
ECMO: Peripheral Transplantation to Rehost Embedded Linux
Kernels

Muhui Jiang
The Hong Kong Polytechnic University,

Zhejiang University,
China

csmjiang@comp.polyu.edu.hk

Lin Ma
Yajin Zhou∗
Qiang Liu

Zhejiang University, China
{linma,yajin_zhou,qiangliu}@zju.edu.cn

Cen Zhang
Nanyang Technological University,

Singapore
cen001@e.ntu.edu.sg

Zhi Wang
Florida State University,

USA
zwang@cs.fsu.edu

Xiapu Luo
The Hong Kong Polytechnic University,

China
csxluo@comp.polyu.edu.hk

Lei Wu
Kui Ren

Zhejiang University, China
{lei_wu,kuiren}@zju.edu.cn

ABSTRACT
Dynamic analysis based on the full-system emulator QEMU is
widely used for various purposes. However, it is challenging to
run firmware images of embedded devices in QEMU, especially the
process to boot the Linux kernel (we call this process rehosting
the Linux kernel in this paper). That’s because embedded devices
usually use different system-on-chips (SoCs) from multiple ven-
dors and only a limited number of SoCs are currently supported in
QEMU.

In this work, we propose a technique called peripheral trans-
plantation. The main idea is to transplant the device drivers of
designated peripherals into the Linux kernel binary. By doing so,
it can replace the peripherals in the kernel that are currently un-
supported in QEMU with supported ones, thus making the Linux
kernel rehostable. After that, various applications can be built.

We implemented this technique inside a prototype system called
ECMO and applied it to 815 firmware images, which consist of 20
kernel versions and 37 device models. The result shows that ECMO
can successfully transplant peripherals for all the 815 Linux kernels.
Among them, 710 kernels can be successfully rehosted, i.e., launch-
ing a user-space shell (87.1% success rate). The failed cases are
mainly because the root file system format (ramfs) is not supported
by the kernel. Meanwhile, we are able to inject rather complex
drivers (i.e., NIC driver) for all the rehosted Linux kernels by in-
stalling kernel modules. We further build three applications, i.e.,
kernel crash analysis, rootkit forensic analysis, and kernel fuzzing,
based on the rehosted kernels to demonstrate the usage scenarios
of ECMO.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484753

CCS CONCEPTS
• Security and privacy → Virtualization and security; Oper-
ating systems security.

KEYWORDS
Rehosting, Linux Kernel, Peripheral Transplantation

ACM Reference Format:
Muhui Jiang, Lin Ma, Yajin Zhou, Qiang Liu, Cen Zhang, Zhi Wang, Xiapu
Luo, Lei Wu, and Kui Ren. 2021. ECMO: Peripheral Transplantation to
Rehost Embedded Linux Kernels. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November
15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3460120.3484753

1 INTRODUCTION
IoT devices (or embedded devices) are becoming popular [7], many
of which run Linux-based operating systems [30]. At the same
time, hundreds of vulnerabilities are discovered every year for the
Linux kernel [22]. Once the devices are compromised, attackers
can control them to launch further attacks. As such, the security
of embedded devices, especially the kernel, deserves a thorough
analysis.

Dynamic analysis has been widely used for various purposes [31,
41, 44, 47, 51, 70]. It can monitor the runtime behavior of the target
system, complementing the static analysis [30, 45, 55, 61]. Rehost-
ing, also known as emulation, is used to run a target system inside
an emulated environment, e.g., QEMU, and provides the capability
to introspect the runtime state. Based on this capability, different
applications, e.g., kernel crash analysis, rootkit forensic analysis,
and kernel fuzzing, can be built. Running the Linux kernel in QEMU
for the desktop system is a solved problem. However, rehosting
embedded system is challenging. First, rehosting Linux kernel is
dependent on the emulation of peripherals. Without the right emu-
lation of these peripherals, Linux kernel may halt or crash during
the rehosting process. Second, peripherals vary widely. Due to the
diverse peripherals in the wild, it is not practical for QEMU to
support all kinds of peripherals in any SoC. Third, vendors may
not strictly follow the GPL license [35, 42], resulting in the lack of
public information (e.g., specifications, datasheets, and source code).
These obstruct the diagnosis of failures when adding emulation

https://doi.org/10.1145/3460120.3484753
https://doi.org/10.1145/3460120.3484753

Figure 1: The overview of our system (ECMO)

support of new SoCs in QEMU. Thus, how to rehost the embedded
Linux kernels in QEMU is still an open research question.

