deputy: (or why capabilities might

have been invented). ACM SIGOPS Operating Systems Re-

view, 22, October 1998.

15

http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://en.wikipedia.org/wiki/App_Store_(iOS)
http://en.wikipedia.org/wiki/App_Store_(iOS)
http://www.gartner.com/it/page.jsp?id=1924314
http://www.gartner.com/it/page.jsp?id=1924314
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Google_Play
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf
http://latimesblogs.latimes.com/technology/2012/01/chinese-web-users-grow-to-513-million.html
http://latimesblogs.latimes.com/technology/2012/01/chinese-web-users-grow-to-513-million.html
http://latimesblogs.latimes.com/technology/2012/01/chinese-web-users-grow-to-513-million.html
http://latimesblogs.latimes.com/technology/2012/01/chinese-web-users-grow-to-513-million.html
http://en.wikipedia.org/wiki/Sina_Weibo
http://en.wikipedia.org/wiki/Sina_Weibo
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories

[30] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.

These Aren’t the Droids You’re Looking For: Retrofitting

Android to Protect Data from Imperious Applications. In

Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS, 2011.

[31] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,

J. S. Foster, and T. Millstein. Dr. android and mr. hide: Fine-

grained permissions in android applications. In ACM CCS

Workshop on Security and Privacy in Smartphones and Mo-

bile Devices, CCS-SPSM, 2012.

[32] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and

M. Peter. L4Android: A Generic Operating System Frame-

work for Secure Smartphones. In Proceedings of the 1st

Workshop on Security and Privacy in Smartphones and Mo-

bile Devices, CCS-SPSM, 2011.

[33] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Stati-

cally vetting android apps for component hijacking vulner-

abilities. In Proceedings of the 19th ACM Conference on

Computer and Communications Security, CCS, 2012.

[34] M. Nauman, S. Khan, and X. Zhang. Apex: Extending

Android Permission Model and Enforcement with User-

Defined Runtime Constraints. In Proceedings of the 5th

ACM Symposium on Information, Computer and Commu-

nications Security, ASIACCS, 2010.

[35] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid:

Privilege Separation for Applications and Advertisers in An-

droid. In Proceedings of the 7th ACM Symposium on In-

formation, Computer and Communications Security, ASI-

ACCS, 2012.

[36] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,

C. Nita-Rotaru, and I. Molloy. Using probabilistic genera-

tive models for ranking risks of android apps. In Proceed-

ings of the 19th ACM Conference on Computer and Commu-

nications Security, CCS, 2012.

[37] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-

extended symbolic execution on binary programs. In Pro-

ceedings of the ACM/SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA, 2009.

[38] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating

smartphone advertising from applications. In Proceedings of

the 21th USENIX Security Symposium, USENIX Security,

2012.

[39] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.

Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.

BitBlaze: A new approach to computer security via binary

analysis. In Proceedings of the 4th International Conference

on Information Systems Security, ICISS, 2008.

[40] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical Pol-

icy Enforcement for Android Applications. In Proceedings

of the 21th USENIX Security Symposium, USENIX Security,

2012.

[41] L. K. Yan and H. Yin. DroidScope: Seamlessly Recon-

structing the OS and Dalvik Semantic Views for Dynamic

Android Malware Analysis. In Proceedings of the 21th

USENIX Security Symposium, USENIX Security, 2012.

[42] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast,

scalable detection of ‘piggybacked’ mobile applications. In

Proceedings of the 3rd ACM Conference on Data and Appli-

cation Security and Privacy, CODASPY, 2013.

[43] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS: De-

tecting Repackaged Smartphone Applications in Third-Party

Android Marketplaces. In Proceedings of the 2nd ACMCon-

ference on Data and Application Security and Privacy, CO-

DASPY, 2012.

[44] Y. Zhou and X. Jiang. Dissecting Android Malware: Char-

acterization and Evolution. In Proceedings of the 33rd IEEE

Symposium on Security and Privacy, IEEE S&P, 2012.

[45] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get

off of My Market: Detecting Malicious Apps in Official and

Alternative Android Markets. In Proceedings of the 19th

Annual Symposium on Network and Distributed System Se-

curity, NDSS, 2012.

[46] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Tam-

ing Information-Stealing Smartphone Applications (on An-

droid). In Proceedings of the 4th International Conference

on Trust and Trustworthy Computing, TRUST, 2011.

16

	Introduction
	Threat Model and Assumptions
	Design
	Candidate App Selection
	Vulnerable App Determination
	Leaked/Polluted Content Break-down

	Implementation
	Evaluation
	Passive Content Leaks
	SMS Messages
	Contacts
	Private Instant Messaging (IM) information
	User Login Credentials
	Browser History and Bookmarks
	Call Logs and Others

	Content Pollution

	Discussion
	Related Work
	Conclusion