Previous research [26, 50] provides the capability of rehosting
user-space programs by running a customized Linux kernel for one
SoC that is supported in QEMU. This works well because user-space
programs mainly depend on standard system calls that are provided
by the underlying Linux kernel. Di�erent from user-space programs,
the OS kernel interact with peripherals that are usually di�erent in
di�erent SoCs. Some researchers have proposed to use real devices
to perform the dynamic analysis [43, 54, 62, 69]. Such solutions
do not scale since there exist a large number of embedded devices.
Other mechanism that are for the bare-metal systems [28, 37, 52],
i.e., embedded systems without an OS kernel or having a thin layer
of abstraction, cannot be directly used to rehost the Linux kernel as
the Linux kernel is far more complicated than the bare-metal ones.

Key Insights To address the above mentioned three challenges,
we have three key insights. First, only early-boot peripherals (i.e.,
interrupt controller, timer, and UART) need to be supported during
the rehosting process. After successfully rehosting the Linux kernel,
we are able to install the di�erent peripheral drivers in ramfs to
support the other peripherals with kernel modules. Second, Linux
kernel provides interfaces to implement drivers of these peripher-
als, which brings the chance to replace these diverse peripherals
with designated ones. Third, embedded Linux kernels are usually
modi�ed based on the mainstream Linux kernel, which is open-
sourced. The modi�cation mainly aims to add support for speci�c
peripherals while most of the other code is unchanged.

Our Approach With the insights, we proposeperipheral trans-
plantation technique, which is device-independent and works towards
the Linux kernel without the need of the source code. The main idea
is, instead of manually adding emulation support of various periph-
erals in QEMU, we can transplant the device drivers of designated
peripherals into the target Linux kernel binary. It replaces the pe-
ripherals in the target Linux kernel that are currently unsupported
in QEMU with supported ones, thus making the Linux kernelre-
hostable. Speci�cally, our system transplants two components, i.e.,
the emulated models of peripheral into QEMU and their device
drivers into the Linux kernel (if they are not initialized originally).
Transplanting a peripheral model requires the emulation code for
speci�ed (or simpli�ed) peripheral and integrates it into QEMU.
This is straightforward since QEMU provides us with APIs to add
new peripheral models.

However, transplanting a driver into the Linux kernel is non-
trivial. First, we need to substitute the original (unsupported) device

driver with the transplanted one. Since the peripheral driver is ini-
tialized with indirect calls, we need to locate function pointers and
rewrite them in a stripped binary on the �y, which is challeng-
ing. Second, the transplanted driver should not a�ect the memory
view of the original kernel. Otherwise, the memory holding the
transplanted driver can be overwritten since the Linux kernel is
not aware of the existence of that memory region.Third, the trans-
planted driver needs to invoke APIs in the Linux kernel. Otherwise,
the transplanted driver cannot function as desired.

To overcome the di�culties of transplanting drivers, we design
and implement a new algorithm to identify the required function
pointers (Section 4.2) and introduceopaque memory(Section 4.3) to
guarantee that the transplanted driver does not a�ect the memory
view of the original kernel. Finally, we implement and integrate
the peripheral transplantationtechnique into QEMU to create a
prototype called ECMO. Figure 1 shows the overview of ECMO. It
receives the �rmware image and the peripherals to be transplanted.
Then it transplants the peripherals to the Linux kernel binary to
make it rehostable in QEMU and launch a shell. Note that ECMO
focuses on transplanting the early-boot peripherals (i.e., interrupt
controller, timer, and UART), which are needed to rehost the Linux
kernel. Once the Linux kernel is rehosted, users can install di�erent
peripheral drivers to support more peripherals with kernel modules
and build various applications to analyze the rehosted kernel.

We apply ECMO on815Linux kernels extracted from �rmware
images, including20di�erent kernel versions and37device mod-
els. ECMO now only supports ARM architecture, which is widely
used in embedded systems [17]. However, it does not rely on any
architecture speci�c feature and can be easily extended to the other
architectures (Section 6). Our experiment shows that ECMO can
successfully transplant peripherals for all815Linux kernels. Among
them,710are able to launch a shell. The failed cases are due to the
unsupported root �le system format (ramfs) in the rehosted kernel.
Furthermore, we successfully install one Ethernet device driver (i.e.,
smc91x) on all the rehosted Linux kernel, which demonstrates the
capability to support more peripherals based on rehosted Linux
kernel. To demonstrate the functionality and usefulness of our sys-
tem, we build and port three applications, including kernel crash
analysis, rootkit forensic analysis, and kernel fuzzing. Note that,
the applications themselves are not the contribution of our work.
They are used to demonstrate the usage scenarios of our system.
Other applications that can be built on QEMU can also be ported.

In summary, this work makes the following main contributions.
� Novel technique We propose adevice-independenttechnique

calledperipheral transplantationthat can rehost Linux kernels of
embedded devices without the availability of the source code.

� New system We implement and integrate theperipheral trans-
plantationtechnique into QEMU, to create a prototype system
called ECMO.

� Comprehensive evaluation We apply ECMO to815Linux
kernels from di�erent images. It can transplant peripherals for
all the Linux kernels and successfully launch the shell for710
ones.
To engage with the community, we release the source code of

our system in https://github.com/valour01/ecmo. We also provide
an online service [6] for the community.

1 MACHINE_START (VERSATILE_AB , "ARM - Versati le AB")
2 . atag_offset = 0x100 ,
3 .map_io = versati le_map_io ,
4 . ini t_early = versati le_init_early ,
5 . init_irq = versati le_init_irq ,
6 . init_t ime = versati le_t imer_init ,
7 . ini t_machine = versati le_init ,
8 . restart = versati le_restart ,
9 MACHINE_END

Figure 2: The machine description for ARM-Versatile AB.

1 // UART read call back
2 static uint64_t serial_mm_read (void *opaque ,
3 hwaddr addr , unsigned size) {
4 SerialMM *s = SERIAL_MM (opaque);
5 return serial_ioport_read (&s->serial ,
6 addr >> s-> regshift , 1) ;
7 }
8 // register read /write call back functions
9 static const MemoryRegionOps serial_mm_ops = {

10 . read = serial_mm_read ,
11 .write = serial_mm_write ,
12 ...
13 };

Figure 3: The callback functions for UART emulation in
QEMU

2 BACKGROUND
2.1 Linux Kernel
Linux kernel source code can be categorized into three types ac-
cording to their functionalities. The �rst type is thearchitecture
independent code, which contains the core functionality used by
all CPU architectures. The second type isarchitecture dependent
code. For instance, the sub-directories under thearch/ directory
contain the code for multiple CPU architectures. The third type
is board-speci�c code, which is used by speci�c board (machine).
For instance, the directoryarch/arm/versatile/contains the code
used by the machine namedversatile. The kernel compiled for one
machine usually cannot be directly booted on other machines (or
QEMU instances that emulate di�erent machines.)

2.2 ARM Machines
Embedded systems usually use SoCs from multiple vendors with
di�erent designs. For instance, they contain di�erent peripherals.
Each SoC is expressed as a machine in the Linux kernel. Manu-
facturers develop theboard support package(BSP) (e.g., drivers of
peripherals) so that Linux kernel can use these peripherals.

Linux kernel introduces the structuremachine_descfor ARM to
describe di�erent machines. The structuremachine_descprovides
interfaces to implement BSPs. For example, Figure 2 shows an exam-
ple of one machineARM-Versatile ABin the Linux kernel (Version
3.18.20). It initializes function pointers and data pointers with its im-
plementation. Speci�cally, in line 5, the function pointerinit_irq is
assigned the value asversatile_init_irq. During the booting process,
the Linux kernel will invoke the functionmachine_desc! init_irq
to initialize the IC (interrupt controller). The same logic applies to
the function pointerinit_time. Linux kernel invokes the function
machine_desc! init_time to initialize the timer.

2.3 QEMU
QEMU [16] is one of the most popular full-system emulators. It
emulates di�erent machines by providing di�erent machine models.
A machine model consists of CPU, memory, and di�erent kinds
of peripheral models. To emulate a peripheral, QEMU registers
the read/write callback functions for the MMIO (memory-mapped
I/O) address space of the peripheral. Once the Linux kernel run-
ning inside QEMU reads from or writes into the address inside the
MMIO range, the registered callback functions inside QEMU will
be invoked to emulate the peripheral. Basically, it maintains an
internal state machine to implement the peripheral's functionality.
Figure 3 shows an example of the registered callback functions for
UART emulation. Speci�cally, when the Linux kernel reads from
the MMIO space of the emulated UART device (e.g.,0x01C42000),
the serial_mm_read function will be invoked by QEMU to emulate
the read access.

3 CHALLENGES AND OUR SOLUTION
The main goal of our work is to rehost Linux kernel binaries that are
originally running on embedded systems in QEMU. This lays the
foundation of applications that rely on the capability to introspect
runtime states of the Linux kernel, e.g., kernel crash and vulnera-
bility analysis [31, 41], rootkit forensic analysis [56, 64], and kernel
fuzzing [51, 59].

3.1 Challenges
Rehosting the Linux kernel on QEMU faces the following chal-
lenges.

Peripheral dependency Rehosting the Linux kernel requires
QEMU to emulate the peripherals, e.g., the interrupt controller, that
the Linux kernel depends on. During the booting process, Linux
kernel will read from or write into the peripheral registers and
execute the code according to the state speci�ed by the value of
peripheral registers. Without the emulation of these peripherals,
the rehosted kernel will halt or crash during the booting process.

Peripheral diversity SoCs vary widely [19] and di�erent ven-
dors, e.g., Broadcom, Marvell may design and develop di�erent
SoCs. These new SoCs introduce many new peripherals that are not
currently supported in QEMU and the open-sourced mainstream
of the Linux kernel. Due to the diversity of peripherals, there are
still a large number of devices that are not supported. Meanwhile,
manually developing peripheral emulation routine is tedious and
error-prone, especially due to the diversity of peripherals. Thus,
the diversity of peripherals brings signi�cant challenge to build
a general emulator, which can re-host various Linux kernels of
embedded devices.

Lack of public information The information (e.g., speci�ca-
tions, datasheets, and source code) of SoCs and �rmware images
are usually not public. This is because vendors may not release
the detailed hardware speci�cation. Furthermore, vendors may not
release the source code immediately after releasing the image and
not all vendors strictly follow the GPL license [35, 42]. Meanwhile,
the binary of the Linux kernel is stripped and has no particular
headers (i.e., ELF section headers) or debugging information. These

Figure 4: The overview of peripheral transplantation.

obstruct the diagnosis of failures when adding emulation support
of new SoCs in QEMU.

3.2 Our Solution: Peripheral Transplantation
In this work, we propose a technique calledperipheral transplan-
tation. The main idea is, instead of manually adding emulation
support of various peripherals in QEMU, we canreplace the periph-
erals that are used in target Linux kernels with existing peripherals in
QEMU.By doing so, we can rehost the Linux kernel and the kernel
functionality is intact (Section 5.4).

Figure 4 shows the overview of peripheral transplantation. This
involves the injection of peripheral models into QEMU and the
ECMO Driverinto the Linux kernel. To distinguish them from origi-
nal ones of the (emulated) machine, we call the transplanted periph-
eral modelsECMO Peripheral. To let the kernel use the transplanted
ECMO Driver, our system identities the functions that are used
to initialize device drivers (ECMO Forward Pointers) and redirects
them to the functions inside theECMO Driver(Fig. 4 1). Moreover,
our system identi�es the APIs that are responsible for interacting
with peripheral models. These APIs are used by theECMO Driver
to communicate with the transplanted peripheral models (Fig. 42).
The addresses of these functions are calledECMO Backward Pointers
in this paper. We will elaborate how to identify the ECMO Pointers
in Section 4.2.

Note that, to ensure theECMO Driverdoes not a�ect the memory
view of the rehosted Linux kernel, we propose the concept of the
opaque memory. This memory region is available on the emulated
machine but cannot be seen by the Linux kernel. As such, we can
prevent the kernel from allocating memory pages that are reserved
for the ECMO Driver. We will elaborate this in Section 4.3.

3.3 An Illustration Example of Peripheral
Transplantation

Fig. 5 shows a concrete example of transplanting one peripheral (i.e.,
timer) into the Linux kernel. In particular, the functionstart_kernel
is responsible for initializing the Linux kernel. It will invoke several
di�erent functions, includingsetup_arch and andtime_init .

The functionsetup_arch will setup architecture-related con�g-
urations and initialize themachine_desc structure (Fig. 51). This

structure contains multiple function pointers (ECMO Forward Point-
ers) that will be used to initialize corresponding drivers. Our system
�rst locates the functionsetup_arch and then injects a function
(install_ECMO_forward_pointers) to change the pointers to our
own ones (Fig. 53).

When the functioninit_time is invoked to initialize the timer
(Fig. 5 2), theECMO_init_time , which is pointed bymachine_desc->
init_time , will be invoked to initialize the injected timer driver
(ECMO Driver) in QEMU (Fig. 54) (throughECMO Forward Point-
ers), instead of the original one. Accordingly, this function will
invoke APIs (throughECMO Backward Pointers) in the Linux kernel
to interact with theECMO Peripheral(Fig. 5 5).

Note that, the code snippets in Fig. 5 are for the illustration
purpose.Our system does not rely on the availability of the source
code. It directly works towards the Linux kernel binary that is retrieved
from a �rmware image.

4 SYSTEM DESIGN AND IMPLEMENTATION
In order to rehost Linux kernels, our system �rst extracts and de-
compresses the Linux kernel from the given �rmware image (Sec-
tion 4.1). We then apply multiple strategies to identify bothECMO
Forward and Backward Pointers(Section 4.2). These pointers are
essential forECMO Drivers. At last, we semi-automatically gener-
ateECMO Driversand load them at runtime to boot the kernels
(Section 4.3). Fig. 6 shows the overall work�ow.

4.1 Decompress Linux Kernel
Firmware image usually consists of the OS, which is the Linux
kernel, and user applications. However, the Linux kernel inside the
�rmware images is usually compressed. To identify ECMO Pointers,
we need to �rst extract the Linux kernel and decompress it. With
the decompressed Linux kernel, we can utilize di�erent strategies
to locate the ECMO Pointers.

Speci�cally, we feed the �rmware image to �rmware extraction
tool (i.e., Binwalk) to extract the kernel image. Then we directly
feed the extracted kernel image (with added u-boot information) to
QEMU. Since the code for decompressing the Linux kernel does not
operate on the peripherals (except the UART to show the message
of decompressing Linux kernel), it can be successfully executed in
vanilla QEMU.

As shown in Fig. 7, functiondecompress_kernel in line 16 is in-
voked to decompress the kernel. Its �rst parameter (i.e.,output_start)
indicates the start address of the decompressed kernel. Thus, if we
can identify whendecompress_kernel is invoked, we can get the
�rst parameter by checking the machine register (R0in ARM) and
dump the decompressed Linux kernel.

We notice that the functiondecompress_kernelis invoked by
the assembly code inarch/arm/boot/compressed/head.S. We observe
that this snippet of assembly code remains unchanged in di�erent
kernel versions. With this observation, we identify the address of
instruction BL decompress_kernel by strictly comparing the exe-
cution trace of QEMU and the hard coded assembly code. After
�nding the instruction, we can obtain the address of the function
decompress_kerneland the value ofoutput_startaccording to the
execution trace. With this information, we can dump the decom-
pressed Linux kernel after the functiondecompress_kernelreturns.

Figure 5: A concrete example of peripheral transplantation.

Figure 6: The work �ow of our system.

1 Assembly code :
2 mov r0 , #0
3 str r0 , [r2] , #4
4 str r0 , [r2] , #4
5 str r0 , [r2] , #4
6 str r0 , [r2] , #4
7 cmp r2 , r3
8 blo 1b
9 tst r4 , #1

10 bic r4 , r4 , #1
11 blne cache_on
12 mov r0 , r4 // r0 stores the value of output_start
13 mov r1 , sp
14 add r2 , sp , #0 x10000
15 mov r3 , r7
16 bl decompress_kernel
17 // we can dump the decompressed Linux kernel
18 // after function decompress_kernel returns
19
20 Simpli f ied C code :
21 void decompress_kernel (uint32 output_start , args)

Figure 7: The assembly code that invokes function decom-
press_kernel, which is in arch/arm/boot/compressed/head.S.

By doing so, we can automatically retrieve decompressed Linux
kernels from �rmware images.

4.2 Identity ECMO Pointers
Our system needs to obtain the addresses of two essential types
of functions in the Linux kernel. Speci�cally, theECMO Forward
Pointerscontain the functions that are used by the Linux kernel to
initialize device drivers. We dynamically hook and redirect them
to ECMO Driversat runtime in QEMU. TheECMO Backward Point-
erscontain the APIs that are used by theECMO Driverto invoke
functions provided by the Linux kernel to interact with emulated
peripherals in QEMU.

Precisely identifying ECMO Pointers is not easy. The main chal-
lenge is the decompressed Linux kernel is stripped and only con-
tains the binary data. It has neither meaningful headers nor debug-
ging symbols and contains thousands of functions. Furthermore,
the Linux kernel is compiled with di�erent compilers and compiling
options, which can result in di�erent binaries. Thus, we cannot have
any assumption on the compiling options or compilers. We also
cannot rely on run-time symbol tables like/proc/kallsym because
they are only availableafter booting. However, we have the insight
that embedded Linux kernels are usually modi�ed based on the
mainstream Linux kernel and the modi�cation mainly aims to add
support for speci�c peripherals withboard-speci�c code. Meanwhile,
ECMO Pointers are functions inarchitecture independent codeor
architecture dependent code(Section 2.1), which is unchanged and
open-source.

In this case, we can automatically identify ECMO Pointers by
leveraging the source code of the mainline Linux kernel. For in-
stance, if we �nd that a function uses a speci�c string by reading
the source code, then we can easily identify this function inside
the binary by locating the function that has references to the same
string. Of course, this simple strategy may not always work, since
some functions do not have such obvious patterns or multiple func-
tions can refer to the same string. Thus, we take three di�erent
strategies to identify ECMO Pointers (Section 4.2.2). We illustrate
each step in the following.

4.2.1 Disassemble the Linux Kernel.The �rst step is to disassemble
the Linux kernel for further analysis, including constructing the
control �ow graph and identifying function boundaries. Accurately
disassembling the ARM binaries is still challenging, especially when
the binary is stripped [46]. This is because inline data is very com-
mon in ARM binaries and there are two di�erent instruction sets
(i.e., ARM and Thumb). Furthermore, ARM does not have a distin-
guished function call instruction, which can in�uence the accuracy
of identifying function boundaries. In this case, we choose to en-
sure that this step does not introduce false negatives, i.e., all the
code sections should be dissembled. Otherwise, we cannot identify
the functions if they are not correctly disassembled. However, we
can tolerate the false positives, i.e., the inline data may be wrongly
disassembled as code. The strategies described in Section 4.2.2 can
help us to �lter out these false positives.

After disassembling the Linux kernel and constructing the con-
trol �ow graphs, we further locate function boundaries by combin-
ing the algorithm introduced in Nucleus [23] and angr [1]. Nucleus
can identify the functions indirectly called while angr locates the
function according to the prologue. These two tools can help to
reduce the false negatives and guarantee that the required function
addresses (ECMO Pointers) will be located during the disassembly
process. Finally, we build a mapping for each function and various
types of information, e.g., number of basic blocks, string references,
number of called functions and etc. This mapping describes the
signature (or portrait) of each function. Note that, our system does
not require that the constructed control �ow graphs are sound
or complete, as long as they can provide enough information for
further analysis (Section 4.2.2).

Algorithm 1: The algorithm to identify the addresses of
ECMO pointers from the Linux kernel binary.

Input: The decompressed Linux kernel! � ;
The source code of ECMO Pointers(� (architecture independent code or
architecture dependent code);
Output: The addresses of ECMO Pointers� � ;

1 Function Identify(! � ,(�) :
2 �� � = Disassembly(! �)
3 �4=4A0C43_�D=2C8>=B= GenerateFunctions(�� �)
4 for (_� in (� do
5 for � _� in �4=4A0C43_�D=2C8>=Bdo
6 for Filtering_Strategy in Filtering_strategiesdo
7 if Filtering_Strategy((_� ,� _�) then
8 Append� _� to (_� ”�0=3830C4B

9 for (_� in (� do
10 if Length((_� ”�0=3830C4B) == 1then
11 � � »(_� ¼= (_� ”�0=3830C4B

12 return � �

13

4.2.2 Identify Pointer Addresses.Algorithm 1 describes the process
to locate pointer addresses of ECMO Pointers in the decompressed
Linux kernel binary, i.e.,LKB. Note that, we �rst need to get the
source code of the functions, i.e.,SC, inside the mainline Linux
kernel. The outputs of this algorithm are the addresses of ECMO
Pointers, i.e.,FA(line 12).

First, we disassemble the decompressed Linux kernel, construct
the control �ow graph (line 2) and generate function boundaries
(line 3). Then for the source code function of each ECMO Pointer
(line 4), we loop through the generated functions (line 5) and apply
di�erent �ltering strategies (line 6). If one �ltering strategy can
identify one address as a candidate address of the ECMO Pointer
(line 7), this address will be appended to the candidate list (line 8).
Finally, we check the candidates of each ECMO Pointer (line 9). If
there is only one candidate (line 10), it means the address of this
ECMO Pointer is successfully identi�ed in the kernel binary (line
11). Note that even if there is more than one candidate for each
ECMO Pointer, ECMO can automatically try all the candidates and
the one that can rehost the Linux kernel should be the right one.
We do not �nd such cases in our experiments.

Strategy-I: Lexical information The �rst strategy uses the lex-
ical information inside a function as its signature, e.g., a speci�c

(a) Speci�c constant string: the constant string is referenced by a data pointer (i.e.,
foo_o�set+0x200).

(b) Warning information: line number (i.e., 386) is the operand of assembly code; �le
name (i.e., /path/to/source.c) is a constant string.

Figure 8: Strategy-I: Lexical information

constant string and the warning information. If the function we
want to identify has such strings, we can then lookup the disassem-
bly code to �nd the functions that have data references to the same
string. The line number and �le name in the warning information
can further help to locate the function.

Fig. 8(a) shows a pair of the disassembled code and the source
code in the mainline Linux kernel. In the source code, the function
foo contains a speci�c constant string �This is a speci�c string".
In the assembly code, the instruction atfoo_offset+0x0 will load
the data pointers (i.e.,foo_offset+0x100) using theLDRinstruction.
The data pointer refers to another pointer (i.e.,foo_offset+0x200),
which contains the same constant string. Based on this, we can
locate functionfoo in the disassembled kernel. Fig. 8(b) shows a
similar example with the warning information. The WARN_ON
will call function warn_func. The �rst parameter is the �lename,
which is a speci�c constant string. The second parameter is the
line number of WARN_ON. Usually, the line number is hard coded
as an operand of instruction after compilation. Thus, functions
containing speci�c constant strings or warning information can be
easily identi�ed.

Strategy-II: Function relationship The second strategy uses
the relationship between functions. That's because functions that
do not contain speci�c strings cannot be identi�ed by the strategy-I.
However, we can use the relationship between the functions we
want to identify and the ones that have been identi�ed using the
previous strategy. For instance, if we have identi�ed the function
(Identified_foo) and this function isonly invoked by the function
Required_foo , then we can easily locate theRequired_foo by �nd-
ing the caller of theIdentified_foo function (Figure 9(a)). Similar
strategies can be applied to the callee and sibling relationship, as
shown in Figure 9(b) and Figure 9(c), respectively. Note that we do
not need to have a precise call graph, which is hard to generate due
to the indirect call and inline function. This is because strategy I
can identify several functions due to the many speci�c constant

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Kernel
	2.2 ARM Machines
	2.3 QEMU

	3 Challenges and Our Solution
	3.1 Challenges
	3.2 Our Solution: Peripheral Transplantation
	3.3 An Illustration Example of Peripheral Transplantation

	4 System Design and Implementation
	4.1 Decompress Linux Kernel
	4.2 Identity ECMO Pointers
	4.3 Generate ECMO Drivers
	4.4 Implementation Details

	5 Evaluation
	5.1 Dataset
	5.2 Identify ECMO Pointers (RQ1)
	5.3 Rehost Linux Kernels (RQ2)
	5.4 Reliability and Stability (RQ3)
	5.5 Applications and Other Peripherals (RQ4)

	6 Discussion
	7 Related Work
	8 Conclusion
	References

